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L. Introduction. It is well known that many cryptographic systems can be
constructed based on polynomials and functions over finite fields and residue
class rings of integers. As stated by McDonald (11, p. 307] “it is classically
dccepted that the researcher handles separately the finite field GF(p") and the
prime ring Z/Z,.. It is our belief that both cases should be treated
Simultaneously in the setting of a Galois ring.” Following the lead of
McDonald, in this paper we study a number of properties of Dickson
Polynomials over Galois rings. As a result, we show that a number of
Cryptographic systems constructed using polynomials over finite fields and
residue class rings of integers can be generalized by considering Dickson
polynomials over Galois rings.

2. Basic properties of Galois rings. If R is a finite local commutative ring
With maximal ideal M and residue field k = R/M, by a monic basic irreducible
f€R([x] is meant a monic irreducible polynomial f with the property that uf
is irreducible in k[x] where u denotes the natural projection u: R[x] = k[x].

Galois rings are finite extensions of the residue class ring Z(Z ,, of integers.
In particular, if pis a prime and n, m > 1 are integers, GR(p", m) will denote
the Galois ring of order p™ which can be obtained as a Galois extension of
Z/Z,,.. of degree m. Hence GR (p", m) can be viewed as (Z/Z » [X]/(f) where f is
4 monic basic irreducible in (Z/Z ,,)[x] of degree m. Thus GR(p", 1) = Z/Z -
and GR(p, m) = GF(p™), the finite field of order p™.

For purposes of construction and ease of implementation of Galois rings,
One can construct GR(p", m) by considering (Z/Z »[x]/(f) where f is a monic
Irreducible polynomial of degree m > 1 over the finite field GF(p) with p prime.
Tables. of such irreducibles are readily available, see for example Tables C-F
and the references in Lidl and Niederreiter [10]. Further details concerning
Properties of Galois rings can be found in Chapter XVI of McDonald [11].
————
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The following lemma, proved in McDonald [11, pp. 269-271], provides
a generalization of the well known result concerning lifting solutions over
Z/Z,,, see for example Apostol [1, Thm. 5.30].

I
LemMmA 1. Let f(x) be a monic polynomial with coefficients in GR(p", m).
Assume n = 2 and let T be a solution of the equation f (x) = 0 in the Galois ring
GR(p"™ ', m).

(a) Assume f'(T) # O over the field GR(p, m). Then T can be lifted in
a unique way from GR(p""', m) to GR(p", m).

(b) Assume f'(T)=0 over the field GR(p, m). Then we have two pos-
sibilities:
(b.1) If £(T) = 0 over GR(p", m), T can be lified from GR(p" ™', m) to
GR(p", m) in p™ distinct ways.
(b.2) If f(T) # 0 over GR(p", m), T can not be lifted from GR(p"~ Lom)
to GR(p", m).

3. Dickson polynomials. Let R be a commutative ring with identity. If
aeR and d > 1 is an integer, the Dickson polynomial g,(x, a) of degree d over
R is defined by

A d fa— ¢ d-21
(1) grd(;vc,a)—z0 d—t( . )(—a]x

where [ ] denotes the greatest integer function. Since g4(x, 0) = x4 the Dickson
polynomial g,(x, a) may be viewed as a generalization of the power polynomial
x4 on R. Many papers have been written concerning various properties of
Dickson polynomials over finite fields and residue class rings of integers, see for
example the references in Chou, Gomez-Calderon, and Mullen [3], Nobauer
[13], and Lidl and Niederreiter [10].

In Lausch and Nobauer [6, Thm. 9.43] the following useful result is

proven.

LEMMA 2. Suppose (d, p*"—1) = 1 and 0 # a€ GR(p, m). Then the deriva-
tive g,(x. a) does not vanish on the field GR(p, m) if and only if (d, p)= 1.
It is well known [10, Thm. 7.16] that if 0 # ae GF(p"), then g,(x, a)
permutes GF(p™) if and only if (d, p>”—1) = 1. This result has been extended to
the setting of Galois rings, see Bremser and Gomez-Calderon [2, Thm. 3]. The

Galois ring result also follows from Lausch and Nobauer [6, Prop. 431]
However, because of the importance of this result for our purposes, we include

a proof here:

THEOREM 3. Let a be a unit in GR(p", m). Then g,(x, a) permutes
GR(p", m) with n> 1 if and only if (d, p*"—1)=(d, p)=1.
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Proof. Suppose g,(x, a), a a unit, permutes the ring GR(p", m) with
n> 1. Then g,(x, a), the reduction of g4(x, a) modulo p, permutes‘the field
GR(p, m) and each preimage of da(x, a) can be lifted in a unique way from
GR(p, m) to GR(p", m). Therefore, (d, p>"—1) = 1 and, by Lemmas 1 and 2
(ii, p) = 1. Now, suppose (d, p>"—1) = (d, p) = 1 and n > 1. Then by Lemma 2,
g,,(:f, a) does_not vanish on QR(p, m) for all units a in GR(p, m). Hence, cach,
g‘;:(r;atg:i ;—)f 4(x, a) can be lifted in a unique way. Therefore, g4(x, a) permutes

\‘Ne'now consider the question of when the Dickson polynomials over
Galois rings are closed under composition, extending the corresponding finite
field result, see [10, Thm. 7.22]. To this end, for a unit aeGR(p", m) let

P(a) = {g,(x, a): g,(x, a) permutes GR(p", m)}.

THEOREM 4. Let a be a unit in GR(p", m) with p odd. Then P(a) is closed
under composition if and only if a = +1.

Pro-of. If n = 1, the result follows from [10, Thm. 7.22]. We make use of
the fupctlonal equation for Dickson polynomials. If xeGR(p", m) then x can
be written as x = y+a/y for some ye GR(p", 2 if x2 # 4a (mod p) and for
some yeGR(p", 2m) [\/5] if x? =4a (mod p). Then

) 9a(x, a) = y*+(a/y)*.

Analogous to the argument of Lidl and Niederreite i
r [10, Thm. 7.22

aeGR(p", m) we have : " R

@) 9ug.v+a/y, a), @) = g(y" +(afyY, @) = Y +(a/y}* = g, (y+a/y, a).

Thus,

4) 9 (x, ) = g,(g,(x, a), a).
Suppose P(a) is closed. Then 9i(9.(x, a), a) = g,,(x, a). Hence, by (4),

9u(9.(x, a), a) = g,(g,(x, a), @').
Therefore, since g, is a permutation,

gi(x, @) = gi(x, a’).

Cons:de:mg k = p™+2, we compare coefficients of x* 2 to obtain a" = « for all
r (r,p™—=1)=(r,p)=1. Thus, we can take r=— (p"+1)e—1 where
e=(p"—1)p"~! denotes the exponent of the group U(p", m) of units of
GR(p", m).’ Therefore, a” = a~' = a. Hence, since p is odd, a = +1.

No.w‘, if a = +1, then it is easy to see, from (4), that P(a) is closed under
Composition. This completes the proof of the theorem.

LEMMA 5. Let S denote a generator of the Galois
/ 4 ‘ rou
GR(p", 2m)/GR(p", m) with p odd. Let q =p™ Then TR
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(a) The group of units U(p", 2m) can be written as a product of a cyclic
group G of order g>*—1 and 2m cyclic groups H; = {B;> where

S(B,.)={ﬁ‘ ifr<i<m,

ﬁi-l l:f m<i < 2m.

(b) If G, and G, denote the subgroups of G of order q—1 and q+1,
respectively, and y€ G, then ye G, if and only if S(y) = y and y€ G, if and only if
S(y) = 1/y.

(© {yeU@E",2m): yS(y) = —1} = {ab: ae A, beHps1 X ... X Ham}
where A denotes the set A= {aeG: a®*' = —1}.

Proof. By [11, Thm. XVIL.9], the group U(p", 2m) of units is the direct

product of a cyclic group G of order g*—1 and 2m cyclic groups H; of order
p"~!. Further, without loss of generality, we assume that

u@", 2m)nGR(p", m) =G, xH,; x ... xH,

where G, denotes the subgroup of G of order g—1. Now, let G, denote the
subgroup of G of order g+ 1. Then bS(b)eG; NG, = {£1} for all b in G,.
Therefore, since bS(b) = 1 (mod p), bS(b) = 1 for all bin G,. On the other hand,
wif beG and bS(b) =1 then it is easy to see that beG,.

Now, for i > m we have

(5) S(B)B; = [1 B eGR(p", m)
i=1

for some integers a;, 1 <j < m. We also note, since p is odd, that (B> = (B
for all i > 1. Therefore, equation (5) can be rewritten as

S(8)B, = jﬁ g
or

S(B/T 151 B) = ([17=1 BYVB:

for some integers aj, j = 1. Hence, we can rearrange, if necessary, the generators
B, for i > m to obtain S(B;) = 1/B, for all i > m.

This completes the proof of parts (a) and (b). Now, to prove part ()
assume that be G with b # +1. Then b**' = —1 if and only if b*€G, but
b¢G,. Therefore, b**' = —1 if and only if bS(b) = —1, which completes the
proof of the lemma. :

COROLLARY 6. With notation as in Lemma 5, let w denote a positive integer
and write w = fp' with (f, p) = 1. Let H; denote the subgroup of H, of order
@, p""Y) for i=1,2,...,2m. Let C, and C, denote the groups
C,=Hyx..xH,and C;=Hysy X ... xHyp.
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(a) Assume ye GR(p", m). Then
(a.l) {y: y*=1} = A, xC, where A, denotes the sub
ML i ; subgroup of G of

(2.2)

by e fhim {’2’ if w/(w, (q—1)/2) is even,
{ac: aeG,a™@ "D = _1 ceC,} otherwise.
(b) Assume yeGR(p", 2m). Then
(b.1) {y: y*=1,yS(y) = 1} = A, x C, where A, denotes th
of G of order (w, g+1). e ’ N
(b.2)

Dy =—-1,y80) = -1}

_ {6 if wlw, g+1) or (g+1)/(w, q+1) are even,
{ac: aeG,a™* V= —1,ceC,} otherwise.

(c) Assume w is even and ye GR(p", 2m). Then
{y:yr=1,y80)= -1}

_ {9 if (g+1)/(w/2, g+1) is even,
{ac: aeG,a™*9* V= —1, ceC,} otherwise.

(d) Assume w is odd and ye GR(p", 2m). Then

{y:y"=1y800)= -1} =9@.

Because of Tk’leorcm 4 we restrict our attention to Dickson polynomials
94(x, £1). A straightforward calculation yields

LEMMA 7. Let g,(x, + 1) denote the Dickson polynomi
2 X ! ial of d
complex numbers C. Then i ki

(@) ga(£2, 1) =(£1)"" 4%,
(b) ga(£+2i, —1) = (£i)*"'d?

X THEOREM 8. Let n,m > 1, p be an odd prime and q = p™. Let e, E, k, and
denote nonnegative integers so that d—1=ep* and d+1= EpX with

e, p)=(E,p)=1.IfF,, =F,,(9,d :
. ' +2(9, d, 1) denotes the number of fixed t
94(x, 1) with x # +2 (mod p) then of fi points x of

_ {[A(e, q)_ I]qmin{n— 1.k} + [B{E, q]__ I]qmin[n— 1.K) If d is even
+2 —— ’
[Ale, g)—2]¢g™""" "M+ [B(E, g)—2]q™""~ 1K) if d is odd,

Where

Ale,q)=[le, g=1)+(e, g+ ]2 and  B(E, g) = [(E, a—1)+(E, g+ D]/2.
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Proof Let x denote an element of GR(p", m) with x # +2 (mod p).
Then x = y+1/ye GR(p", m) for some y in GR(p", 2m). Hence,

gay+1/y, )=y +(1/yY' = y+1/y
if and only if
(A =DpAt-1) =0.
Further, if ¢ '—1=y*1—1=0 (modp), then y= +1 (modp) and so
x = +2 (mod p), a contradiction. Therefore,
galy+1/y, ) =y+1/y
if and only if
P l=1 or pyi=1.
We also see, by Lemma 1 and since x # +2 (mod p), that
x =y, +1/y, =y, +1/y,€GR(p", m)
with y,, y,€GR(p", 2m) if and only if
- yy=Yy, or y;y,=1L
Therefore, combining with Corollary 6, the number of fixed points x so that
x # +2 (mod p) is given by
infn— min{n—1.K}
ille, =D +(e, g+1)—21g™"" M +3[(E, =D +(E, g+ 1)—2]q
if d is even, and
i min{n—1,K}
(e, g— 1)+ (e, g+ 1)—41g™""~ LM L A[(E, g— 1) +(E, g +1)—4]g"™""
if d is odd.
This completes the proof of the theorem.

For cryptographic applications where one would like to have a srr‘lall
number of fixed points, we now determine the number F(g, d, 1) of fixed points
of the Dickson polynomial g,(x, 1) over GR(p", m) when d* £ +1 (modp) so
that k=K =0, e=d—1 and E=d+1.

COROLLARY 9. Let n, m=>1, p be an odd prime and q = p™. Assume

d* # +1 (mod p). Then
F(g,d, 1)=[(d—1,q—1)+(d—-l,q+l)+(d+l,q—l}+(d+l,q+l)]/2—£
where ¢ =1 if d is even and ¢ =2 if d is odd.

Proof Let f(x) be the difference f(x) = g4(x, 1)—x. Thus, f(2)=0
(mod p) and
0 (modp) if d is odd,
f(—2)5{4 (modp) if d i
p) if d is even.
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We also have, by Lemma 7,

S(£2)=ga(+2, 1)~ 1= +d*~1 %0 (mod p)

for all positive integers d. Therefore, by Lemma 1, the number of fixed points
X with x = +2 (mod p) of g,(x, 1)is 2 if d is odd and 1 if d is even. This result
combined with Theorem 8 completes the proof of the corollary.

We note that this result is independent of n and so agrees with Nobauer
[13, Thm. 1] in the finite field case.

In an analogous way for a= —1 we may prove
Tueorem 10. Let n,m > 1, p be an odd prime and q=p" Let e, E, k, and
K denote nonnegative integers so that d—1 = ep* and d+1 = EpX with (e, p)

=(E,p)=1. Let F.y; = F,,(g,d, —1) denote the number of fixed points x of
9a(x, —1) with x> +4 # 0 (modp). Assume d is odd. If

(@) d—=1=qg—1=0 (mod4), then

@d=1,9—1)+(d—1)2, g+ 1)—4
Fzzi: 2

+(d+l, (g—12)+(d+1,q+1)—4
2

(b) d—1=¢g+1=0 (mod4), then

qmin{n— 1.k}

min{n—1,K).
’

d—1,g—1)+e, .
FiZl‘:(__ q ) lqmlnln-].lr.}

2

Where
. {0 if (@+1)/(d—1)/2, g+1) is even,
P UE=1/2,941)  if (q+DAE—1)2, q+1) is odd;

(c) d+1 =g—1=0 (mod4), then

Fizi - (d+], qz— 1)_2qmin(n—l.k]_'_%qminln-l.!(}
Where
.y 0 if d+1Dfd+1,(g—1)/2) is even,
P41, @=02) i @+ DAd+1, (g—1)2) is odd;
(d) d+1=g+1=0 (mod4), then
Fi_zx_=(d+]‘2q_-1)qmin{n—l.kl_

COROLLARY 11. Let n,m> 1, p be an odd prime and q = p™. Let d be

4 positive odd integer and assume d> # +1 (mod p). Let F = F(g, d, — 1) denote
the number of fixed points of galx, —1) over GR(p", m). If
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(a) d—1=g—1=0 (mod4) then

(d—1,g—1)+(d=1)/2, g+1)+{d+]1, (g— 1)/2)+(d+1, q+l)—4;
= — 5

F

(b) d—1=¢q+1=0 (mod4), then

_ (d—l, Q'_])+El

¥ 2

where

0 if (@+D/((d—1)/2, q+1) is even,
= {((d—l)/L g+1) i (g+DAd—1)/2, g+1) is odd;

(c) d+1=g—1=0 (mod4), then
_d+1,9-1)—2+¢,

4 2
where
0 if (d+1)/(d+1,(g—1)2) is even,
= ={(d+l,(q—l)/2) if d+1)/(d+1,(@=1)/2) is odd;
(d) d+1=q+1=0 (mod4), then
_(d+1,9-1)
F-—-—-——z ;

Let G(+ 1) be the group of permutations represented by the polynomial
in P(+1). Further, let G'(x1) denote the subgroup of G(+1) defined by

G'(£1) = {galx, £1): golx, £1)=x _
for all xe GR(p", m), x* # +4 (mod p)}.

Finally, define the quotient group Q(+1)= G(il)/G’@tl). o
Extending [10, Thm. 7.23] for finite fields to the setting of G_alms rings, w‘c
now study the structure of the groups Q(1) and Q(— 1). To this end we first

prove

LemMa 12. Let GR(p", m), n > 1, denote the Galois ring ofordezr pmn :ftlh
p odd. Let Q(+1) denote the associated quotient group. Let Iﬁed({q :l)p )
denote the reduced residue system for the integers modulo (g*—1)p" where
g = p™ Define h: Red((@*—1)p""")— Q(£1) by h(d) = gu(x, £1). Then

(a) h is well defined,

(b) h is a group homomorphism,

(c) h is onto.
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Proof. Suppose d, =d, (mod(g*—1)p""'). Let x be in GR(p", m) and
assume x? # +4 (modp). Then, by Lemma 1, x = y+1/y for some y in
U(p", 2m). Therefore,

ga (X, £ = yh+(£ D"y = y2 4+ (£ 1)y = g,,(x, £1)
for all xeGR(p", m), x* # +4 (mod p) which proves (a).

Now, parts (b) and (c) follow directly from Theorems 4 and 3 respectively.

We are ready to prove

THEOREM 13. Let GR(p", m), n > ], denote the Galois ring of order p™
with p odd. Let Q(+ 1) denote the associated quotient group. Let g = p™. Then
Red((¢*—1)p"™ 1)

(6) Q(I)E{il.il+(q2—l)p"_’K2}'

Red((g>—1)p"" ") if =3 (mod4),

Red((g>—1)p""")
{1, 1+(@-1)p"~'/2}

Proof. By Lemma 12, it suffices to determine the kernel of the homomor-
phism h.

Leta = +1 and assume d eker(h). Then g,(x, a) = x for all x in GR(p", m)
with x% # +4 (mod p). Thus,

(8) y+(a/y) = y+aly

for all yeU(p", 2m) with y2 # +1 (modp). Hence yS(y)=a or S(y) =y,
Where S denotes a generator of the Galois group of the extension
GR(p", 2m)/GR (p", m). Therefore, combining (8) and Lemma 1,

©) i l=1 or ytl=a,

This is also sufficient for d to be in ker(h). Let a = 1. Then, combining with
Lemma 5, deker(h) if and only if d is a solution of one of the following two
Systems of congruences:

d=1 (mod(g—1)p"~ 1), d= —1 (mod(g—1)p"~ ).
d=1 (mod(g+1)p"™"); d=—1 (mod(g+1)p"?).
By solving these systems mod(g®>—1)p"~!, we obtain

ker(h) = {+1, £1+(g>—1)p"*/2}.

(@) o(-1) =

if g=1 (mod4).

We now assume a = — 1. Then deker(h) if and only if 4 is a solution of
one of the following two systems
{d =1 (mod(g—1)p"™ 1), {d = —14+(g—1)p""'/2 (mod(g—1)p"~ "),
d=1 (mod2(g+1)p"?); = —1+(g+1)p"""! (mod2(g+1)p"").

2~ Acta Arithmetica 59.4



326 J. Gomez-Calderon and G. L. Mullen

By solving these systems mod(g>—1)p"~ !, we obtain
{1} if g =3 (mod4),
(1, 1+(@—1)p"'/2} if g=1 (mod4).

This completes the proof of the theorem.

ker(h) = {

For the sake of completeness we now mention several analogous results
for the power polynomials g,(x, 0) = x4 over GR(p", m). These ‘rcsults are
corollaries of the following theorem given by Gomez-Calderon in [5].

THEOREM 14. Let d denote a positive integer and write d = p'e with
(e, p) = 1. Let x,e GR(p", m) and write x, = p'A with A a unit of GR(p", m).
Let P;'(Py(x,)) be the preimage of P,(x,). Then
- d, g— g V** if i< [(n—1)/d],
|Pd l(Pd{xO))‘ o {qn—[[n—l)fd]—l If i> [{n_ l)/d]
where k = min{t, n—id—1} and q = p".
COROLLARY 15. With notation as in Theorem 14,
(a) if (d, p) = | then Py(x) = x* permutes GR(p", m) if and only if d =1 or
n=1and d,p"—-1)=1;
(b) P,(x) =x* permutes the group U(p", m) of units if and only if
(d p'p"-1)=1 .

COROLLARY 16. Let F, denote the number of fixed points of x
GR(p", m). Then

4 over

Fy=(d—1,q—1)g"+1
where k = min{n—1,t}, g =p" and d—1 = ep' with (e, p) = 1.

4. Cryptographic applications. Suppose that M is a message (an elemf:m of
GR(p", m)) which is to be sent securely from A to B. If P(x) is a permutation of
GR(p", m), then A sends to B the element N = P(M). Since P(x) is a bijection,
B can obtain the original message M by calculating P~'(N) = P“‘(P(M))
= M. Hence P(x) should have a simple form so that N = P(M) can be easily
computed. Also P(x) must have the property that withou_t some secret
information (the key) that only A and B know, P~ '(x) will be hard or
impossible to get, so that an unauthorized receiver cannot calculate P~ L(N). At
the same time with knowledge of the key, P~ *(x) is easily obtained by B so that
P '(N)= M can be recovered by B.

In this section we briefly indicate how one can use Dickson polynomials
over Galois rings to generalize a number of cryptographic systems based on
finite fields and residue class rings of integers. Dickson polynomials g,(x, a) with
a=0, +1 have been extensively studied for cryptographic purposes, see for
example [8, 9, 12, 14, 17]. The usefulness of Dickson polynomials in public key
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cryptography is based upon the fact that given a Dickson permutation
polynomial, one can easily compute the inverse permutation if one knows the
factorization of the modulus but without knowledge of this factorization, one
cannot easily obtain the inverse permutation.

To be more specific, suppose m is square free and R denotes the ring of
reduced residues modulo m. If (d, ¢(m)) = 1 where ¢ is the Euler function, then
as indicated in .[7], g,(x,0)=x permutes R, and moreover, if
de = 1 (mod ¢(m)), then x* is the inverse permutation of x¢. Of course e is easy
to calculate if ¢(m) is known. However, without the prime factorization of m, it
is difficult to determine ¢ (m). If m is carefully chosen and sufficiently large, the
problem of determining the prime factorization of m, and hence the value ¢(m),
Is at the moment generally believed to be intractable.

The Dickson polynomials g,(x, +1) can be used in an analogous manner.
As shown in [15] if m=p{...p" is the prime factorization of m and

. v=¢@(m)(p,+1)...(p,+1) then g,(x, +1) permutes the integers modulo m if

and only if (d, v) = 1. Choose e so that de = 1 (modv). Then g,(x, +1) is the
inverse of g,(x, +1). As in the previous case, the inverse is intractable without
the prime factorization of m. ’

Both of the above cryptographic systems are examples of RSA-type
Cryptosystems, see [16]. See also the survey paper [4] for a discussion of public
key cryptography. If one works over the finite field GF(q) then x? permutes
GF(q) if and only if (d, g—1) = 1 and the inverse permutation is given by x°
where de = 1 (mod g—1). For 0 # ae GF(q), g,(x, a) permutes GF(q) if and
only if (d, g>?—1) = 1, see [10, Thm. 7.16]. From [10, Thm. 7.22] for a # O the
Dickson polynomials are closed under composition if and only if a = + 1, and
hence the inverse permutation is given by g, (x, +1) where de = 1 (mod ¢>—1).

We now briefly illustrate how one can employ the Galois ring
R = GR(p", m) with n> 1 for the construction of public key cryptosystems.
Theorem 3 shows that if a is a unit in R then g4(x, a) permutes R if and only if
(d, p*™—1) = (d, p) = 1. Our Theorem 4 shows that if a is a unit then the set of
Dickson polynomials over R is closed under composition if and only ifa = +1.
Moreover, Theorem 13 shows that if g,(x, +1) permutes R, then the inverse
permutation is given by g,(x, +1) where de = 1 (mod(p*"—1)p"~!). Similarly
using results of Theorem 14 and Corollaries 15 and 16, one can use the power
Polynomial x? over R to construct cryptographic systems.

Because the number of fixed points of a polynomial increases upon
iteration under composition, one would like to have polynomials with a small
Number of fixed points. For the Dickson polynomials g,(x, a) over R with
a@ =0, +1, the numbers of fixed points are given in Corollaries 9, 11, and 16.
These facts provide the necessary tools to construct public key and public key
distribution systems over GR(p", m).

In order to work in non-prime power settings, by an application of the
Chinese Remainder Theorem, we can consider the direct product of Galois
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rings. For example if m=pf'...pj is the prime factorization of m, let
GR(p}, m) be the Galois ring of order pi™, m; > 1 for i=1,...,r. Let
S denote the direct product of the Galois rings GR(p{", m)), i =1, ..., 1. Using
the ring S one can construct various cryptographic systems generalizing those
constructed over the residue class ring of integers modulo m. We shall not,
however, go into these details here.
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ACTA ARITHMETICA
LIX.4 (1991)

Lattice points in ellipsoids
by

SUKUMAR DaAs ADHIKARI (Madras) and Y.-F. S. PETERMANN (Geneéve)

1. Introduction. The main object of this paper is to prove two-sided

Omega estimates for the error terms in the classical lattice-points problem for
the three- and four-dimensional spheres.

If A,(x) is the number of integer lattice-points in an I-dimensional sphere of

radius \/;, then as x —» o0 A,(x) ~ Vi(x), where V)(x) is the volume of the
sphere. We denote the corresponding error term by

(1.1) Py(x) = Ay(x)—V(x).
For every I >4 it is known that [14, Satz 2.2.2]
(1.2) P(x) = O(x"*71)
and that [14, Sdtze 4.4.8 and 4.4.9]

(13) Py(x) = @, (x271).

In fact, a large part of WalfiszZ book [14] (Chapters III through VII) is
dedicated to the study of the liminf and limsup as x — ov of the bounded

function P,(x)x! %2, which in some cases are determined explicitly or sharply
approximated. The main results gathered in that book are due to Landau,
Lursmanaschwili, Petersson and Walfisz. When 2 < | < 4, however, the exact
order of magnitude of P,(x) (in the sense of (1.2) and (1.3)) is not even known.
The case | = 2 is the famous circle problem; to date, the best Q,, Q@ _, and

O-estimates are due respectively to Corradi and Katai [4], Hafner [5], and
Huxley [6].

We first consider the case | =4. Walfisz [15] proved that
(1.4 P,(x) = O(x(log x)*'?).

On the other hand, Adhikari, Balasubramanian and Sankaranarayanan [1]
recently obtained the one-sided

(1.5 P,(x) = Q, (xloglog x)
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