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Congruence properties of certain polynomial sequences
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1. Introduction. Consider the recurrence

(1.1) U1 = f(r)un+g(n) Un_y,

where f(n), g(n) are polynomials in n (and possibly some additional
indeterminates) with integral coefficients. Moreover we assume that

(1.2) =1, u=f0), g(0)=0.
Thus the sequence {u,;n = 0,1,2,...} is uniquely determined by 1.1)
and (1.2).

The writer has proved ([1], Theorem 1) that if m > 1, r =1, then u,,
satisfies the congruence

r

(1.3) N1y (:) Uy om Uipaym = O (mOAM)

§=0

for all » > 0, where

(1.4) ry = [(r+1)/2],

the greatest integer < (r-1)/2. The principal object of the present paper

is to show that, with the same hypotheses, w, satisfies the simpler con-

gruences
r

(L.5) -1y (:)u,,,mu;:s = 0 (modm™),
§=0

where again r, is defined by (1.4). In addition we show that (1.5) implies

r

(L.6) (1)t omt sy = O (modm™)

8=0
for all m >0, k> 0; for k =0, (1.6) evidently reduces to (1.3). For
a more general result see Theorem 2 below.
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We remark that in particular the Hermite and Laguerre polynomials
satisfy (1.1) and (1.2) when f(n) and g(n) are properly specialized. Thus
(1.5) applies and we obtain

r

eR) D=1y ;) 20) ™y ona) = 0 (modm™),

(18) D=1 () (=) 42 o) = 0 (modm™),
s=0

where

(1.9) AP (@) = n! LY (z)

and L (2) is the Laguerre polynomial in the usual notation ([4], Chap-
ter 5); the parameter 1 is a rational nuwmber that is integral (modm).
The writer [2] has given a simpler proof of (1.7) and (1.8) by making use
of certain explicit formulas available for the Hermite and Laguerre
polynomials.

2. It ‘will be convenient to replace (1.1), (1.2) by

(2.1) Ui (@) = (2+F(0)) e (2)+ g () w4, (),
(2.2) U@ =1, w(@) =o+f0), g¢(0)=0;

as above it is assumed that f(n), g(n) are polynomials in n with integral
coetfficients. Clearly w,(z) is a polynomial in « of degree n with integral
coefficients; the highest coefficient = 1. Also it is evident that many

sequences of orthogonal polynomials are included in the present discus-
sion.

Since (2.1) implies
DU (B) = U 41 (%) — F (1) U {0) — g (0) 1y, (@),

it is clear that

2" U () = 2 Ama(”)'”/n+a(w) (m,n'=0,1,2,...),

S=—~m
where the A,,(n) are polynomials in = with integral coefficients. Con-
sequently

m

(2.3) Un (@)U (#) = D) Bpg(n)ty (),

8=—m
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where the B,,,(n) are polynomials in » with integral coefficients. In (2.3)
we think of m as fixed while » = 0,1,2,...; also we take

Bps(m) =0 (s < —n).

We now rewrite (2.3) as

m—1
(2.4) Uy (B) U (%) — U1 (B) = 2 B ()t s (2)

§=—Mm
and apply the case r = 1 of (1.3), that is,
U () = Uy () Uy, () (mOA M),

Then (2.4) becomes

(2.5) 2 Bs (1) Uty s (2) = 0 (modm).

S=—m

We shall require the following . .
LEMMA. Let g (x), %y(2), --., Ua(x) denote a set of polynomials in
with integral coefficients and highest coefficients = 1; also let

degug(z) =s (0 <s < ).

Assume that Ay, Ay, ..., A, are integers such thai

(2.6) 3 4,u,(2) = 0 (modm);
=0

then

(2.7) A, =0 (modm) (0 <s<n).

We‘rema.rk that if u(x) is a polynomial with inte.grfal. eqefficients,
the statement u(z) = 0 (modm) means that each coefficient of u(w)
is divisible by m. Then if we put

§
u,,(m):Zas,-m’ (a6 =1, 0 <5< n),
im

(2.6) becomes

ZAS aya = 0 (modm),
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80 that

n

Z"‘AJZ‘AS%,. = 0 (modm).

=0 s=7
Consequently, by the above remark,
n
(2.8) Z‘Asaﬂ =0 (modm) (0 <s<mn).
s=7

Since the matrix (ay) is triangular and ag, = 1 for 0 <s < 1, it is clear
that (2.8) implies (2.7). This completes the proof of the lemma.
Applying the lemma to (2.5) we immediately obtain

(2.9) Bps(n) =0 (modm) (—m <s << m—1).
In the next place we define the operator 4 by means of
(2.10) Ay, = Uy (%) Pr— Prim
and generally
(2.11) Ay = Un (@) A" g — A" P,

where @, is an arbitrary function of n. Clearly (2.10) and (2.11) imply

(2.12) A, = Zr’ (=1 (Z)uiis(w)%+sm- -

=0 N

Applying A™! to both members of (2.4) we get

(2.13) A"y, (3) = 2—3 A" Bug (1) thn o (@)} -

§=—m

In addition to 4" we also require the operator ¢" defined by

(2.14) 6'97n = 2("‘1)3 (:)‘Pn-q-sm-
§=0

Since (2.14) is equivalent to

k

(2.15). Pnstm = Y (—1) (k) & on,s

=t !
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we get
r

i
—

Ar#l{Bme (M) Unys (m)} =

%

(=17 (75 )@ B 2+ o) 1 (2)
k

I
L3

“
|
-

I
b

(=1 (") @) () éj(—l)f (£) #Buat

7

. =
11
- o

I
NG|

(T;l)éij(n)g (=27 (325 (@) o 2

j=0
r—1 1 r—1-j 1—i
r—1\ ¢ r—1—§\ r1-j—
= 3 ()8 Baem X (0"l @)t ()
i=0 - k=0
r—1

= 3 (7Y) #Bustn) 47ty @),

<
=1

Thus (2.13) becomes
m—1 r—1

(2.16) Aup@) = D) ) 5 Ba(0) 477ty ().

S==—m =0

We shall now prove (1.5) by an induetion with-respect to ». For
r = 1, the result is the case r = 1 of (1.3). We accordingly assume that
(1.5) bolds up to and including the value r—1. Also since B,,(n) is
a polynomial in n with integral coefficients, it follows from (2.14) that

2.17) I Bs(n) = 0 (modm?).
Consider a typical term
Ais = aijs(n) Ar_l—jun-}-im(m)

in the right member of (2.16). For j = 0, we use (2.9) to get

(2.18) Ay = 0 (modm!+I7)

by the inductive hypothesis. For j > 1, we employ (2.17) to get
(2.19) * Ay =0 (mod m/ TNy

Since

1+3r]1 2 [30+1], JHIEE-DIZ D] A<i<r),
it evidently follows from (2.16), (2.18) and (2.19) that
(2.20) , Atu, (#) = 0 (modm™).

This completes the proof of (1.5).
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We may state

THEOREM 1. Let f(n), g(n) denole polynomials in n with coefficienis
that are integral (modm), where m s a fived integer = 1. Define the
sequence of polynomials {w,(x)} by means of (2.1) and (2.2). Then Uy (2)
satisfies the congruence (2.20) for all w =0, r = 1, where

r

Fun(@) = P (=17 ()air* @ tnsom(e)  and 7y = [(r+-1)2),

§=0

3. The proof of (1.6) depends upon the following identity. Put

,

Z ( _1)f (:) T om (2) Ugo . (r—sym. () -

§=0

(3.1) Ulid(z) =

Then we have

(3.2) Uil (@)

- j (1) (;) A (@) A" 104 ().

§=0

Indeed it follows easily from the definition of A°w,(x) that

2( 17 () (@) 4°y 0).

(3.3)

n+rm

Then (3.1) becomes

r s

0iba) = 310 (]) 3 (=10 ({7 0) 1 0) . - g2
- ,.:., () 4/t 2 (=1 (177) i @) gm0
- j; ;) #umtr ;_ (=17 (737) @)ty (2)
= j (=1 () A (@) 4™ (),

This evidently proves (3.2).
Now by Theorem 1, we have

(3.4) A, (@) = 0 (mod mie+D2y -

(3.5) A (@) = 0 (m‘odm[(r—s+1)/2]),

icm
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for all » >0, £ >0, 0 <s < 7. Since

(FG+D]1+[3r—s+1)] >
it .follows from (3.2). (3.4) and (3.5) that

[3(r+1)],

(8.6) U® (x) = 0 (modm™)
for all » > 0, k > 0. This completes the proof of (1.6).

A more general result can be obtained by first generalizing the
identity (3.2). Let =y, ...,n; be arbitrary non-negative integers and
Ay ...y A arbitrary parameters. Put

k
(3.7) E'i') U},'l) nk( ): ‘ 3L skl 1 “ﬂj-}-ajm(m)'
51+<~-+3k_ i=1

This can be written more compactly in the symbolic form

(3.8) UP = ult (A u™+ ...+ L),

where it is understood that, after expanding the right member by the
multinomial theorem, each «}9*™% is replaced by Uy, +sfm(:v).
Using (3.2), we get

N = AL A% X
8l .8!
8y F...t8g=r
k 3
<[] S,
j=1 t,-:o
- D (_1)‘__fi— a2 A, A%,
Hl b (r—1)! R "
Bt
—)!
> 0
s (s1—t) ! (s—p)!
where t = t,--...+ .. We therefore get the identity

3.9) TP =
b+t

1
¢ e i
N A T TR S

X (Mt A gy

In the identity (3.9) the A; are arbitrary quantities. We shall now
assume that each A; is integral (modm) and moreover

‘A, ... A%,
ny k

(3.10) Ao+ = 0 (modm).
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Applying Theorem 1 we get
A, ... A%y, = 0 (modm),
where
e = [$(h+1)]+...+[${&H+1)].
Therefore, using (3.10), it follows that the indicated summand in the
right member of (3.8)
= 0 (modsm~rt-+hte),
Since
t—G+DI< B (G=1,...
it is clear that

=ttt te Zr—Eth+. ) > 4.

It follows that

(8.11) U =0 (modm™).

We may now state

THEOREM 2. Let the sequence {u,, (%)} be defined as in Theorem 1. Define

Ug') = U};l)'nk ()

by means of (3.7), where ny, ..., ny, are arbitrary integers > 0 and Ay eey g
are integral (modm) and in addition satisfy (3.10). Then UY satisfies
(3.11) with r, = [(r+1)/2].
In particular for r =2, 4, = 1, 1, = —1, Theorem 2 reduces to (3.6).
We remark that the congruence (3.11) was suggested by the follow-
ing congruence for the Bernoulli numbers proved by Vandiver [5]:

(312) B BRI T L+ BTN = 0 (mod (p7, p™Y, ..., pME )
(n; == 0 (modp—1),i =1,..., k),

where the left member is expended by the multinomial theorem and
B, /n substituted for A% in the result; B, iy the Bernoulli number in the
even suffix notation, the 4; are rational integers such that

A+ A = 0 (mod p)

and p is an odd prime. For example, when 7 = 2, (3.12) implies in par-
ticular
r

B _ B
(—1 s(") mir-9e-y __ Prrep-n r
m(r—s)(p—1) ntsip—1)  ° (0dF)

8=0

icm
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provided p—14m, p—1{n, m >r,n >r. The congruence (3.12) was
later generalized by the present writer [3].

While (3.11) superficially resembles (3.12), it should be noted that
the congruences differ widely in certain respects.

Returning to Theorem 2, we remark that the 4; may contain inde-
terminates, or again may be algebraic numbers; all that is required is
that each 4; is integral (modm) and that (3.10) is satisfied.

We also remark if some sequences {u,(z)} satisfies

(3.13) A"y, () = 0 (modm"),

then exactly as in the proof of Theorem 2, we get

(8.14) U = 0 (modm”);

observe that in both (3.13) and (3.14) the modulus is m” rather than m'.

4. As remarked in the Introduction, Theorem 1 and 2 apply to the
Hermite polynomial H, (») and the modified Laguerre polynomial AP (2)
as defined by (1.9). Since

Ho(x) = (20)", AP (s) = (—a)™ (modm),

we get (1.7) and (1.8). o
Another interesting example is furnished by the polynomial f,(x)
defined as follows. Put

14+6 =~
_‘(—_i——lerl = SAn(u)tny fn(m) = nld,(u) (x = 2u+1).
(1—1) =
Then f,(x) satisfies the recurrence

fas1(®) = aful®)+ 1 fu_1(2);

) are satisfied. It is proved

also fy(x) =1, fi(r) = 2. Thus (2.1) and (2.2
in [3] that
(4.1) (1 (s - t2) = 0 (o).

It is also proved that

(2 (x—1)(x—3)...(x—2m+1) (modm).

Consequently Theorem 1 yields

y(‘ () (x—1){x—3).. (1:—2;71,+1)}r-sfn+ML(x)Eo(modmfl).

S()
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Note that in (4.1) the modulus is m" while in (4.2) it is only m™. Ag
remarked at the end of § 3, the hypothesis (3.13) implies in particular

U = 0 (modm'),

but the converse is apparently not true.

References

[1] L. Carlitz, Congruence properties of the polynomials of Hermite, Laguerre
and Legendre, Mathematische Zeitscrift 59 (1954), p. 474-4883.

[2] — Congruence propertios of the Hermite and Laguerre polynomials, Archiv
der Mathematik 10 (1959), p. 460-465.
[8] — Some congruences of Vandiver, American Journal of Mathematies 75

(1953), p. 707-1712.

[4] — A special functional equation, Rivista di Mathematica della Universiti
di Parma 7 (1956), p. 211-233.

[5] G. Szegd, Orthogonal polynomials, New York 1939.

[6] H.S. Vandiver, Note on a certain ring congruence, Bulletin of the Amer-
ican Mathematical Society 43 (19387), p. 418-423.

DUKE UNIVERSITY N

Regu par la Rédaction le 7. 12. 1959

@ ©
icm ACTA ARITHMETICA

VI (1960)

On the average number of direct factors
of a finite abelian group

by

E. ComEN (Knoxville, Tenn.)

1. Introduction. For positive integers n, let 7(n) denote the number
of divisors of »n, and let {(n) denote the number of decompositions of =
into two relatively prime factors. In this paper we prove analogues for
the finite abelian groups of the classical results of Dirichlet and Mertens
on the average order of z(n) and #(n). We recall Dirichlet’s formula [4],
with 2z > 2,

(L.1) D(z) = Y)v(n) = z(loge+2y—1)+0(Va),

n<z

y denoting Euler’s constant, and Mertens’s estimate [8],

(1.2)  D*(@) = D) i(n) = as(loga+2y—1)+2b2+ 0 (Valoga),

T

where a = 7(2), b =9'(2), n(s) =1/t(s), {(s) denoting the Riemann
zeta-function, s > 1. For proofs and discussions of (1.1) and (1.2) we
mention [1], §§ 13.2, 13.5, 13.9, [3], p. 282-283, 289, [7], p. 665-666.

The functions z(n) and #(n) can be generalized from the (multipli-
cative) semigroup J* of the integers n to the semigroup X of the finite
abelian groups with respect to the direct product. A general discussion
of functions defined in X appears in [2]. For groups @, H contained in X,
denote by (G, H) the group of maximal order in X which is simultaneously
a direct factor of @ and H. Denoting by E, the identity of X, we say that
@ and H are relatively prime if (G, H) = E,. A direct factor D of G will
be called unitary if DXE =@, (D, E) = E,.

For groups G in X, let v(Q) denote the number of direct factors of &
in X, or equivalently, the total number of decompositions, ¢ = DX E,
in X. Analogously, let ¢(G) denote the number of unitary factors of &
in X, that is, the total number of direct decompositions of & into two rela-
tively prime factors of X. In view of the isomorphism [2] of J* with the
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