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and so the number of solutions is 1-x(—3). In the second sum there
iz exactly one u for each v #% p—1. Hence the sum is p—2. Therefore
we have )

oy = 2(—1)pR+p2(1+2(—3))—p(p—2) = p*x(— 3) + p{2+ 2(—1) 2}.

Separating the cases p = 6n+1 and substituting from Lemma 1 we have
(2). (8) now follows from (1). This completes the proof of Theorem 1.
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On new “explicit formulas” in prime number theory 1
by

8. KNAPOWSKI (Poznan)

1. The first part of this paper hag been concerned with new expli-
cit formulas for

p(z—0)+ p(r+0)

(@) = 3 where y(z) = ) A(m)= D logp,

nE pM<
depending upon the zeros of the partial sums Uy(s) = ) 1/n° of the zeta-
n<N
series. The following formmula has been established ([2], Theorem):

. log N'! a°
(1.1) yo(@) = N - —
- @
¢ = B+ iy running through the zeros of Uy(s), 2 <z < N, and N being
sufficiently large. In the particular case of N = [e"] we have obtained

a2°
(1.2) vol@) =o— D' = +0(loga).
yi<el®, -1

Tt seems to be worth while to generalise (1.1), (1.2) and find similar
formulas depending upon the zeros of other Dirichlet-polynomials approx-
imating to {(s). The most interesting case is that of the Riesz means

logn .
By(s) = Z(lﬂlogN)"_B’ § = o it,
<N g

congidering that they converge to £(s) in the closed half-plane ¢ 21,

© s #1 (see [3] and [4]). We are now going to study that case. We shall,

in fact, find some analogies with (1.1), (1.2) and at the same time touch
on the distribution of zeros of Ry(s). It seems plausible that Ey(s) do not
vanish in the whole half-plane ¢ > 1. Yef, for the time being, we are only
able to determine a certain portion of this half-plane which is free of
the zeros of Ry(s). We may note in passing that the regions announced
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in Lemma 2 and Lemma 4 might be considerably improved if we made
use of better estimations of Z(s). This, however, is of no importance in
the sequel.

We make no claim of having discovered the formulas (2.1) and (2.2)
of Lemma 1. They have probably been known for some time, yet we have
not been able to trace them in literature.

The present paper has been as well as the previous one much in-
fluenced by Professor P. Turan. I wish to express my sincere indebted-
ness to him again. '

2, LemMA 1. We have

2.1 R = [(s)+ 0 e .+ (lOgN)
(2-1) v(e) =L logN ' (1—s)2logN N
and
Vo &), Ni-# N1 i (1<)g'2N)
(22)  Ry(s) =¢ (S)+log1\7 T2 (1—s)logN ~ (1—s)? HO N
in the domain o =1, |t| < N, s = o+t # 1.
Proof. We note that (2.1) is evident for ¢ > 1+% since in that
case
'(s) logn) _, Z'(8)
Ryls) = b0+ 5 2(1—1———~0gN) W=
n>N
+0( = f&g_g d?/) = {{(8) 4+ —= L' (8)+ O(NTF)
logNN y° log N
_ 1 N1-¢ log N
O fog & T T iTog +O(N””)'

Thus we may confine ourselves to ¢ << 1+1. We start from the gener-

alized Perron formula (see [1], p. 50)

_L 1l4+w4‘(8+’w)

2ni ) w?
1/4—ico

1/4+2Ni

(2.3) log N-Ry(s) = N¥dw

1 Letw) o,
- 2 yoaw FO(NM)

Then a simple applieation of the theorem of residues, applied to the rec-
tangle @ with vertices 412N, shows that

( s—i—w -8
)N‘”d'w = ((8)log N+ ¢'(8)+ al .
@ (1—s)

™ 1/4—2.N¢

P

icm

On new ““explicit formulas” in prime number theory II 25

Further, owing to the familiar inequality (%)
(2.4) ¢ (u+iv)|

we can estimate

<o loglel  (u >0, o] >2), ’

142N

1 1/8+1/4
- g—(f—_—t—@N“’dw[gozl—:Og—l—v—=0(—l~)
e ~1/442N% N N
(2 <Ris+w), N <[S(s+w) <3),
and
p T c(s+ ) i log N
w
= N""dw{ o N8 N1 f L o(O—gllT)
AT sZaN vt ¥

(# S R(s+w) <1—z, [3(s+w)| <3N).

Hence and by (2.3) we obtain
f £(s + w)

(]

and formula (2.1) follows.
If we differentiate (2.3) and start from the equality

Ndw — log N Ry (s)+ o(logN )

2ri N

1/4+ic0
, 1 ’
10gN-RN(s) = — M_Nwdw’
27 i w?
1/4—dico
using further the estimate
(2.5) I8 (u+i0)] < 0g0" ™ loglo]  (u >0, ]o] >2),

in place of (2.4), we shall similarly get formula (2.2).
LEMMA 2. For N sufficiently large Ry (s) has no zeros in the region
>1, [t <N.
Proof. We shall begin by proving that Ry(s) % 0 for ¢ > 1, 1 < |#|
< N. Formula (2.1) gives

¢ 1 1
T () .logN) +0 (logN) ’

(1) All the properties of the zeta-function which are used in this paper are
well known and may be found in the monograph [6]. ¢;,¢,,... denote positive
numerical constants throughout.

By (s) = £(s) (1 +
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Applying the well-known estimates

(2.6) i = ollog (41, o >3 10>
(2.7) %ww=oMMm+m, e=1, =1,
we get

O

for o=1, 1<<[<KN.

1B (5)] >

Next we consider the region {1 —s| < .DflogN, o > 1, where D = 2+-¢
(¢ > 0) is a certain number to be defined later. ertlng £(8) = 1/(s—1)
+0(1), Z'(s) = —1[(s—1)*+0(1) and developing N'7%[(1—s)tlog NV in
Laurent series with respect to (1—sg) we obtain from (2.1)

Rate) = 2% O ogan(11 17 ogm) +
—g)3 N 1—s8)tlogt N
(1—sflogtN | (=9tog® ¥ | L o),
51 : 61
log N —8)lo N
|Ry(8)] = REy(8) 2 Og '|"CR{ ('f‘(’“‘”?l % )}
( . .)~10gN+0(1)
> logN + {CR( log2 N) ( 10gN+ 1)
1—s D3
—S( 5 logzN)S( IogN+1) (5' )logN—l—O(l).
Also
%(lgslogzN) (1+ logN)
_(1—a)log2N( 1—a ) _logk
= 8 1+ 1 logN| = PR

2003 N
slog_N) =1.lig_._.

3(1;8 log”N)S( o
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whence

92(1"

slogzN)‘R( 14 logN) S(lnslogzN)S(l—

>—~logN D*log N log¥N
“ 6 24 3

: log ¥ +1)

+ o0 (logN)
(the last symbol “0” referring to e — 0). Hence

R R A N

[Bxle) > 5% —og ¥ (2 4 2t +oltog )

log N

1 1 1 1
— o l{e2— > 0
logN(6 7 (e 7)—1—0(1)) /logN(6 7 0 4—{—0(1)) =
with a suitably fixed &> 0.

Lastly, we shall treat the case o =1, |t| <1, D/logh < |1—s|.
Suppose, in addition, that |1—s| \l/l/logN . Then we have by (2.1)
(Bt —eo) < 2 ol
al = 1—sllogN logN/’

[By(8)] = |By(8) —C(s)+L(s)] = [C(8)— |Rn(8)—L(8)]
1
2 —
[1—s| |1—s|log N

+0(1) =

1 2
- 11—8110gN)) +ow

> l/logN(l —*) +0(1) > O,VlogN

3, —
as D> 2. For |[L—s| > 1/Vlog N we clearly get

2 1 ¢
R (8)— < 0( )< 1
)= 00! < g 1O liogw) < g

and as |{(s)| > ¢; we finally obtain |Ry(s)] > ¢,. The proof is finished.

However, Lemma 2 does not help much in our further considera-
tions. We must prove that Ey(s) do not vanish in a certain half-plane.
In fact, we have the following

loglog N
logN '’

1 (loglogN z
—1\ logN

(and thus Ry(s) 7% 0 in this half-plane).

LeMMA 3. Let N > ¢y9. If 0 2142 then

(2.8) 1By ()l > —
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Proof. Write

logn\ _
v (8) =2(1 ]ogN) v
n>N

50 that

We clearly have

rn (o) < S
n>N

1-c
(""2 S—

1
N og Nt ) € e M
logN(a——l)(Og F0—1) ~ (o= 1)log* N

Further, as
1 7 1 lf C13
L2 >1— 2 S [P —
R v L e s (0 1= log ¥
C1a
- loglog N = 2
and
1 C15
g —
L Z(s) | ~min(e—1,1)’
we got
1 L 1 1 Crg
G 1 17 ‘ min (o—1, 1)
' 1 .
tlo)+ o ) +iogF T
so that for 1-+2loglogN/log N <o <2
|By(8)} > 017(0”1)—018m
1 Gy loglogN
= —_— — 2 2 —
(e Diogey Canl0—1)*10g* N —oyy) > cr——].( log N |

For ¢ > 2, (2.8) is evident.
LeMMA 4. For sufficiently large N we have

R/

=2 (s)

Ry
in the domain o =1, 1 < |t] <logtN.

(2.9) < 640(loglog N)®

icm
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Proof: We proceed as in the proof of Lemma 2. We have

IRy ()] < ¢ (loglog N)2,

congidering that
& (o4 it)|

On the other hand (2.6) gives

< egplog?(ftf+1), {7 (04 t)] < egslogP(Jt]+1).

1
—— | < ¢y loglog N
|C(o‘+ii)‘ % Cyl0glog v,
which implies that
¢
R > %
| N(.s)| = loglogN’
so that (2.9) is established.
Lemma 5. We have for sufficiently large N

At < Coq-

i 2 [ wsirnf

Proof. We use simplified formulas (2.1), (2.2) valid in the domain
o>21+%, —oo <t << oo and get

|By (14+3+it)] < |C/(1+1+t)
|Ry(1+3+10)] > ¢ +%+it>1;locg”N > e l0(1+3+ ).
Hence
pe
1+%+zt) dt = 0( oX _i ‘—C_ (L+3+4) dt—l—l) =

(in faet, as we know, lim —— 5% f}i (14+141t)

Xsoo &

’

 A*(n)
Y — an -

29

R . - A
LEMMA 6. The function ﬁﬂ(s) may be developed in a Dirichlel series
N .

o — dn loglog N’
V-—~§L in the half-plane o > 142 —-O—g—g——
n

Ly (N > 61)-

n=]
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Further, if n = pPpe... pik, n < N, then

k! logn
(2.10) d, = A(n)— ~k-- ] gg -logp,logp,. . Jogp,
and for n < & < ¢glog N

log?*z
(2.11) L d= ()+0( £ )

Proof. As to the convergence of 2 —d, [n¢, see [2], proof of Lemma 4.

In order to establish (2.10) we notlce tha.t. Ry(8) is the N-th partial sum
of the Dirichlet series for {(s)-¢'(s)/logN, so that Z —d,/n’° is the N-th

ngN

partial sum of the Dirichlet series for

s+ o £
1 bl
L)+ oz O
which is equal to
) (s )-I-~——C”(9)
logN !
S+ _,,*,gl_ﬁm ~Z
£6)+ oz ')
_r 1 e —(ef 1
T gy () )+ o)
logN
g L 1
ﬁ{,(H—logN( (s)) ) 7
+logN ?(3)

’

¢ 1 ¢ 11 ¢ W 1f1 ¢\ ’
SR VY ) S AL
R oed ¢ 2 loew W) T3lngwy W) o
This gives (2.10). The asymptotic formula (2.11) is obvious for k =
and for k > 2 it follows by the estimation
k! logm

kloga\*
Bl LB _
T logry BT8P log e O(logm(logN))

2 2
—0 (1ogm(0“10g w) ) _ 0(1ogsw).
x 22
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LEMMA 7. a. There exists a sequence of numbers Ty, T\, T,, ...

that
1. 2T, <nit+1,

iy < 51022 N for —} <o <2, t=1T,.

b. For every m = 1,2, ... there ewists a sequence TS, T!™, ...

that

1.0 < T < nt1,

o RN 2 2 (m)

2. FN(S) < cgymtlog?N for —m—3 << o< —m+1, ¢ = I3,

c. For every m =1,2,... there ewists a sequence S{™, 8™, ...
that

1. —m+3 <8< —m1,

RN 21002 (m)

2. R—N(s < eg,m?log? N for ¢ =84V, n <t < n+1.

d. For every m =1,2,... theré evists a sequence 8™, 8™, ...
that

1. < 8™ < —m41,

2. ‘ < ey m*logiN for ¢ = 8 n <t <n+i.

o. For every m =1,2,... there exists a sequence T, T(™, ...

that
o< f"’") < n+i,
Ry 3
2. R—(s) < egemtlog?N for —m < o < —m+1, t = T,
N

31

such

such

such

such

such

We omit the proof, which is analogous to that of Lemma 3 in [2].

3. TaeorEM I. Let N > ¢y, be an integer. Write

= N, qso(ﬁ):g(_””_ﬂgﬁ—mo),
n<z

Let x range in the interval [2, cglogN1. Then
D lognlog (N [n) "

3.1 Gy(r) =2 N
G O S e T 2
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where p = p+iy run through the zeros of Ry(s) = D (1—logn/log N)n™*
N

and D%l = Hy(w) denotes the limit of Hy(x,T) = Y o°/g as T — cc.

] I<T
Writing further
Py(z,T) = Hy(2)— Hy (2, T,
we have
2% [ logt N logt NV .
cs»,-—( 8 g ) if ol 0,
T \(loglogN)* |l
2> log4 N .
[Py(z, T)] < Cav*f‘m if |l =0,
22 log¥lN ) v
——— el v l §
( {loglog V)6 -+logw always,

where ||| is the distance of x from the nearest integer.
Proof. We follow the same procedure as in [2], considering the

integral
1 *( R,
o [ a o),
) s RN
of
a
where (f is as before the contour consisting of the segment
loglog ¥V -
logN

loglog N
IR L. S 246 E%Y 4 i)
and of three polygonal lines given by Lemma 7.
then gives

Cauchy’s theorem

62 o [ $( R;v())d 2 g W/ logn o
: 2mi g s \ Ry 2 log(N/m) 2 o
% ehlaide():{

2 log(N [n)logn
— nN
2, log(Nn)
neN

on the other hand, we obtain by a direct evaluation

(33) — ff'l(Hin)ds ¢o(w>+0(q °g2Nlogf)+ .

—Hy (0, T) 40 (-;- logs N);

2
L) cg' 8 Ry
' w2log? N >
+o(=oEd Jo( > ),
N=1

icm
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where for n £z

x2logs N
(3.4) [tn] < |l

Tnz +6loglog N/log N

n-+x

[n— 2]

and for n = v = »(x), defined by v —} <a < v+4%, we have

—logtN  if |z %0
oy % ol =9,
logx .
(3.5) ] < e =2 it ol =0,
cgglogw always.

(3.4) gives (ef. [2], (3.10))
& max |d,| iz

#*logs N (. | 1en<so?
2 [tn| < T (5 2n2+61nglogNllogN +"Z (3)% 3r

NFEY n=1 r=]1

whence, noting the inequalities

Ry logt N loglog ¥

— < Cgg———— >14+2—— see (2.8

Ry (8) < M(loglog_N)“ or 0'./ + log ¥ ( (2.8))
and

max |d,] < cploge  (see (2.11)),
1<n<s)2
we eagily get (ef. [2], 3)
< 2logt N

(3.6) [%a] < Gum-

gy

Putting (3.2), (3.3) and (3.6) together and letting ¢ tend to infinity, we
obtain
2 lognlog (N [n)

S ﬁ.M)
(8.7) Dy(w) =—m— —HN(x,T)'i‘O(Wu|)+0( T (loglogN)*)"
n<N

Then (3 5) and (3.7) give the result announced in Theorem 1. Formula
(3.1) clearly follows on letting in turn T tend to infinity.
TreorEM II. Let # > 2. Then

. 2
= - -_ O (log?
woy=e= 3 Lromga),
Ivi<a®, p—1
where o = B-+1iy denote the zeros of Ry(s)
N = [¢].

Acta Arithmetica VI. 3

= ) (L—lognflog N)n™* and
ng<N
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Proof. We bha.ll shghtly modlfyt he previous proof. Namely, we start

from the mteg’ral f ( )ds, taken over the contour OF

differing from that of the latter proef only in its right-hand side segment,
which is now [2-+3—4T", 24+%+4T']. Then, if T < N, we have in view
of Lemma 2

Z lognlog(N/'n)

1 x° Ry ) wlog N
il s =" —Hy(w, l‘)+0(
2t fs( Ty )= ZIOg(N/%) rr
Ef n<N
and also

©0

J0( > m)

n=1

2412480

lgN

By

a+u)—”—i—ds

1ogT) + 0(

= ¢o(w>+0(

7 N
where

2] max \dnl 2

% e 3 | 1<ngn)2
anl S7 (5 pEsT +2,.2=; hnem +¢y,logw.

n=1 =1

Now (see [B], p. 307 and Lemma 5)

|| ||
2+l/2 \2 2:112 +0(1

= lim — RN 1—{—&«}—%

dH-O(] = 0(1).

Further, by Lemmag 4 and 7 we obtain

2412440, 14417 241/2~42"”
i (a—l—n) > i +

\

i (i 1442

2-4-1/2

< Ca (—log N+“ (loglogN)s), if only T <logtX.
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Hence
> lognlog (N /n)
n<N
—_— s —H. T
Zlog(N/n) N("‘v, )
n<N
2**12 (loglog N)®  wlog*N  #**+12
= O 2
.,(w)-]—O( T + T + 7 log m—l—logx).
But as
D' lognlog(N [n)
n<N
g = 1log N+ 0 (1
Slog(vjm eV oW
nEN

and by (2.11)
Dy (2} = po(w)+ O (log*a),
we obtain

0 3 2+1/2] 553
wle) =a— 312+ 0gogia)0 (G + 7).

wIsT

It remains to put 7' = z* and repeat the closing argument from the proof
of the Corollary in [2].
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