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If e = (B,—R)/B, we find h,eS,,n=1, 2, ..., such that (28) holds. It suffices
to put gy = h, (n=1,2,...) and (24) is satisfied. The proof of Theorem 3 is
complete.
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Introduction. We consider ordered pairs (Q;, Q,) of binary quadratic forms
with coefficients in Z. In the present paper we classify such pairs up to
equivalence, where two pairs of forms (Q,, Q;) and (Q}, Q%) are said to be
equivalent if there is a transformation U in SL,(Z) such that Q;(Ux)
= Qi(x)fori=1,0r 2. If 0, and Q, are linearly dependent then the problem is
obviously equivalent to the classification of single forms, which goes back to
Gauss’ Disquisitiones Arithmeticae.

It can be shown (see Appendices I and II) that the number of equivalence
classes of pairs with given discriminants d,, d, and codiscriminant 4 is finite if
and only if A% # 46,6,. Moreover, the classification of pairs with 4% = 46,4,
turns out to be elementary (see Appendix II).

Thus the interesting case is when 42 # 46,6,. The classification we will
give uses a new invariant, called the index and denoted by u. Our main result is
that there is a natural finite group & that acts transitively and freely on the set
of equivalence classes of pairs with prescribed set of invariants (d,, ,, 4, p) (see
Theorem 1.3 and Corollary 1.5). This approach to classification is illustrated by
a pumerical example in Appendix IV.

The group ® turns out to depend solely on the Sylow 2-subgroup of the
Picard group of a certain quadratic order. As a consequence, the evaluation of
the order of ® gives an explicit formula for the number of classes of pairs with
given invariants (8,, d,, 4, u). We also obtain the formula for the number of
pairs with prescribed (é,, d,, 4) found by Hardy and Williams (see [3]) for
positive-definite forms with fundamental discriminant.

1. The index of a pair of symmetric forms. Recall that quadratic forms
correspond bijectively to even symmetric bilinear forms. In this section we
study triples (M, b,, b,) where M is an oriented free Z-module of rank two and
b;: M - M* = Hom,(M, Z) (i = 1, 2) are nondegenerate (i.e. injective) sym-
metric homomorphisms. We shall say that (M, b,, b;) and (N, ¢,, ¢;) are
equivalent if there exists an orientation-preserving isomorphism f: M — N such
that f*c, f = b, for i = 1, 2, where as usual f* stands for the dual map of f.
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106 J. Morales

Our first task will be to define certain invariants for (M, b,, b,). For this, let
Q[T] be the polynomial ring in one variable over Q. The Q-vector space
Vu = OM spanned by M carries the Q[T]-module structure given by
Tx = by ' by(x).

1.1. LEMMA. The isomorphism class of Vi as a Q[ T]-module depends only
on the equivalence class of (M, by, b,).

Proof. Let f: (M, by, b,) — (N, ¢;, ¢5) be an equivalence. We check
below that the induced map f: V,,— ¥y is an isomorphism of Q[ T]-modules:

S(Tx) = (fby "ba)(x) = (e ' f* ' hy)(x) = (¢ "o f)(x) = Tf(x). m

It follows from the lemma that the minimal polynomial ¢(T) of by *b, is
an invariant of the equivalence class of (M, b,, b,). By letting §; = —det(b;) be
the discriminant of b; we write ¢(T) in the form
(1) o(T) = T2+3—T+é,

0, 9,
where 4 is an integer that will be called the codiscriminant of the pair (b,, b,) (a
word of caution: our definition of codiscriminant differs from the one given in
[3] by a factor 2).

We shall assume from now on that ¢(T) has two distinct roots, or
equivalently that A% # 45,5,. It is shown under this assumption in Appendix
I that there are only finitely many equivalence classes with fixed (9,, 85, 4).

Let now V be a 2-dimensional oriented Q-vector space equipped with
a fixed automorphism t: V— V with minimal polynomial ¢(T) as in (1). Let
A denote the algebra Q[T7]/(¢(T)). The vector space V (respectively V*) is
made into an A-module by setting Tx = t(x) (respectively Tf = t*(f)). In order
to describe all (M, by, b,) with given invariants (d,, d,, 4) and M < V we
consider pairs (M, b) satisfying the following conditions:

(a) M < V is a Z-lattice with QM =V,

(b) b: V- V* is a symmetric A-isomorphism,

(c) b((M,M)< Z and bt(M, M) < Z,

(d) o(bly) = 9.

Two such pairs (M, b) and (N, c) are said to be equivalent if there exists

a in the subgroup A" of units of A with positive norm such that «M = N and
b = ca?. Clearly the correspondence

(M, b) — (M, b, bt)

is a bijection between the pairs (M, b) satisfying (a)-(d) above and the triples
(M, by, by) with invariants (d,, d,, 4). This bijection is evidently compatible
with the given equivalence relations.

To describe the equivalence classes of (M, b) we will use some concepts of
ideal theory in A. We need an invariant that takes into accout the integral
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module structure of M in addition to ¢(T) which gives the rational structure.
More precisely, for a lattice M = V we will consider its associated order A, in
A, which is defined by

Ay ={aecA: aM € M},

and we will describe all pairs (M, b) with A,; = A for a fixed order A. Notice in
particular that M regarded as a A,-module is projective (see Appendix III,
Theorem III.1). We associate with every lattice M < V the integer

p=1[04:Ay],

where O, is the maximal Z-order in 4. The integer u will be called the index of
M. To prescribe u is equivalent to prescribe A, since orders in quadratic
semi-simple algebras are determined by their index in O 4. Notice also that
Z[5,t] is always contained in A,. Thus disc(A,) = p?disc(04) divides
disc(Z[d,t]) = 4> —45,4,. The following example shows that the index can
distinguish pairs that the other invariants cannot.

1.2, ExampLE. Set

10 14 5 11 16 17
B‘_(o 1)‘ Bz_(s 4)’ C“(l 2)’ Cz_(l? 20)‘

By direct computation &(B,) = (C,)= —1, §(B;)=(C,)= —31, and
A(B,,B,) = A(C,,C,) = 18. But u(B,,B,)=1 and u(C,,C,) = 5.

Let % = %(d,, 6;, 4, p) be set of equivalence classes of pairs (M, b)
satisfying conditions (a)-(d) and with index pu. Let A = A4 be the unique order
of index p in O, and let 3(A) be the group of invertible A-ideals (see Appendix
I11 for the definition). We define a subgroup D(A) of the product JI(A4) x A*" by
setting

D) = {UI, )eI(A) x A" : al® = 4}.
Here is the fundamental result in this section:

1.3. THEOREM. If gcd(d,, 0,5, 4) = 1 and & is not empty then the action of
D(A) on & defined by

(I, 2) (M, b)=(IM, bx)
is transitive.

Proof. We first prove that D(A) acts on & l.ndecd, let (I, «) be in D(A)

and let (M, b) be in .. Since (IM, ba) satisfies trivially Conditions (a) and (b),
we shall only check Conditions (c¢) and (d).

We have
(ba)(IM, IM) = b(aI>*M, M) = b(M, M).
Thus (IM, ba) fulfills Condition (c) (evidently the equality above also holds if
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b is replaced by bt). By direct computation we have
S(batlypr) = N gyg(@)N(1)? S (blay) = N(eI?)3(blsg) = S(bla)-

Hence (IM, ba) satisfies Condition (d).

The non-trivial part of the theorem is of course the transitivity of this
action. Let (M, b) and (N, ¢) be in . Set a = b~ 'c and I = Hom,(M, N) =
{Ae A| AM =N}. Since M and N are projective A-modules (see Theorem II1.1)
we must have IM = N. In order to show that (I, o) belongs to D(A) we use the
following intermediate result that will be proved eventually:

1.4. LemMa. Let A’ be the dual ideal of the unit ideal A (see Appendix 111
for the definition). Let (M, b) be as above and let f: M — Hom (M, A’) be the
unique symmetric A-bilinear form such that Tr o = b. Then

2) BM, M) = A'nt™* A,

In particular, the ideal (M, M) depends only on the invariants (6, 85, 4, p).

Lety: N = Hom (N, A’) be the A-bilinear form associated to (N, ¢) as in
Lemma 1.4. We have

3) y(N, N) = Ba(IM, IM) = aI* B(M, M).

By Lemma 1.4 we have (M, M) = (N, N). Hence aI* = A as desired (all
A-ideals involved in (3) are invertible). m

Proof Lemma 1.4. For simplicity we denote in this proof by (x, y, z, ...)
the A-ideal generated in A by x, y, z, ... Let J denote the ideal (1, ). Since
both b and bt take integral values on M we must have

BM, M)S A'nt™ ' A' = J.

We show now that the ideals f(M, M) and J' have the same norm. Indeed, we
have on the one hand

4) 16,] = |det(bl)] = |det(Tr4o(Bla))| = N(B(M, M))|ldisc(4).
On the other hand, using the hypothesis ged(d,, §,, 4) = 1 we obtain
JTI=(,t,5,t))y=(,t,t+i,th)=(1,¢t, 467", 8,67 ")
= (07 ")(0y, 83, 4, 8,1) = (6, ).
Hence J is invertible and N(J) = |8,|"!. Using this equality we obtain

©) N() = N(J 7' 4) = N(J)" 'N(4) = |8, [[disc(4) .

Putting together (4) and (5) we get N(B(M, M)) = |N(J')| as desired. m
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Let (A) denote the quotient of D(A) defined by the exact sequence
(6) A = D(A) - G(4) - 0,

where the homomorphism A°° — D(A) is given by a — (2" ' A, ?). The
following result is a straightforward consequence of Theorem 1.3.

1.5. COROLLARY. If & is not empty then ®&(A) acts freely on . If in addition
ged(Sy, 65, A) =1 then this action is transitive. In particular, if hg =
hy(d,, 05, A, ) denotes the cardinal of ¥ (d,, 0,5, 4, 1) then

hy = |{51A)| .

2. From symmetric bilinear forms to quadratic forms. Recall that to every
quadratic form g with coefficients in Z corresponds a symmetric bilinear form
b taking values in Z defined by b(x, y) = g(x+y)—q(x)—q(y). Conversely, to
every Z-valued even symmetric bilinear form b corresponds an integral
quadratic form g defined by q(x) = (1/2)b(x, x). Consequently we shall not
make any distinction between quadratic forms and even symmetric bilinear
forms. In particular, all invariants defined for pairs of symmetric bilinear forms
in the previous section will also apply to pairs of quadratic forms.

Let 2(d,, 81, 4, 1) be the set of equivalence classes of pairs of quadratic
forms with invariants (0, d,, 4, p). By the preceding remarks 2(d,, 6,, 4, p)
can be viewed as a subset of the set % (d,, d,, 4, yu) defined in the previous
section. The aim of this section is to provide a version of Theorem 1.3 and
Corollary 1.5 for 2(d,, 65, 4, p).

To avoid trivial cases we shall assume throughout this section that
92(8,, 8, 4, p) is not the empty set. As in the previous section ¢(T) is assumed
to have distinct roots, A denotes the algebra Q[T]/(¢(T)), and A is the order of
index u in the maximal order of A.

2.1. TueoreM. (a) If disc(A) =1 (mod 4) then 6; =0 (mod 4) for i=1, 2
and the map

'90(01/4’ 62/41 A/4' 3u) = 3(611 62, A, .u)
(M, b) — (M, 2b)

is bijective.
(b) If disc(A) =0 (mod 4) then the map

F(Dy, 62, 4, 2p) — 2(0,, 05, 4, p)
(M, b) — (AM, 2b)

is two-to-one and surjective.
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Proof. (a) The injectivity of the map is obvious, so we shall only prove its
surjectivity. Let (M, ¢) be in 2(3,, d,, 4, p); we shall prove that the bilinear
form ¢ takes only even values. Since M is A-projective, the module M/2M is
free of rank one over A/2A4. Let m be a basis of M/2M over A/2A. By
hypothesis disc(A) is odd; thus the ring A4/24 is a semi-simple F,-algebra.
Therefore A/2A4 is perfect (that is every element in A/2A is a square). Let x, y be
in A/2A and choose z so that xy = z%. Then

(7) ¢(xm, ym) = c(xym, m) = ¢(z*m, m) (mod 2)
= ¢(zm, zm) (mod 2) = 0 (mod 2).

The same argument shows that ¢t also takes only even values. Thus
;=0 (mod 4) and (M, ¢/2) is in ¥ (8,/4, 6,/4, A/4, n) as asserted.

(b) Let A, be the order of index 2 in A (or equivalently of index 2u in O ).
Notice that if M is A,-projective then M has index 2 in AM. Hence
0(2bl sm) = 0(bly) = 9.

We shall first deal with surjectivity. Let (N, ¢) be in 2(d,, d,, 4, u). We
choose a sublattice M = N of index 2 and Ag-projective (this is evidently
possible since N is A-projective). We claim that the form c¢ takes only even
values on M, which will prove the surjectivity. Indeed, it is easy to see that the
order Ag is the inverse image of F, under the canonical map

A = A24 = F,[X]/X?).

In particular, for all x in A, there exists z in A such that x = z* (mod 24). Let
m be a basis for M/2M over Ay/2A,. For if x, y are in A; and z in A is
chosen so that z2 = xy (mod 24), then c(xm, ym) = ¢(zm, zm) = 0 (mod 2) by
a computation similar to (7). We conclude by taking b = ¢/2.

In order to prove that the map is two-to-one we observe that the map

y(‘sh 529 A, 2“) =+ .90((3-[., 519 A’ .u)
(M, b) — (AM, 2b),

whose image was proven to be 2(d,, 8,, 4, p), is §(Ay)-equivariant (the group
®(Ay) acts on .S (d,, d,, 4, p) via the natural map h: G(A4,) — (A)). Since
®(A,) (respectively (A)) acts freely on ¥ (d,, d,, 4, 2u) (respectively on
S(d,, 0,5, 4, ) by Corollary 1.5, it is enough to show that the kernel of h is
cyclic of order 2. This will be proven in the next lemma. m

2.2. LEMMA. Suppose disc(A) = 0 mod 4 and let Ay = A be the suborder of

index 2. The kernel of the natural map

G(Ay) > G(A)

is cyclic of order 2.
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Proof. Regarding invertible ideals as locally free modules (see Appendix
ITI, Theorem II1.1) we see readily that the following sequence is exact
0 = (A®Z)[(Ao®Z,) —~ I(Ag) > I(4) ~ 0.
But, since 2 is ramified in A one also has
(ARZ,) (Mo®Z,)" = (A)2A) = (F,[X INX?) = Z/2Z.

Thus Ker(g) =~ Z/2Z. Consider now the following commutative diagram whose
rows and columns are exact:

0 - Ker(f) » Ker(g)

! ! !
0 - A;; - D(4o) — I(4o)
! 4 v

0 - A = DA — 3J(A).

It is evident that if I is the generator of Ker(g) then (I, 1) belongs to Ker(f);
hence Ker(f) — Ker(g) is surjective. So, by exactness of the first row, it must
be an isomorphism. Thus Ker(f) = Z/2Z. Finally, the diagram

0 - A /{+1} = D(Ag) = GB(A4y) = 0
Il U J*
0 - A /{+1} » DA) = 6GA) -0
shows that Ker(h) = Ker(f). Hence Ker(h) = Z/2Z as required. =

2.3. COROLLARY. Assume that 2(d,,0,, A, ) is not empty. Let
h(d,, 85, A, ) be the cardinal of 2(5,. 6, A, p). Then
(a) Ifdisc(A) =1 (mod 4) and ged(d,, d,, 4) = 4, then

ha(y, 85, 4, ) = hy(8,/4, 62/4, 4/4, 1) = |®G(A)].
(b) If disc(A) =0 (mod 4) and ged(dy, 65, 4) = 1, then
hé\’{éh 52! A' ﬂ] = lh,t/(é], 52! A‘ 2,”.} = %"{5("10)'

Proof. Combine Theorem 2.1 and Corollary 1.5.

3. The class number. This section is devoted to the explicit computation of
the number h, of equivalence classes of pairs of binary symmetric bilinear
forms with given invariants.

In light of the results of the previous sections, this is essentially equivalent
to the computation of the order of the group &(A) defined in (6) for a given
order A in a quadratic semi-simple algebra 4/Q. Let ,Pic*(A4) denote the
subgroup of ,Pic*(A) of elements of order at most 2. We define homomor-
phisms j: A°" — G(A) and k: G(A) — ,Pic*(A) by setting j(u) = (4, u) and
k(X, u) = (X). The proof of the following proposition is left to the reader.
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3.1. ProrosiTION. The sequence
0 » A°/4"" L ®(A) S LPict(4) - 0
is exact.

3.2. ProrosITION. The order of ®&(A) is given by

®) IG(A)] = 27O HIOLA (47,

where w(D) is the number of distinct prime divisor of D = disc(A), and I(D) is the
integer defined in Appendix 111, Corollary 111.4.

Proof. By Corollary I1L.3 in Appendix III we know that the order of
2Pic(A) is 2wPI=1+IUD) The equality (8) follows now immediately from
Proposition 3.1. =

Remark. It is very easy to see that the factor [A4"" : (4°")*] is given by

2 ifD,<1;

o+, ey _ A= 1,

(A7 A7) {4 if D> 1,
where D, = disc(0 ).

We shall now combine the result above with the classification theorems of
the previous sections to obtain an explicit class number formula for pairs of
binary symmetric bilinear forms with prescribed invariants.

3.3. TueoreM. If ged(d,, 5, A) =1 and hy(d,, 0,5, 4, p) # 0 then

2HDI=LHIDI A+ 1 (f°*)2] if D=1 (mod 4),

hy(01, 02, 4, 1) = {2“'“”"“"‘”’[/1" (A*")*]  otherwise.

Proof: The proof follows directly from Corollary 1.5, Corollary 2.3, and
Proposition 3.2. =

The question is now how to decide effectively for prescribed (,, J,, 4, u)
whether the set ¥ (d,, d,, 4, p) is not empty. The answer is given by the
following theorem.

3.4. THEOREM. Suppose gcd(dy, 05, 4)=1 and let J = A + tA. Then the
Sfollowing conditions are equivalent.

(@) The set ¥ (d,, d,, 4, p) is not empty.

(b) The equality

1 if 6, >0,
[”'{[A'] if 8, <0

holds in the group Pic*(A)/Pic* (A)>.
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Proof. (a)=(b). Let (M, b) be an element in #(3,.4,. 4, u). Let
B: M — Hom,(M, A’) be so that b = Tryop. We proved in Lemma 1.4 the
equality

9) B(M, M) =J".

After choosing an A-basis v for V we can write M = [v, where I is a A-ideal.
Hence, by (9), we have I? (v, v) = J'. Using the identity J' = J ' A’ we obtain

(10) [J]=[B(r, v)A][A"]

in Pic* (A)/Pic* (A4)% Suppose first §, < 0. that is b is a definite form. We leave
as exercise to see that A must be a real order (use the fact a symmetric real
matrix has real eigenvalues). From the identity

—8; = Nyyo(Bv, v)N(I)*disc(A)

we conclude that No(f(v, v)) > 0. Thus [J] = [A] in Pic™ (A)/Pic” (1)

Suppose now d; > 0. If A4 is an imaginary order, then it follows direct-
ly from (10) that [J]=[A"]=1. If A is real, then N, q(f(v, v)) <O0. so
[B(v, v)A] = [A] in Pic*(A). Thus, again from (10), we have [J] = 1.

(b)==(a). The hypothesis implies that we may choose (I. ) such that
al? = J' with N () > 0 if 6; <0, and with Nyol2) <0if 6, >0 and 4 is
real. As before we choose an A-basis v for V and we set M = Iv and
b(xv, yv) = Tr4,9(xxy). A routine verification shows that the pair (M, b) has the
required invariants. m

In order to have an effective version of Theorem 3.4 we compute now the
local symbols ¢,(J) for the ideal J = A+t (see Appendix 111 for the definition).

To avoid technical complications at primes ramified in A we shall assume
henceforth

(11) ged(0,0,, A)=1 and Ad=1 (mod?2).

3.5. THEOREM. Assume condition (11) above. Then hy = hy(8,, &,, A4, p) is

given by
0 2 D,
hy =m Z (—1) with  m= { {f 4
nlpD 4 h 1 I,{ D_,‘ < (.

nsquare free
~ Proof. Let D = disc(Z[0,1]) = 4> —46,6,. The integer disc(4) = u*D,
5 o_dd. since it is a divisor of D and 4 is odd by hypothesis. Let p be a prime
divisor of y?>D,. By the proof of Lemma 1.4 we know N(J)=[3,| !, and,

E{Y (11), 8, is a p-unit. Thus we can choose x, = | as a local basis of J at p.
ence

£,(J) = (Ib?l!) for p|p2D,.

1 ;
== Acta Arithmetica LIX.2
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On the other hand, for 4, <0 we obtain

=5
)= (7)-

Thus, by Theorem 3.4 and Theorem III.2 we have
5] 2
hy #0 < ; =1 for plu*D,,

for both positive and negative &,. Hence

1 5.)) {1 if hy #0,
2w D“"pi!;!,ll( (p 0 if hy =0.

Using Proposition 3.2 we obtain

2 - 2 .t .t 1 P
h.? = vl Da)—1+1n DAJ[A ‘A ]2 s l_[ (1 +(j))

plu*D A

G-y ()

nsquare free

3.6. COROLLARY. Let H = H(d,, 05, A) be the number of equivalence classes
of pairs of symmetric forms with invariants (8,, 05, 4). With the same hypothesis
as in Theorem 3.5 we have

d
(12) f}:mz(-l),
n|D n
where D = A*—46,0,.
Proof. We write D = f?D,, where D, = disc(0,). Clearly we have

H=Y h,.5,, 4, p).
ulf

Thus, by Theorem 3.5, we have,

weny 3 (8)-mz(®)

n square free

(note that D, is square free). m

Remark. Formula (12) was found by Hardy and Williams (see [3]) for
pairs of positive-definite forms with fundamental discriminant, also with some
restrictive hypotheses on (d,, d,, 4). The factor m in equation (12) is in this case
equal to 2, and is explained by the fact that our method allows also
negative-definite forms.

Classification of pairs of binary quadratic forms 115
Appendix I. Finiteness

Although finiteness in the case A% # 43,9, can be also deduced from
Theorem 1.3, we prefer to give an independent proof, which has the advantage
of being valid without change for pairs of symmetric bilinear forms of any rank,
and can even be easily reformulated for systems of an arbitrary number of
forms. As many other finiteness results in number theory, Theorem 1.1 below is
an easy consequence of a deep result of Borel and Harish-Chandra in the
theory of algebraic groups [1, Theorem 6.9].

I.1. THEOREM. If 40,0, # A* then there are only finitely many equivalence
classes of pairs of symmetric bilinear forms of rank 2 with invariants (8,, 85, A).
Proof. For a ring R = C we denote by X,(R) the set of symmetric

2 x 2-matrices with non-zero determinant d and with entries in R. The group
SL,(R) acts on X,(R) in the obvious way: (X, B) — X'BX. The algebraic map

[ X4, (€)% Xg,(€) » M,(C)

given by f(B,, B;) = By 'B, is SL,(C)-equivariant (the group SL,(C) acts
diagonally on X,,(C) x X4,(C) and by conjugation of matrices on M,(C)). Let
C be the conjugacy class in M,(C) whose minimal polynomial is

_m2 47,0

(M =T +51 T+6,'
Our hypothesis implies that C is semi-simple. Therefore C is closed in M,(C)
for the usual topology (see for instance [4, Chap. I1, 2.7, Satz 3]). Hence f ~'(C)

is closed in X,,(C)x X, (C).

It is easy to see that over C every equivalence class of pairs has
a representative of the form (I, B), with B unique up to SO,(C)-conjugacy.
Thus f~!(C) consists of a single orbit, which is therefore closed. By a theorem
of Borel and Harish-Chandra (see [1, Theorem 6.9]), the intersection of

a closed orbit with X, (Z)x X,,(Z) is the union of finitely many SL,(Z)-or-
bits, m

Appendix II. The case 4% = 44,0,

IL.1. PROPOSITION. Let By and B, be linearly independent forms. The
Jollowing conditions are equivalent.
(a) B, and B, represent zero simultaneously.

(b) 4% = 44,0,.

Proof. (a) = (b). We can assume

= (i a)

By direct computation 4% = (2b,b,)* = 46, 6,.
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(b) = (a). The hypothesis 4> = 48,6, implies that the matrix S = B; ' B,
has a double eigenvalue /. Since B, and B, are not proportional, there exists
a vector x such that v = (S—Ail)x is different from zero. Clearly v'B;v = 0 for
i=1,2. m

The following proposition gives the classification of pairs (B, B,) with
prescribed d,, d,. and 4* = 49,0,. Note that by Proposition IL.1, §; must be
4 square.

I1.2. PrROPOSiTION. Let b,. b, be non-zero integers and let &; = b}, and
A = 2b,b,. The following is a complete list of non-equivalent pairs (B,, B,) with

invariants (0,, 0,1, A):
a, ¢&b,\ [a, &b,
eh, 0 )' eh, 0

where 0 < a, < 2|b,|, e = +1, and a, is any integer. In particular, there are
infinitely many such classes.

Proof. Let (B,, B,) be a pair with invariants (J,, d,, 4). By Proposition
II.1, the pair (B,, B,) is equivalent to

(3,56 %)

By performing if needed a transformation of the type

()

which does not change the shape of either form, we can assume 0 < a, < 2|b,|.

Observe that a, is uniquely determined modulo 2b, and that the only
automorphisms of the form

a, &b,

eb, 0

are 1 and —1. Thus all pairs obtained in this manner belong to different
equivalence classes. m

Appendix III. Quadratic orders

In this appendix we recall without proofs some well known results from
the theory of quadratic orders. A good reference is [2, Chapter II].

Let A/Q be a quadratic semi-simple algebra, i.e. A is either a quadratic
field or the split algebra Q x Q. Let A 4 be an order, that is, a subring of
rank two over Z. By a A-ideal J we mean a finitely generated A-submodule of

Classification of pairs of binary quadratic forms 117

A with QJ = A. For a A-ideal J we define the dual J' by
J ={xeA| TryelxJ)c Z}.

An ideal J is invertible if there exists an ideal I such that [J = A. Here is
a useful criterion to recognize invertible ideals.

II11.1. THEOREM. Let J be a A-ideal. The following conditions are equivalent.

(a) JJ = A

(b) J is invertible.

(c) J is projective as a A-module.

(d) J is locally free, that is J, is principal A,-ideal for all primes p (as usual
the subscript p means tensor product with the p-adic integers Z,).

(e) End,(J) = A.

The set of invertible A-ideals forms a group under multiplication. This
group will be denoted by J3(A). The Picard group Pic(A) is defined by the exact
sequence

A" - 3(A) - Pic(4) - 0
where 4° — 3J(A) is the obvious map a +— Aa. Similarly, the narrow Picard
group Pic* (A) is defined by the exact sequence

A" = J(A) = Pict(4) - 0

where A°" is the subgroup of units of positive norm in A. For an ideal J € 4
we define its absolute norm by N(J) = [A : J]. The norm induces a homomorp-
hism N: 3(A) — Q". For an ideal J and for a prime number p we define

£,(J) = No(x,)/N(J) in H*(Gal(4/Q), 4;),

where x, is a local basis for J, that is J, = x,A4,. It is very easy to see that
¢, defines a homomorphism Pic*(A)/Pic*(A4)> — H*(Gal(4/Q), A;). The
following theorem is classical for 4 = O, (see for instance [2, Chap. III, Section
8, Theorems 7 and 8]. Its generalization to non-maximal orders is straightfor-
ward.

I11.2. THEOREM. The homomorphism
& Pic* (A)/Pict (1) - [| H*Gal(4/Q), 4;),
pldise(A)
[J] — (BP{J))‘

Is injective. Furthermore, the image of ¢ consists exactly of the elements ()
satisfying the reciprocity condition

l-] ({:..pn DA}p = l‘

plDA

where D, = disc(04) and (), is the Hasse symbol at p.
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I11.3. LemMA. The group H?*(Gal(A4/Q), A;) is trivial for p not dividing
disc(A). For an odd prime p dividing disc(A) the Legendre symbol defines an
isomorphism

H*(Gal(4/Q), A3) — {+1},

- ()

{1} if b=0and a<1;
(Z/4Z)y if (b=0and a=2)
or (b=2and a<1)
or (b=3 and a =0);
(Z/8Z)  in all other cases.
where a = ord,([0,: A])/2 and b = ord,(D ).

The following corollary gives the 2-rank of Pic™ (A).

and for p =2 we have

(13) Hz(Gal(fi/Q), A3) =

I11.4. CorOLLARY. Let ,Pic ™ (A) denote the subgroup of Pic™ (A) of elements
of order at most 2. Then

|2pic+ (A)] = 2#D~1 +1D)
where w(D) is the number of distinct prime divisors of D = disc(A) and I(D) is
given by
1 if Dy=1 and D odd;

if Dy# 1 and D odd,
ord,(H?*(Gal(4/Q), A3) if Dy=1 and D =2 (m > 0);

I(D) = )
ord,(H*(Gal(4/Q), A3))—1 in all other cases

(see equality (13) for the computation of H*(Gal(4/Q), A3)).

Appendix IV. An explicit example

This appendix illustrates the computational aspects of Theorem 1.3 and
Corollary 1.5. Starting from Example 1.2 we shall calculate here a complete set
of representatives of the equivalence classes of pairs with invariants §, = — 1,
§,=—31, and 4 = 18.

Since 4°>—40,0, = 2*-5%, the orders relevant for our purposes are
Z[ /2] (u=1) and Z[5 ﬁ] (u = 5). We know from Example 1.2 that both
values of u can be realized. Thus, according to Corollary 1.5, to get hold of
a complete set of representatives of the equivalence classes of pairs with
invariants (—1, —31, 18, yu), it will be sufficient to calculate the group
@(Z[pﬁ]) and take the orbits of the pairs given in Example 1.2 under the
action of this group.
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It is easy to see that ,Pic*(Z[,/2]) is trivial (use for instance Corol-
lary II1.4). Thus, by virtue of of Proposition 3.1, the group (F)(Z[\/i])
is given by

(14) 6(2[/2) = {(z[v/2).£1), (2[/2]. £%)},

where ¢ = l+\/§ is the fundamental unit of Z[,/2] (notice that & has norm
—1). Thus, by Corollary 1.5, there are four non-equivalent pairs of forms with
Invariants 6; = —1, 6, = —31, 4 =18, and p = 1.

Similarly, using Corollary 1114 we see that ,Pic*(Z[5,/2]) is cyclic of
order 2. It is readily checked that J = 5Z+./2Z is a Z[Sﬁ]-ideal and
satisfies J* = Z[5 ﬁ] Moreover, since ﬁ is a local generator for J at p = 5,

we have
-2

Hence J represents a non-trivial class in ,Pic*(Z[5./2]). Thus, by Proposition
3.1, the group G(Z[5 \/5]) is given by

15 6(2[5\/2) = {(Z[5/2]. 1), (2[5 /2], £17), (U, £ 1), U, 202},

where n = (1+./2)* =7+5./2 is the fundamental unit of Z[5./2] (notice
that » has norm —1). In particular, there are eight non-equivalent pairs of
forms with 6, = —1, ,= =31, 4 =18 and u=>5.

The case u=1. Let

() =1

as in Example 1.2. Let T = B;'B, and let t = 9—5\/5 (remark that 7 is an
igenvalue of T). The correspondence T + tinduces an isomorphism between
the fields Q(T) and Q(ﬁ). The underlying module M = Z? is equipped with
the Z[/2]-module structure given by this isomorphism (i.c. T acts on M via
the matrix T). According to Corollary 1.5, the orbit of (M. B,) under the action
of (5(2[\/2_]) provides all the equivalence classes of pairs with invariants

1=—=1,0d,=-31, 4=18, and pu= 1. Let us now describe explicitly this
orbit. Let E in Q(T) be the matrix corresponding to the fundamental unit & of

Z[,/2]. By the definition of the action of 6(Z[/2]) (see (1.3)) we have
(2[/2].4) (M, By) = (M, B, E)

By direct calculation we see &2 = (33—21)/5; hence

1 -2
E2 =1 — =
3(331-2T) (_2 5).
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Thus the pair of forms corresponding to (M, B,E?) is

1 -2 4 -3
ol = 2 =
(17) B, E (_2 5). B,E (_3 10).

Multiplication by —1 in (16) and (17) yields the remaining two pairs in the
Ol'bit Of {B],B;}. | |

The case g = 5. We start out with the forms C; and C, of Example 1.2:

1 16 17
(18) Clz(l 2)’ C’=(17 20)'

Let § = C;'C,. The correspondence S — 1= 9—5\/5 induces an isomorp-

hism between Q(S) and Q(ﬁ) and makes M = Z? into a Z[S\/z]-module.

Let N.be the matrix corresponding to the fundamental unit n = ?+S\_f2 of

Z[5./2]. By (15) the orbit of (M, C,) under the action of G(Z[5./2]) is
{(M,+C,),(M,C,N?*,(UM, +C,),(UM, £C,N?}.

Using the identity n* = 225— 147 we have

15 —~196
2 = — =
N* =2251-148 (_‘ 14 183)'

Thus the pair corresponding to (M, C,N?) is

. ff 1 =18 . 2-2
(19) ade _(43 o) N =\l2s as)

We shall now calculate the pair corresponding to (JM, C,). It is easy to see
that the first basis vector ¢, = (1,0) generates M = Z? as a Z[5,/2]-module.
We also see by direct calculation that ﬁ corresponds to the matrix

—6/5 —14/5

—1/5 6/5)
Thus, recalling that J = SZ+\/§Z, we see that JM admits the vectors
vy, =(—6/5,—1/5) and v, = (5, 0) as a Z-basis. Let P be the change-of-basis

matrix
—6/5 5
P= :
(ZVs0)
Writting the forms C, and C, in the basis {v,, v,} gives the pair corresponding
to (JM, C,):

2 -7 , 32 —113
(20) P‘C,P=(_7 25), PC;Ph(_lB 400).
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Similarly, the pair corresponding to (JM, C,N?) is

2 7 413
21 " N?P = ,N2P = .
(21) P'C,N*P (7 25), P'C,N?P (]3 50)

As in the previous case, the remaining four pairs in the orbit of (C,,C,) are
obtained by multiplying by —1 the forms in (18), (19), (20), and (21). =
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