On the Möbius sum function

by

ROBERT J. ANDERSON (DeKalb, Ill.)

1. Introduction. Let $M(x) = \sum_{n \leq x} \mu(n)$, $\mu(n)$ being the Möbius function. The inequality $M(x) = O(x^{1/2 + \varepsilon})$ for every $\varepsilon > 0$ is equivalent to the Riemann hypothesis. A major question in the theory of $M(x)$ is whether or not the stronger bound

$$M(x) = O(x^{1/2})$$

holds. Although (1) is probably false, the best known estimate of large values of $|M(x)|x^{-1/2}$ is

$$\lim_{x \to \infty} |M(x)|x^{-1/2} > 1.06$$

due to Odlyzko and te Riele [5].

For any x let

$$M^*(x) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n(2\pi x)^2n}{n(2n)! \zeta(2n+1)}.$$

If $x_0 > 0$ then

$$|M(x_0) + 2M^*(x_0^{-1})|x_0^{-1/2} \leq \lim_{x \to \infty} |M(x)|x^{-1/2}.$$

This is a result of Jurkat [4, p. 148], also see Anderson and Stark [1, pp. 99–100]. In particular, (1) implies

$$M^*(x) = O(x^{-1/2}).$$

Let $r(t) = t \sum_{n=1}^{\infty} \mu(n)n^{-1}$. The function $M^*(x)$ is the cosine transform of $r(t^{-1})$; thus,

$$M^*(x) = \int_{0}^{1} r(t^{-1}) \cos 2\pi x t \, dt$$

[4, p. 152]. By definition

$$\tilde{M}^*(x) = \int_{0}^{1} r(t^{-1}) \sin 2\pi x t \, dt.$$
It will be seen that on the Riemann hypothesis
\[\tilde{M}^*(x) = O(x^{-1/2 + \varepsilon}) \]
for each \(\varepsilon > 0 \). On the other hand, one can show, without any hypothesis, that
\[\lim_{x \to \infty} x^{1/2} \tilde{M}^*(x) = \infty. \]

Hence it is desirable to relate (1) and (2) to the behavior of \(\tilde{M}^*(x) \). This paper obtains several theorems in this direction. The last two results can be improved by making suitable assumptions about \(M(x) \).

Theorem 1. If
\[\int_1^x (M(u)u^{-1})^2 du = O(\log x) \]
then
\[\lim_{x \to \infty} \frac{x^{1/2} \tilde{M}^*(x)}{\log \log \log x} = \frac{1}{2\pi}. \]

It follows that (1) would be contradicted if it could be shown to imply
\(\tilde{M}^*(x) = o(x^{-1/2} \log \log \log x) \).

Of course (1) implies (3) but it is not difficult to obtain a better result.

Theorem 2. If \(M(x) = O(x^{\varepsilon}) \) then \(\tilde{M}^*(x) = O(x^{-1/2 + \varepsilon} \log x) \).

Theorem 3. Assume that (4) is true. Then there is a constant \(C > 0 \) such that for any \(N \) we have
\[|M^*(x) - M^*(y)| > C(x^{-1/2} - y^{-1/2}) \log \log (x + y) \]
for a pair of numbers \(x, y \) with \(\max(x, y) > N \).

Corollary. The inequality
\[M^*(x) - M^*(y) = O(|x^{-1/2} - y^{-1/2}|) \]
does not hold.

This is true without any hypothesis since letting \(y \to \infty \) gives (2), which is equivalent to (1). Therefore the above inequality implies (4).

2. Preliminary results. Let \(\phi(s) = 2^s\pi^{-s} \cos \frac{\pi s}{2} \Gamma(1-s) \) and consider the integral
\[\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^{-s}}{(s-1) \zeta(s)} ds \]
where \(1 < c < 2 \). This is absolutely convergent since \(\phi(s) = O(|t|^{1/2 - \varepsilon}) \). Moving the contour to the right leads to the series
\[\sum_{n=1}^{\infty} (-1)^n \frac{\phi(2n)}{(2n-1)! \zeta(2n)} = \sum_{n=1}^{\infty} \frac{\mu(k)}{k} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)! (2n-1)!} \frac{(2\pi x)^{2n-1}}{k}. \]

Rewriting this as an integral gives \(\int_1^\infty (t^{-1} \sin 2\pi xt) dt \) and proves that
\[\tilde{M}^*(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^{s-1}}{(s-1) \zeta(s)} ds. \]

If the Riemann hypothesis is true then the integral converges absolutely for \(1/2 < c < 2 \) and (3) is clear. In what follows it is assumed that (4) holds. The proof of Theorem 1 is adapted from Ingham [3].

Let
\[\tilde{M}_1^*(y) = \int_0^y \tilde{M}^*(x) x^{-1/2} dx. \]

From (6),
\[\tilde{M}_1^*(y) = \int_{c-i\infty}^{c+i\infty} \frac{\phi(s)}{s-1 \zeta(s)} ds \]
for \(1/2 < c < 2 \). An explicit formula for this function is required. As in [6, p. 374], shifting the contour to \(\Re(s) = c' \) where \(-1 < c' < 0 \) gives
\[\tilde{M}_1^*(y) = \lim_{y \to \infty} \sum_{|\gamma| < T} \frac{\phi(\gamma)}{(\gamma-1)(\gamma-1/2) \zeta(\gamma)} \frac{2}{\zeta(1/2)} \]
\[+ \int_{c-i\infty}^{c+i\infty} \frac{y^{s-1/2}}{(s-1) \zeta(s)} ds \]
where \(\{T_n\} \) is a certain sequence and \(\gamma = 1/2 + iy \) is a zero of \(\zeta(s) \). Inequality (4) implies not only the Riemann hypothesis and that \(\phi \) is simple but that
\[\sum_{|\gamma| < \infty} \frac{1}{|\zeta'(-\gamma)|^2} < \infty, \]
[6, p. 377]. Since \(\sum_{|\gamma| < \infty} \), it follows that the series in (7) is absolutely convergent.

As for the integral in (7), the substitution \(s = 1 - w \) leads to an integral on the line \(\Re(w) = 1 - c' = c'' \), say, which becomes
\[\frac{1}{2\pi i} \int_{c''-i\infty}^{c''+i\infty} \frac{y^{1-2w}}{w-1/2} \tan(\pi w/2) \frac{1}{\zeta(w)} dw \]
after using the functional equation \(\zeta(s) = \phi(s) \tan \frac{\pi s}{2} \zeta(1-s) \).
Since $e^r > 1$, $\sum \mu(n)n^{-x} = O(1)$ as $N \to \infty$. The last integral becomes

$$\sum_{1}^{\infty} \mu(n)n^{-1/2} J(ny)$$

after termwise integration which is justified by the dominated convergence theorem. Here

$$J(y) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^{1/2-y}}{w(w-1/2)} \tan \frac{1}{2} \pi w \, dw.$$

If the series (9) is denoted $R(y)$ then the explicit formula is

$$\mathcal{M}^*(y) = \sum \frac{\phi(q)}{(q-1)(q-1/2) \zeta(q)} \frac{2}{\zeta(1/2)} + R(y).$$

Lemma 1. We have $R(y) = O(y^{-7/2})$ for $y \geq 2$.

Proof. If $x > 1$ then

$$J(x) = \sum_{n \geq 1} \frac{x^{1/2-n}}{n(n-1/2)}$$

where $'$ means n is odd. Now

$$J'(x) = -\frac{2}{\pi} \int_{1/2}^{x} \frac{\gamma}{\zeta(1/2)} = O(x^{-7/2})$$

if $x \geq 2$ say. It follows that

$$\frac{d}{dy} J(ny) = \frac{1}{n} \frac{d}{dy} J(ny) = O(n^{-1/2} y^{-7/2})$$

if $y \geq 2$, $n \geq 1$; so

$$\sum_{n \geq 1} \mu(n)n^{-1/2} \frac{d}{dy} J(ny) = O(y^{-7/2}).$$

This series is $R(y)$ since it is uniformly convergent for $y \geq 2$.

Lemma 2. We have

$$\text{Im} \sum_{0 < \gamma < T} \frac{1}{\gamma \zeta(\gamma)} \left(1 - \frac{\gamma}{T} \right) = \frac{1}{2\pi} \log T + O(\log^{1/2} T).$$

Proof. According to Ingham [2, p. 317] the interval $(T, T+1)$ contains an X such that

$$\sum_{0 < \gamma < X} \frac{1}{\gamma \zeta(\gamma)} \left(1 - \frac{\gamma}{T} \right) \neq 1, \pi \log X + O(1).$$

From (8) and the Cauchy–Schwarz inequality,

$$\sum_{T < \gamma < X} \left| \frac{1}{\gamma \zeta'(\gamma)} \right| = O(\log^{1/2} T)$$

since $(T, T+1)$ contains $O(\log T)$ zeros of $\zeta(s)$. Similarly,

$$\sum_{0 < \gamma < T} \left| \frac{1}{\gamma \zeta'(\gamma)} \right| < T^{-1} \sum_{0 < \gamma < T} \left| \frac{1}{\gamma \zeta'(\gamma)} \right| = O(T^{-1/2} \log^{1/2} T).$$

Since $\log X = \log T + O(1)$, the lemma follows from the last two inequalities.

3. Proofs.

Proof of Theorem 1. Suppose that $\omega > 2$, T is a positive integer and

$$K(y) = \left(\frac{\sin \pi y}{\pi y} \right)^2.$$

Let $K_T(y) = TK(Ty)$ and consider the integral

$$\int_{\omega - 1}^{\omega + 1} K_T(u-\omega) \mathcal{M}^*(e^u) \, du.$$

An integration by parts shows that this is

$$-\int_{\omega - 1}^{\omega + 1} 2 \mathcal{M}^*(e^u) e^{u/2} K_T(u-\omega) \, du.$$

On the other hand, use of (10) in (12) gives

$$-\sum_{\omega - 1}^{\omega + 1} \phi(q) \int_{\omega - 1}^{\omega + 1} e^{iu} K_T(u-\omega) \, du + \int_{\omega - 1}^{\omega + 1} K_T(u-\omega) R(e^u) \, du$$

after termwise integration and integrating by parts.

In the first integral let $u = \omega + T^{-1} y$ to obtain

$$-\sum_{\omega - 1}^{\omega + 1} e^{iyT} \phi(q) \int_{-1}^{1} e^{iyT} K(y) \, dy.$$

Consider the expression

$$\sum_{|\gamma| < X} e^{i\gamma T} K(y) \, dy + \sum_{|\gamma| > X} e^{i\gamma T} K(y) \, dy$$

where X will be chosen. Now

$$\int_{-1}^{1} e^{iyT} K(y) \, dy = \begin{cases} O(T^{-1}), & y < 0 \\ O(1), & y > 0 \end{cases}$$

for any $0 < T$.
[3, p. 206]. By (18) the infinite series in (16) is convergent. Use of (17) in the first term and of (18) in the second shows that (16) is bounded by a constant times

\[T^{-1} \sum_{|l| < x} \left| \frac{1}{\varphi'(\omega)} \right| + \sum_{|l| > x} \frac{1}{\varphi'(\omega)}. \]

The first term here is \(O\left(T^{-1} X^{1/2} \log^{1/2} X \right) \). By (8) and the Cauchy–Schwarz inequality the other term is \(O(X^{-1/2} \log^{1/2} X) \) since \(\sum_{|l| > x} |l|^{-2} = O(X^{-1} \log X) \); hence (16) is \(O(1) \) if \(X = T^{1/2} \log T \). The range \((-\infty, -T)\) can be handled similarly. When the integral in (15) is extended to \((\infty, \infty)\) the series becomes

\[\sum_{|l| < x} \frac{e^{i\omega l}}{\varphi'(\omega)} \left(1 - \left| \frac{\omega}{T} \right| \right) + O(1). \] (19)

The second integral in (14) is

\[\sum_{\omega = -1}^{\omega = +1} \int_{-\infty}^{\infty} e^{i\omega R(\mu)} K_\tau(u - \omega) du. \]

Here \(e^{i\omega} > 2 \) since \(\omega > 2 \) so Lemma 1 gives the bound

\[\sum_{\omega = -1}^{\omega = +1} \int_{-\infty}^{\infty} e^{-2\omega \log T} K_\tau(u - \omega) du \]

times a constant for the absolute value of this last term. This is

\[\int_{-\infty}^{\infty} K_\tau(u - \omega) du < 1. \] (20)

From (13), (19), and (20),

\[\sum_{\omega = -1}^{\omega = +1} \int_{-\infty}^{\infty} 2\tilde{M}^*(e^{i\omega}) e^{i\omega / 2} K_\tau(u - \omega) du = \sum_{l < T} e^{i\omega l} \phi(\omega) \left(1 - \left| \frac{\omega}{T} \right| \right) + O(1). \] (21)

By the functional equation the sum becomes

\[\sum_{l < T} e^{-i\omega l} \tan \frac{1}{2} \pi \omega \left(1 - \frac{1}{T} \right) \] (22)

when \(\omega \) is changed to \(-\omega\). Now

\[\tan \frac{1}{2} \pi \omega = i \text{sgn}(\gamma) + O(e^{-\pi|\gamma|}), \]

and substituting into (22) gives

\[\int_{l < T} e^{-i\omega l} \text{sgn}(\gamma) \left(1 - \frac{1}{T} \right) + O(1) \]

\[= -2 \text{Im} \sum_{0 < \gamma < T} e^{-i\omega \gamma} \phi(\omega) \left(1 - \frac{\gamma}{T} \right) + O(1) = -2S_\tau(\omega) + O(1), \] (23)

say. Equation (21) takes the form

\[\int_{\omega = -1}^{\omega = +1} \tilde{M}^*(e^{i\omega}) e^{i\omega / 2} K_\tau(u - \omega) du = -S_\tau(\omega) + O(1). \]

To complete the proof observe that

\[S_\tau(0) = -\frac{1}{2\pi} \log T + O(\log^{1/2} T) \]

by Lemma 2. By Dirichlet's theorem [6, p. 184], for each \(\varepsilon > 0 \) there is a number \(\omega_0 \) and integers \(n(\gamma) \) such that

\[e^{-N(T)} < \omega < e^{-N(T)}, \]

and

\[|\nu\omega - 2\pi n(\gamma)| < 2\pi. \]

for each \(0 < \gamma < T \). Here \(N(T) \) is the number of \(\gamma \)'s. Since \(|e^{-i\omega \gamma} - 1| < 2\pi e, \)

\[|S_\tau(\omega) - S_\tau(0)| < 2\pi \sum_{0 < \gamma < T} \left| \frac{1}{\phi'(\omega)} \right| = O(eT^{1/2} \log^{1/2} T). \]

Upon choosing \(\varepsilon = T^{-1/2} \), (23) and (24) imply

\[\int_{\omega = -1}^{\omega = +1} \tilde{M}^*(e^{i\omega}) e^{i\omega / 2} K_\tau(u - \omega) du = \frac{1}{\pi} \log T + O(\log^{1/2} T) \]

for the \(\omega \) in Dirichlet's theorem.

Given \(0 < \delta < 1 \), the right side exceeds \(\frac{1}{\pi} (1 - \delta) \log T \) if \(T \) is large enough. Hence

\[\tilde{M}^*(e^{i\omega}) e^{i\omega / 2} \geq \frac{1}{\pi} (1 - \delta) \log T \]

for some \(u \) in \((\omega - 1, \omega + 1)\). Now log \(\omega < \frac{1}{2} T \log^2 T \) for large \(T \) so

\[T \log^2 T > \log(\omega + 1) > \log u; \]

therefore,

\[\left(1 + \frac{2\log \log T}{\log T} \right) \log T \geq \log \log u. \]

The left side is less than \((1 + \delta) \log T \) for large \(T \) so from (25)

\[\tilde{M}^*(e^{i\omega}) e^{i\omega / 2} \geq \frac{1}{2\pi} \frac{1 - \delta}{1 + \delta} \log \log u. \]

By varying \(T \) one obtains this inequality for arbitrarily large \(u \) so Theorem 1 is proven.
Proof of Theorem 2. The following estimate is needed.

Lemma. We have

\[
\frac{d}{dx} M^*(x) = O(x^{-1} \log x).
\]

Proof. From the power series defining \(M^*(x) \),

\[
\frac{d}{dx} M^*(x) = \frac{1}{x} \sum_{r=1}^{\infty} \frac{\mu(r)}{r} \left(\frac{2\pi x}{r} - 1 \right).
\]

The contribution of \(r < x \) to the series is \(O(\log x) \). For the remainder one obtains the bound \(x \sum_{r > x} r^{-2} \) times a constant. Since this is \(O(1) \) the lemma follows.

From the formula

\[
\text{sgn}(t) = \frac{2}{\pi} \int_0^\infty \frac{\sin tu}{u} du
\]

one readily obtains

\[
M^*(x) = \frac{1}{\pi} \int_0^x \frac{M^*(x+u) - M^*(x-u)}{u} du.
\]

(26)

For large \(x \) the lemma shows that the integral over \(0 \leq u \leq 1 \) is \(O(x^{-1} \log x) \).

Assuming (2) in the form \(|M^*(x)| < Cx^{-1/2} \) yields

\[
|M^*(x)| \leq \frac{C}{\pi} \int_0^\infty u^{-1} |x+u|^{-1/2} du + \frac{C}{\pi} \int_0^\infty u^{-1} |x-u|^{-1/2} du + O(x^{-1} \log x).
\]

The integrals are

\[
x^{-1/2} \int_0^1 u^{-1} (1+u)^{-1/2} du \quad \text{and} \quad x^{-1/2} \int_0^1 u^{-1} (1-u)^{-1/2} du
\]

respectively. These are clearly \(O(x^{-1/2} \log x) \) proving Theorem 2.

Proof of Theorem 3. For brevity let \(\log_3 x = \log \log \log x \) and assume that

\[
|M^*(x) - M^*(y)| < C|x^{-1/2} - y^{-1/2}| \log_3 (x+y)
\]

for \(x \geq N, y > 0 \). In (26) the integral for \(0 \leq u \leq 1 \) has already been considered.

For \(1 \leq u \leq x \), (27) implies the bound

\[
\frac{C}{\pi} \int_1^x \frac{(u-x)^{-1/2} - (x+u)^{-1/2}}{u} \log_3 2u du
\]

\[
\leq \frac{C}{\pi} x^{-1/2} \log_3 2x \int_1^x \frac{(1-u)^{-1/2} - (1+u)^{-1/2}}{u} du < C_1 x^{-1/2} \log_3 x,
\]

say. In absolute value the integral for \(u > x \) is at most

\[
\frac{C}{\pi} \int_x^\infty \frac{(u-x)^{-1/2} - (u+x)^{-1/2}}{u} \log_3 2u du
\]

\[
\leq \frac{C}{\pi} x^{-1/2} \log_3 2x \int_x^\infty \frac{(u-x)^{-1/2} - (u+x)^{-1/2}}{u^{1/2}} du < C_2 x^{-1/2} \log_3 x;
\]

therefore,

\[
|M^*(x)| < C_3 x^{-1/2} \log_3 x + O(x^{-1} \log x).
\]

This contradicts Theorem 1 if \(C \) is small enough.

References

DEPARTMENT OF MATHEMATICAL SCIENCES
NORTHERN ILLINOIS UNIVERSITY
DeKalb, Illinois 60115
U.S.A.

Received on 23.3.1989
and in revised form on 8.10.1990

1918