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und daraus folgt, wie im Falle 1),

gy (27)

CRzk(wy 7’) =1 T {Z(k)}ﬁlglk,r(w) .

Wegen (25) und (3) ist Satz 6 auch in diesem letzten Fall bewiesen.
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ACTA ARITHMETICA
VI (1960)

On a Pellian equation conjecture
by
L. J. MorDELL (Boulder, 0016.)

In a joint paper by Ankeny, Artin, and Chowla (see [1]), there is
enunciated the following:

CONJECTURE. Lel p be a prime = 1 (mod4), and let ¢ = $(t+ ’I.ﬂ/j_ﬂ)
> 1 be the fundamental unit in the quadratic field K (V;) over the rational
field K. Then ws= 0 (modp).

Here (y,x) = (t, %) is that solution of

¥
with ¥ > 0 and with least positive integer value for z. The equation is
of course known to be solvable and an explicit solution is given in (8)
and (11) below. It is also stated that when p = 5 (mod8), the conjecture
hag been verified for all p < 2000. The only further explicit result about
the conjecture seems to be that Professor Taussky-Todd has had it
verified for p = 1 (mod4) with p < 100,000 by Dr. Goldman.

I prove here the

TaeorEM 1. If p is a regular prime, i. e. the number of classes of ideals
in the cyclotomic field K (¢*™®) is not divisible by p, then u == 0 (modp),
i. e. the conjecture is true.

As is well known, Kummer has proved that p is regular if and only
if none of the numerators of the first 4(p—3) Bernoulli numbers as
defined in (2) is divisible by p. He has shown that the only non-regular
primes << 100 are 37, 59, 67.

Theorem IV of the joint paper contains the result that if  is the class
number for the quadratic field K (1/1_)), then if p = 5 (mod8),

Yy —pa* = —4

u
(1a) _2h? = Cp—3,2 (Mmod p),

where for this particular case, C(,_s), is defined by

o Ct" 1
P =1+
n!
n=—1

d—1
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In Kummer’s notation,

1 1 1
1

2) 112

C (Al)nalBﬂ 2n~—1
+2 (2m)! e

n=1

Put 2n—1 = }(p—3), n = %(p—1), then Cip-yp = By Hence
from (1a), it follows that. hu = 0 if and only if B,y = 0 (modp). I can-
not find any reference to the fact that, as I prove here, this implies « =0
if and only if By_yu =0 (modp). Thus, this seems to be unknown to
Carlitz [3] who gives, inter alia, a different form of (1a). Professor Chowla,
however, informs me that at the time the joint paper was written, he had
noticed but not published the result that h < p. He gives now a proof
in the paper following this. We have then

TaroreM 1I. If p- 48 ‘@ prime =5 (mod8), the fundamenial wunil
P+ m/;) in the field K (/p) has w =0 (modp), if and only if
(3) By = (modp).
This can also be written as )

10702 9@ DR L (p— 1)@V = 0 (modp?).

I give a simpler proof of (3). It is based essentially on the same ideas
employed by the other writers, i. e. that of a p’adic logarithm, but this
is presented rather differently. Moreover, the present proof depends on
explicit formulae for units in the quadratic field K (Vp) given at once
by putting # = 41 in the factorization of (#*—1)/(x—1), and these are
much simpler than formulae for a fundamental unit.

T show also that when the field K (¢2™/?) is regular, the fundamental
solution (y,x) = (T, U) of
) yP—pat =1
has U == 0 (modp). It suffices to prove the existence of any solution of (4)
with # == 0 (modp). For since the general solution of (4) is given by

y+oV/p = £(X£UVp)",
where = is a positive integer, it is clear that if U = 0 (modp), then

z =0 (modp), i.e. all the solutions of (4) would have @ == 0 (modp).
Next it suffices to find any’ solution (z,y) with # =50 (modp) of

(5) yr—pr? = —1.
p

This is known to be solvable and an explicit solution is given by (6a)
and (11). Then : :

} ?/1+"”1'/§ = (?l+ml/1_7)z
gives a solution (z,,y;) of (4) with z, = 2»y and clearly z, == 0 (modp).
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Finally it suffices to find any solution (z,y) with x = 0 (modp) of
(6) y opat = —4.

Tor if @,y are both even, then z, ='§x,y, = %y is a solution of (5)
with @, == 0 (mod p). This certainly occurs when p =1 (mod8). We may
suppose then that p = 5 (mod8), and that x and y are both odd. A solu-
tion (xz,,%,) of (5) is given by

C —3
- (y+aVp
v+ oVp = (*—97 ;
i e. ‘

X
(6a) = Byt +pad).
Clearly 3y*+pa? = 0 (mod8), and so z, is an integer, and =, is divisible
by p if and only if @ is. ‘ :
Since the general solution of (6) is given by -

y+ml/§ (t:tu‘/;)‘&n—u f
e b e I

T2 2

clearly we mneed only find a solution of (6) with' # == 0 (modyp), for if
u = 0 (modp), then z = 0 (modp). Hence also a solution with # == 0
of any one of thé equations (4), (5), (6) leads 6o & similar solution for the
other equations. ]

We now consider the eyclotomic field K ({) where { = £ We
have the ideal factorization,

(p) = (P)*"' -where P =1-1,
which of course easily follows from
F-1 ™
(7 ';_—_‘1"2”(’0—‘5)

m=1

The eyclotomic field K ({) eontains the quadratic field K (1/1;) as a subfield.
On putting # =1 in (7), we have
(8) p=[Ja-]]a—t") = RN,

r n ;
say, where r refers to the quadratic residues of p and » to the non-qua-
dratic residues. Here R and N are integers in K (ﬁ), and so

(9) OR — X, 4+ ¥/p, 2N = X,—T,Vp,
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where X,, Y, are rational integers, and

4p = Xi—pYi.
Put X, = pX, ¥, = Y, whence,
(10) Y2—pX2 = —4.
Hence

1l) B, =RVp=3Y+XVp), B,=NVp=3}—Y+XVp),

are both units in K (Vp) and so also in K(¢).

Let us suppose that the econjecture is false and so X == 0 (modp).
Then B = —E,/B, is a cyclotomic unit for which B =1 (modp®?).
We prove as a particular case of a general result that when p is a regular
prime, E is the p’th power of a unit in K({). Suppose this is not true,

and so there exists a non-degenerate Kummer field K (C,zf/ﬁj). Then

from Theorem 148 in Hilbert’s report on algebraic numbers, the relative

diseriminant of K(¢, {/E) with respect to K({) is unity since
E =1 (mod PP). Then from Theorem 94, there is in K({) an ideal J
which is not a principal ideal in K () but J” is. Also J is a principal ideal

in K{¢, 2]Q/E) and the class number of K ({) is divisible by p. Hence on

considering the Kummer field K (, Z;G/E/E') where E' is the conjugate
of B, we have Kummer’s result, Theorem 156, that if there exists a unit B
in K () congruent to a rational number modp, then F is the p’th power
of a unit in K ({) provided that p is a regular prime. This gives a contra-
diction.

Hence

Y+XVp
—_—— = Eg,
Y—-XVp
where H,; is a unit in K (7). Since F, is an element of algebraic fields of
orders p—1 and 2p, B, must be a unit in K (Vp), i. e., By = %(nﬁ—EI/ﬁ),
where &, n are integers. Hence

lE‘p_‘Y—i—Xl/;‘ [RE _ 2vt
3l T T .

2 P ST
Hence |B| < 2, and so |£+7Vp| < 4.
Similarly from the unit conjugate to E,, |n— fl/p\ < 4, and so
Iyl <4, |6Vp|< 4. Then either p=>5and £=1, n=1, or p =13,
and £=1, n =3, or p>13, and then £ = 0, and no solution arises.
This concludes the proof of the theorem.
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I now prove (3). Let z be any integer in K ({). Then if z =1 (mod P),
g(#) = (4" —1)/p is an integer. For if z = 1+aP,

-1, . ’
py(x) = apP+p Z;' @* P+ pa? T PP gP PP

The result follows since (P?~') = (p). Also g(x) = 0 (mod P). We next
define for z = 1 (mod P),
P
fl@) =

This defines residue classes (modp) and has been long (see Bachmann [2])
known for rational integers z. For if = y (modyp), * = y+-ap and

! (mod p).

s P _1
' pap +yp2 2L 1;, a’p* ...+ a"p?

fo)—fly) = 1; —(mod p)

= 0 (modp).

Clearly, f(1) = 0 (modp). Further, f(z) has the characteristic property
of a logarithm, i.e. if z =1 (modP) and ¥ = 1 (mod P), then

(12) ‘ flay) = f(@)+fly) (modp).
For
Flay)—F(0)—F) -”-’i——l;f(y—”—*wmodp»
Then also
(13) f( ) = f(y)—f(@) (modp).

The function f(x) is equivalent to the p’adie logarithm of «, and this
is used in the joint paper. .

o

In _11 = [[z—&)[](@—¢"), put @ = —1, then we have with

rational integers z, ¥,
efJa+er=vtavp, 2+ =y—olp,

and
4 = y>—pat.
Hence %(y%—m@) is a unit (which may be -4-1). Since for such z, y, there

y—i—aﬂ/p (Y+2X,/p), then p|X

exists a solution X, Y of (6) with

only if ple.
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Suppose now that # = 0 (modp), then

[1ETIES] =

1+
2

1+

— =1
Since 3

ill
iU

(mod P), we can apply equations (12) and (13),
1 1A
and so since ”(—EE) # 0 (mod P),

SA+P=yasy

»

Vp = Zc’—;c’z
1/55(%) =Z¢‘"—;‘c‘"‘,

where a is any integer. Hence

A

-1 1-p—2(3 -1
RS 52

p 3t P p

The left-hand side is a rational number, and so

- L2) L) — (272 = 0 (moap)
2 \p 3\p Top—-1\ p ] )

= 0 (modp).
‘Write

and then

(modp),

or

) =0 (;nodp‘/’).

fa
Since (;) =a*" and 1fa =a™,

(132) 8 =1—20"92 130392 _ _(p—1)P"32 = 0 (mod p).

This is a necessa.i:y and sufficient (°) condition that @ =: 0 (modp).

—3
Here (p 2 )!S is the coefficient of #*~9? in the expangion in
ascending powers of i of
11
—14d et eV = Hhei.
1+¢

(%) See note at end:
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Since we are considering residues (modp), we can ignore ¢, and write

1 1 2
T14d T 1—¢  1—é
But
1 1 1 Bt Bqt3 Bttt
—i- 7 et T Tt e e
Hence taking m = 1(p—1), ®
Bp_ns—2-2972 B, ), = 0 (modp),

and so if p = 5 (mod8), since 2@ VF = —1,

(14) By_1ys = 0 (mod p).
The usunal summation formula gives

14 2% 4 (p— 1) = (—1)*7B,p (modp’)
and the condition (14) becomes on putting a = (p—1)/2,
(15) 102 L o@D 4 | 1 (p—1)®2 = 0 (mod p?).

We have to show finally that the unit y—{—:vl/; is not +2, when
p =5 (mod8). Suppose that @ = 0. Then [](1+¢ ) = +1. On taking
residues (modP), sinece 2® D = 1, we have the minus sign, and so
[1(1+¢) = —1. We write this as

1+NA+) =

r<(p-1)/2

[l a+o»

r<(p-1)2

,.1’

or (%)
b =

r<<(D—1)/2

= —¢*  where

The exponent b can be replaced by an even positive number, say 2a.
Then we have identically in a variable 2

[] a+&P+2* =@ +2+2+...+2 N F @),

r<(p—1)2

where F'(2) is a polynomial in z with rational integer coefficients. Put

z2=2. Then 14+z4224...4+2 1 =92°—1=3 (m0d4) must divide the
left-hand side. This is impossible since for z =2, 2* and [] (142"
r<@-12

have no common factor.

(1) I find this result is given by J. Schumacher, [4].
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We have so far proved that 2 = 0, and that » = 0 (modp) if and only
if By = 0 (modp). Hence x==0, and so u==0 if By n,50. If,
however, Bp_ys =0, then = 0, and we prove that now u == 0. For

gince
- AN
y—i—;ﬂ/p = i(t—i—;t-]@) for some positive integer =,
it is obvious that if « ==0, then n = 0. But
Vp —aVp
1y+2wp<2,,7 yz 2| oo,
and so B
t —
»#I—'l <2, ——;L—?i <2.

The cages so arising have already been disposed of.
This concludes the proof.

Note. I add a proof that the condition (13a) is sufficient. Let z be an integer
in E() and let (:?—1)/p = 0 (modp). Since (p) = (P)P-1, this ocongruence can
have only the p obvious roots z = { (modp), t=0,1,p—1 Hence if (13a) is
satisfied,

[T a0 TT (142 = ¢t (mod p) .
r . n

Take residues mod P2, Since { = 1—P,
[]@—Pn| [] (2—Pn) = 1—tP (mod F?),
and g0 ’ "
P (n—1) = —=tP (mod P?).
Since Z(‘n—-’r) = 0(modp), t = 0 (modp), and so z = 0 (modp).
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ACTA ARITHMETICA
VI (1960)

A note on the class number of real quadratic fields
by

N. C. ANKENY (Cambridge, Mass.) and 8. CHOWLA (Boulder, Colo.)

1. Let h = h(p) denote the class-number of the real quadratic field
R(l/pj), where p is a prime =1 (mod 4) and let ¢ = t+u1/§/2 > 1 be
its fundamental unit.

Ankeny, Artin, Chowla (also Kiselev, independently) have proved
that (we gave details only for p =5 (mod8))

uh B,_,

4 4

(modp),
where B, is a Bernoulli number defined by

T X
s e

They also raised a question — still unsettled — can it happen that
% = 0 (modp) when p = 1 (mod4)? We had noticed at the time this paper
was written that h < p, but we did not mention this. Hence, as
Mordell has said in the preceding paper, u = 0 (modp) if and only if
B,_,/4 = 0 (modp), when p == 5 (mod8). In the case when p = 5 (mod8),
Mordell has also given there a different proof of this. It seems now
desirable to give the proof that h < p, especially as the work of other
writers seems to indicate that this eannot be well known. Thus, Carlitz
in Proec. Amer. Math. Soc. 4 (1953), p. 535-537, says (in our notation
for the B’s) “... B,_;/4 = 0 (modp) if and only if either h = 0 or u = 07,
Selfridge, Nicol and Vandiver in their Proof of Fermat's Last Theorem
for all prime exponents less than 4002, Proc. National Academy .of Sciences,
U.S. A. 41 (1955), p. 972, say “in particular the class number k of the
field K (¥'1), where I = 1 (mnod4), is prime to I for the said ¥’s”. The “said”
I’s, here, are the primes < 4002.
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