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1. The regretted Polish mathematician S. Lubelski, who met his
death in world war II, left to his colleague J. G. van der Corput & manu-
script titled: Zahlentheorie. In the years affer the war this manuseript,
which contained a preliminary version of a book on theory of numbers,
was studied in the Mathematical Centre at Amsterdam. Although in the
meantime a large number of books and memoirs on the subject had
appeared it turned out that the manuscript contained several new results.
After having been placed in the seope of the classical and modern litera-
ture, these results are worth to be published separately.

In vhe present note the first of these results are given.

As is well known Hermite has proved the following theorem.:

If f(®1,...,%,) s a positive quadratic form with determinant D and
M(f) is the smallest positive value of f for integral values of the variables,

n
we have M(f) < (2 I2VD.

A gimple proof is found in Cassels [1]. Later considerably sharper
results were derived, a.o. by Minkowski and Blichfeldt (see Koksma
[2]). In the special case of integral positive quadratic forms this theorem
can be used to prove, that the number of classes of equivalent forms with
a given determinant is finite.

The analogous problem was also treated for other types of quadratic
forms. Mordell [3] and Oppenheim [4] derived analogous results for
indefinite quadratic forms. Here also must be mentioned the critical
note by Landherr [7] and the treatment by Siegel [8], who uses
Hermite's definition of a reduced indefinite form. Further, Oppen-
heim [5,6] and Siegel [9] treated the analogous problem for integral
Hermitian forms.
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Here quadratic forms will be considered, whose coefficients are
elements of a Buclidean ring, which is also the domain of values for the
variables. In particular those Buclidean rings will be treated which consist
of the integers of an imaginary quadratic number field.

The main regults are given by theorems 1 and 2. In the rational case,
theorem 1, 3° just gives Hermite’s estimate. It may be remarked that
theorem 1 is somewhat different from the original result in Lmbelski’s
manuseript, in so far as he restricted himself to the statements 1° and 3°.

Several indications were given by C. G. Lekkerkerker.

2, In a Buclidean ring I we consider quadratic forms in # variables:

n
Fyy oy @) = Daymey  with  ay = a.
i 7=1
(I is the set of possible values for the variables and also the coefficients a;,
are elements of I.)
The discriminant of f is defined as the determinant of the coeffi-
cients: det(a).
By a linear transformation

w
By = 2 %Yy

Fml

the form f(@, ..., #,) is transformed into a form

n
By ooy Yn) = D, bytiyy.

1, f=1
The inverse transformation exists (in I), if and only if det(cy) is
a unit of I. Then f and ¥ represent the same elements of 1. The forms are
called (properly) equivalent in the case, that the transformation has
determinant I (the element “one” of I). Equivalence is reflexive, symme-

tric and transitive. We have

(bmt) = (0ma)(@ig)(0g)  With O = Oims
50

det (byy) = det(ay)(det(ep))?.

It follows, that equivalent forms have the same discriminant. We
say, that f represents an element of I properly, when this element occurs
a8 & value of f with relatively prime w;, ..., ®,. Equivalent forms also
represent the same elements properly.

LemyMA 1. If in o Buclidean ving the quadratic form f represents the
element a properly, there ewists a form, which is equivalent to f and whose
first coefficient is a.

icm
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Proof. a is represented properly by f, so we have a = f(uy, ..., #y,)

with relatively prime uy, ..., w,. According to the theorem of the elemen-
Oyy e

tary divisors (1), in. a Buclidean ring for a given matrix |. . . . . .| wehave

vo Oy

(I’u-w (TR ) Qay e L 0
---------------- = " )
v Pan cor Oy O - 0 .

where det(py) and det(gs;) are units and &, is a g.c.d. of the elements a;.

Uy,
Applying this to the matrix we have m = 1 and we find
uﬂ«
&
Pay-»e %1 0
e pam un 6

Here det(p;;) and ¢ are units; ¢ is also a unit, as ¢ 8 a g.c.d. of Uy, ..., %,
and u,, ..., u, are relatively prime. It is easy to prove that we can make
det(pﬁ) = =g = 1.
n
Now let y; = 3 pyu; transform f(wy, ..., @) into F(yy, ..., Ya)
=1
Then f and F are equivalent and f(u,,...,u%,) = F(1,0,...,0), 8o
F(1,0,...,0)=a.
LEMMA 2. The integers of an imaginary quadratic number field
R/ =) form a Buclidean ring for —di = —1, —2, —3, —7, —11 (and
in no other case).

In these Buclidean rings for given a aend p with p 50 there. always
exists a number &, so that |a— BE|? < v|B|?, where

v=1% for —d= -1, v="=% for —d=-—T7,
v=14% for —d= -2, v=45 for —d=-11
v=1% for —d= -3,

These values of v cannot be replaced by smaller ones.

Remarks. 1. For d == 3 (mod4) we have v = }(1-+d), for d = 4k—1
we have v = k?*/(4k—1).

2. For the Euclidean ring of the rational integers the same holda‘
with o = %.

() See van der Waerden, Moderne algebra, §108.
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3. The five imaginary quadratic number fields, whose integers form
a Buclidean ring, were first mentioned by Dickson. The smallest possible
values of v are due to Heinhold [10].

3. In the following we restrict the Euclidean rings to those of
lemma 2 and the ring of the rational integers; as a further restriction we
only consider forms with discriminant = 0. Now we introduce the notion
of a reduced form (standard form). For n = 1 every form. is a reduced one;
further we define (by induction): a reduced form f(a,...,,) =

K
= 2 aywym; is a form, which has the following properties:

Y= -
1. oy < 1a11|1/1; Sfor all @ >1, where v is the number v of lemma 2
and v = } for the ring of the rational integers.
2. There is no equivalent form, for which |ay,| is smaller and positive.

n
3. F(@yy ooy ) = ayy fl®y, ..., @) — (Y ayy )2 s a veduced form.
1=1

THEOREM 1. 1° Ewery class of equivalent forms contains a reduced form.
2° For a reduced form in n variables we have

LTI
ay,| < w™V2Y | D),

where D s the diseriminant and w = max ((1—wv)"!, 4).

3" If a form in n variables is reduced and is not a zero form, we have

I e
a1y < (L— o)~V D],

(A zero form is a form, which has the value 0 for a set of values of the
variables, which are not all 0.)

Proof. 1° We give a proof by induction. For »n = 1 there is nothing
to be proved. Now we suppose that the statement holds for n— 1 varia-
bles, and prove it for n variables.

Let @ be a number with smallest possible positive absolute value,
represented properly by a given class of equivalent forms in n variables.
According to lemma 1 this class contains a form

W

Jlo, ooy @) = Z aywry,  with

i1

gy == (b,

. This form satisfies the second condition for reduced forms. Now let

7(902, ey i) = Oy f@1y ..., mﬂ)‘(}f“liwt)z

feml

icm®
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and let 4 be the discriminant of f. By the transformation (@37), with
ay = &y for ¢ >1, the form @}--f(»,,...,»,) with discriminant A4 is
trangformed into the form a,,f with discriminant o, D. As the transfor-
mation has determinant a,,, we have ah A = a%D. So 4 0. Then
we may apply the induction hypothesis to 7; this says, that }(w,, ..., @)
is equivalent to a reduced form F(y,,...,%,). Let (Aig)i, g s, ..., n DO
the corresponding transformation; it has determinant 1. Let dy,, ..., di,
be numbers of the Buclidean ring with

1a11'dw—|—2a1,ldi," <laglVo  for j=2,..,m
A=

such numbers exist according to lemma 2. Now we put dy; = 1, d;; = 0
for ¢ = 2,...,n and apply the transformation (dy) to f(wy, ..., ®,); this
transformation also has determinant 1. We get a form F(yy, ..., ¥n)

n
= > by¥;y;. Now we have
1,21

n
by = D auBudy, wheve dy =1, dy =...=dp =0.
e, 1=1

n
For ¢ =1 this gives by = > aydy; from thiy it follows again, that
=

[ —_
by = @a,. Now for j=2,...,n we have [1241111,,}<|an|1/'u, 80
=]

1byl < \bn{lfv. This means, that F' satisties the first condition for reduced
forms.
n
By the transformation, the linear form D a,#; is transformed
=1
n 12 _
into Y aydyy; = 3 byy;. As the transformation also tramsforms f into
. dg= 7=1
F, we get

n

= 1
F(ysy ... Yn) = bllF(yu cery ?/”)—(Z bliy:i)a'
=1

Here F i veduced, so F satisfies the third condition for reduced forms.

Now F satisfies the three conditions for reduced forms, hence F
is a reduced form.

29 For n == 1 the statement is trivial.

Now at first we shall prove it for n = 2. S0 we consider a reduced
form.  f(m,, @) = 02+ 20,,8, W, y;25. We distinguish two cases:
Gy =0 and agy, = 0.
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In the first case |ty] < @4, 80
N S A S “12|+ logal® < |“11“za—“§z| +vlay|?
= |D|4v|ay|?,
hence (1—0v)|ay|? < |D|, and so
|ayl < (1—2)~*V|D] < VD],

In the second case f(z,, ) = @ (G, @+ 20,5%,). In the Buclidean
ring there is a number u, such that

0 < |Gyy+ 2055 < 2|ag,, 80 0<|f(L,u) < 2|a.
Then
03] < 2lay,| = £2V]D] < '™V D).

Now the proof for n >2; we suppose that the statement is true
for a smaller number of variables than n. We consgider the reduced form

F(1, “eey Wp) Z hig D305 « Then.

1«71

Fogy «ovy @) = @y f (@15 ey )~ (Zau(’h)

Gl

is also a reduced form; its first coefficient is @, @g,~— a?, and ity diseri-
minant is o}y D (see proof 1%). So aceording to the induction hypothesis

R P—
|@y1 oy — 0| < D2 V]a,, "2 (D).

It is easy to see,2 that the form ., #} 20,0, %,+ ag,#%, whose diserimi-
nant is @y, @.,— afy, i8 also & reduced form. So

|6ya) < ™ '/|“11“22"“1z\

Then
|@1]% < w0y 00— 0] < W ‘/|0;1—1Phﬂﬁmiv
which gives
oy " < wn(n“lmwb
o that

B s
|ay| < w®VEY D).

3° For a reduced form in n variables, which is not a zero form, we find
in the same way:

letgy] < (L—0)= 0012 ‘/[D|
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Remark. A clags of equivalent gquadratic forms in » variables with

diseriminant D always contains a form with |ay,| < (1—p)~ "D %7)7

If the forms of the clags arve zero forms, there is a form with a,, = 0
and for this it is true (but this form is not a reduced form in the sense of
our definition.).

As an important consequence of theorem 1 we have

THEOREM 2. The number of classes of equivalent quadratic forms in n
variables with a given discriminant is findite.

Proof., According to theorem 1 every clasy contains a reduced form;
o it is sufficient to prove, that the number of reduced forms in » varia-
bles with a given discriminant is finite. We prove this by induction. For

= 1 it is true. (For #» = 1 and a given D there is one form: Du}.) Now

n
let f(@y, ..., @) = O @y®; be a reduced form with discriminant D.
4, 7=1

It follows from.
.
lay] S w"VEY|D],  ay] < laulVo (6 =2,...,n),

that for a given D there is only a finite number of possible sets @y1y...; &in.
Next,

Cy1f (g eeey Ba) = (Zaliwi)z+7(wa; wey Tn),

i=1

where } is again ‘a reduced form. For given D and a,, the discriminant
of  is determined (a7 D), so there is only a finite number of possibilities
for f (induction hypothesis).

Then for a given D there is only a finite number of possibilities for f.
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Uber die Darstellung der Zahlen durch
einige ternire quadratische Formen

yon

G. LomADnsE (Thiligsi)

§1. In der vorliegenden Arbeit bezeichnen die Buchstaben M, N,
a, &, k, g, 7, 2, @ natiirliche Zahlen (in §4 bezeichnet jedoch g beliebige
ganze Zahlen); b, u,» ungerade natirliche Zahlen; p Primzahlen; , 1
nichtnegative ganze Zahlen; H, ¢, g, k, §, m, n, s, ¢, y, a, B, y, 6 ganze Zah-
len; A, pu,9 0,0, &7, w reelle Zahlen; 2, ¢, 1, A, B, ¢, D, & komplexe
Zahlen, wobei Im< > 0. Mit K werden positive Zahlen bezeichnet, die an
den betreffenden Stellen definiert sind.

Diese Buchstaben werden notigenfalls mit Indizes oder Strichen
versehen.

(h,m) ist der groBte gemeinsame Teiler von h und m.

d|m bedeutet, daB d in m als Teiler aufgeht; dtm, daB d nicht in m
aufgeht; p'[jm, daB p'|m, aber P,

h
(;) ist das Jacobische Symbol fiir (h, %) =1, » >1; ist Null fiir

e (hyu) >1; ist Eins fir v = 1.

Weiter sei

) 1)
e(z) = exp2miz;  I(u) = i@ VM,

ST fir £ 0,
sgné =1 [£|
0 fir £ =0,
In der Summe 3 durchlaiift b ein vollstéindiges Restsystem modg,
hmodq
in der Summe " ein reduziertes System. Leere Summen sind gleich Null
hmody

zu getzen, leere Produkte gleich Kins.

Fir 2 0 sei

i 192 T Je/2 1/2\k
— o <argd® < o, A= (P
ad

o
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