A limit theorem for the Riemann zeta-function near the critical line in the complex space

by

A. LAURINČIKAS (Vilnius)

In honour of Professor J. Kubilius
on his 70th birthday

Let \(s = \sigma + it \) be a complex variable and let \(\zeta(s) \) denote the Riemann zeta-function. H. Bohr noted in [2] that asymptotically the behaviour of the \(\zeta \)-function in the half plane \(\sigma > 1/2 \) is governed by some probabilistic laws. This idea has been implemented in [3], [4], [7].

Let \(\text{meas}\{A\} \) be the Lebesgue measure of the set \(A \) and

\[
v_T(\ldots) = \frac{1}{T} \text{meas}\{t \in [0, T], \ldots\}
\]

where instead of dots we write the conditions which are satisfied by \(t \). Let \(C \) denote the complex space. About 1940 A. Selberg (unpublished) has shown the following theorem.

Theorem A. If a measurable set \(A \subseteq C \) has positive Jordan content then

\[
\lim_{T \to \infty} v_T \left(\frac{\ln \zeta(1/2 + it)}{\sqrt{\ln \ln t}} \in A \right) = \frac{1}{\pi} \int_A e^{-x^2 - y^2} dxdy.
\]

Note that Theorem A can be found in [8] where its proof is also sketched. It is easy to see that the sets in Theorem A constitute a convergence-determining class. Let \(\mathcal{B}(S) \) denote the class of Borel subsets of the space \(S \). Then it follows from Theorem A that the probability measure

\[
v_T \left(\frac{\ln \zeta(1/2 + it)}{2^{-1/2} \ln \ln T} \in A \right), \quad A \in \mathcal{B}(C),
\]

as \(T \to \infty \) converges weakly to the normal probability measure

\[
\frac{1}{2\pi} \int_A e^{-\frac{(x^2 + y^2)}{2}} dxdy.
\]

Here we use the norming factor \(\sqrt{2^{-1/2} \ln \ln T} \) to obtain the normal distribution with parameters 0 and 1.
Let \(P \) be a probability measure on \((C, \mathcal{B}(C))\). The function
\[
w(\tau, k) = \int_{C(0)} |z|^k e^{i\tau z} dP, \quad \tau \in \mathbb{R}, \quad k \in \mathbb{Z},
\]
is called the characteristic transform of the measure \(P \) [10].

The lognormal probability measure on \((C, \mathcal{B}(C))\) is defined by the characteristic transform
\[
w(\tau, k) = \exp \left\{ -\frac{\tau^2}{2} - \frac{k^2}{2} \right\}.
\]

The lognormal distribution function \(G(x) \) is defined by
\[
G(x) = \begin{cases}
\Phi(\ln x), & x > 0, \\
0, & x \leq 0,
\end{cases}
\]
where \(\Phi(x) = \int_{-\infty}^{x} e^{-u^2/2} du \).

If \(1/2 \leq \sigma < 1 \) and \(\zeta(s) \neq 0, a \in \mathbb{R} \), then \(\zeta(s) \) is understood as \(\exp \{ \ln \zeta(s) \} \) where \(\ln \zeta(s) \) is defined by continuous displacement from the point \(s = 2 \) along the path joining the points \(2, 2 + it \) and \(\sigma + it \).

Since the function \(\eta: C \to C \) defined by the formula \(\eta(s) = e^s \) is continuous, we have from the weak convergence of the probability measure (1) that the probability measure
\[
v_T \left(\zeta^{1/2 - \frac{1}{2} \ln T} (1/2 + it) \in A \right), \quad A \in \mathcal{B}(C),
\]
converges weakly as \(T \to \infty \) to the lognormal probability measure.

The aim of our note is to extend the result of A. Selberg to the strip \(1/2 \leq \sigma \leq 1 + 1/2 + 1/\ln T \).

Theorem. Let \(1/2 \leq \sigma \leq 1/2 + 1/\ln T \). Then the probability measure
\[
v_T \left(\frac{\ln \zeta(s + it)}{\sqrt{2^{-1} \ln T}} \in A \right), \quad A \in \mathcal{B}(C),
\]
converges weakly as \(T \to \infty \) to the lognormal probability measure.

Corollary 1. Let \(1/2 \leq \sigma \leq 1/2 + 1/\ln T \). Then the probability measure
\[
v_T \left(\frac{\ln \zeta(s + it)}{\sqrt{2^{-1} \ln T}} \in A \right), \quad A \in \mathcal{B}(C),
\]
converges weakly as \(T \to \infty \) to the probability measure
\[
\frac{1}{2\pi} \int_A \left\{ e^{-\frac{(x^2 + y^2)}{2}} \right\} dx dy.
\]

Corollary 2. Let \(1/2 \leq \sigma \leq 1/2 + 1/\ln T \). Then the distribution function
\[
v_T \left(\left| \zeta(s + it) \right|^{1/2 - \frac{1}{2} \ln T} < x \right)
\]
converges pointwise as \(T \to \infty \) to the lognormal distribution function \(G(x) \).

Corollary 3. Let \(1/2 \leq \sigma \leq 1/2 + 1/\ln T \). Then the distribution function
\[
v_T \left(\frac{\arg \zeta(s + it)}{\sqrt{2^{-1} \ln T}} \leq x \right)
\]
converges pointwise as \(T \to \infty \) to the normal distribution function \(\Phi(x) \).

Note that in [5] the limit theorems for \(\ln \zeta(s + it) \) and \(\ln \zeta(s + it) \) when \(\sigma = 1/2 \) or \(\sigma = 1/2 + 1/\ln T \) have been obtained but the strip \(1/2 \leq \sigma \leq 1/2 + 1/\ln T \) was not considered.

For the proof of the theorem we shall use some properties of spaces of analytic functions. Let
\[
A_T = \left\{ s \in C, \frac{1}{2} \frac{1}{\ln T} < \sigma < 1 \right\}
\]
and let \(H(A_T) \) denote the space of analytic functions on \(A_T \) equipped with the topology of uniform convergence on compacta.

It is well known that there exists a sequence \(\{ K_T,n \} \) of compact subsets of \(A_T \) such that
\[
A_T = \bigcup_{n=1}^{\infty} K_T,n.
\]
Moreover, the sets \(K_T,n \) can be chosen to satisfy the following conditions:
(a) \(K_T,n \subset K_{T,n+1} \);
(b) \(K \subset A_T \) and \(K \) compact implies \(K \subset K_T,n \) for some \(n \).

For \(f, g \in H(A_T) \) let
\[
\varrho_T(f, g) = \sum_{n=1}^{\infty} 2^{-n} \frac{\varrho_{T,n}(f, g)}{1 + \varrho_{T,n}(f, g)}
\]
where
\[
\varrho_{T,n}(f, g) = \sup_{s \in K_T,n} |f(s) - g(s)|.
\]
Then \(\varrho_T \) is a metric on \(H(A_T) \) which induces the usual topology. Note that the theory of spaces of analytic functions is comprehensively presented in [5].

Lemma 1. Let \(K \) be a compact subset of \(A_T \). Then for every \(\varepsilon > 0 \) and \(\varepsilon_1 > 0 \)
\[
\lim_{T \to \infty} \sup_{s \in K} \{ \varrho_{T}(s + it) > \varepsilon \ln(T)^{5/4 + \varepsilon_1} \} = 0(T)
\]
as \(T \to \infty \).

Proof. In virtue of the Chebyshev inequality
\[
\frac{1}{\varepsilon \ln(T)^{5/4 + \varepsilon_1}} \int_0^{\infty} \sup_{s \in K} \varrho_{T}(s + it) dt.
\]
Let L_T be a simple closed curve enclosing the set K. Then by Cauchy's theorem

$$
\zeta(s+it) = \frac{1}{2\pi i} \int_{L_T} \frac{\zeta(z+it)}{z-s} \, dz.
$$

Therefore

$$
\sup_{s \in K} |\zeta(s+it)| \leq \frac{1}{2\pi \delta_T} \int_{L_T} |\zeta(z+it)| \, |dz|
$$

where δ_T is the distance of L_T from the set K. Thus for sufficiently large T

$$
\int_{0}^{T} \sup_{s \in K} |\zeta(s+it)| \, dt \leq \frac{1}{2\pi \delta_T} \int_{0}^{T} |dz| \int_{L_T} |\zeta(z+it)| \, dt
$$

$$
\leq \frac{1}{2\pi \delta_T} \int_{0}^{T} |dz| \int_{L_T} |\zeta(Re z+it)| \, dt
$$

$$
= \frac{B}{\delta_T} \int_{0}^{T} |dz| \int_{L_T} |\zeta(Re z+it)| \, dt.
$$

Here B denotes a number (not always the same) which is bounded by a constant. Let $\sigma_{0,T} = \inf \{|Re z|, z \in L_T\}$. We can choose the contour L_T to satisfy the condition $\sigma_{0,T} = 1/2 - \ln T$. Then $\delta_T \geq 1/\ln T$, and by (4)

$$
\int_{0}^{T} \sup_{s \in K} |\zeta(s+it)| \, dt = B |L_T|/\ln T \sup_{\sigma \geq \sigma_{0,T}} \int_{0}^{T} |\zeta(\sigma + it)| \, dt
$$

where $|L_T|$ is the length of L_T. Since in virtue of the functional equation for the Riemann zeta-function (see, for example [15])

$$
\zeta(1-\sigma+it) = B (|t|+1)^{\sigma-1/2} |\zeta(\sigma + it)|,
$$

in view of the estimate ([14], [6])

$$
\int_{0}^{T} |(1/2 + it)| \, dt = BT (\ln T)^{1/4}
$$

we deduce that

$$
\sup_{\sigma \geq \sigma_{0,T}} \int_{0}^{T} |\zeta(\sigma + it)| \, dt = BT (\ln T)^{1/4}.
$$

Hence in view of the estimate (5) and (3), since $|L_T| = B$, the proof of Lemma 1 is complete.

Let

$$
\sigma_T = \frac{1}{2} + \frac{1}{(\ln T)^{1/3}}.
$$

Lemma 2. For every $\varepsilon > 0$

$$
v_T(|\zeta(\sigma_T+it)|) \geq \varepsilon (\ln T)^{23/24} = o(1) \quad \text{as} \quad T \to \infty.
$$

Proof. By Cauchy's theorem

$$
\zeta'(\sigma_T+it) = \frac{1}{2\pi i} \int_{L_T} \frac{\zeta(z+it)}{(z-\sigma_T)^2} \, dz
$$

where L is the circle of radius $(\ln T)^{-1/3}$ with centre at σ_T. Hence

$$
\zeta'(\sigma_T+it) = B (\ln T)^{2/3} \int_{L_T} |\zeta(\sigma + it)| \, |dz|.
$$

Therefore the estimate (6) gives us

$$
v_T(|\zeta'(\sigma_T+it)|) \geq \varepsilon (\ln T)^{23/24}
$$

where

$$
\begin{align*}
B &= \frac{B}{\varepsilon (\ln T)^{23/24}} \int_{0}^{T} |\zeta(Re z+it)| \, dt \\
&= \frac{B}{\varepsilon (\ln T)^{23/24}} \int_{0}^{T} |\zeta(Re z+it)| \, dt
\end{align*}
$$

This proves the lemma.

Lemma 3. Let $1/2 \leq \alpha \leq \sigma_T$. Then for every $\varepsilon > 0$, $\varepsilon > 0$ and for $k = 1, 2, 3$

$$
v_T(|\zeta(k\alpha + it)|) \geq \varepsilon (\ln T)^{5/4 + \varepsilon/2} = o(1) \quad \text{as} \quad T \to \infty.
$$

Proof. First we shall prove that

$$
I_{T,k} = \frac{1}{T} \text{meas} \left\{ t \in [0, T], \zeta \left(\frac{t}{T} \right) \left(\frac{k\alpha + it}{\ln T} \right) \right\} = o(1).
$$

In fact, applying the Chebyshev inequality and Lemma 1 we obtain

$$
I_{T,k} \leq \frac{1}{\varepsilon (\ln T)^{5/4 + \varepsilon/2}} \int_{0}^{T} |\zeta(\sigma + it)| \, dt
$$

$$
= \frac{1}{\varepsilon (\ln T)^{5/4 + \varepsilon/2}} \int_{0}^{T} |\zeta(\sigma + it)| \, dt
$$

$$
= \frac{1}{\varepsilon (\ln T)^{5/4 + \varepsilon/2}} \int_{0}^{T} |\zeta(\sigma + it)| \, dt
$$

Let for $A \in \mathcal{B}(H(\Delta_T))$

$$
Q_T(A) = \frac{1}{T} \text{meas} \left\{ t \in [0, T], \zeta \left(\frac{t}{T} \right) \left(\frac{\alpha + it}{\ln T} \right) \in A \right\}.
$$

Then from (8) we deduce that for every bounded continuous function X on $H(\Delta_T)$

$$
\int_{\Omega(\Delta_T)} X(f) dQ_T = X(0) + o(1).
$$
In fact, let \(\delta > 0 \). Then
\[
\int_{H(\delta \tau)} X(f) dQ_T - X(0) = \int_{H(\delta \tau)} (X(f) - X(0)) dQ_T
\]
\[= \int_{\varepsilon < \delta} (X(f) - X(0)) dQ_T + \int_{\varepsilon > \delta} (X(f) - X(0)) dQ_T.
\]
From the properties of the space \(H(\delta \tau) \) and from the continuity of \(X \) it follows that for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for all \(T > 0 \)
\[
\int_{\varepsilon < \delta} (X(f) - X(0)) dQ_T < \varepsilon.
\]
Let us fix such a \(\delta \). Since \(X \) is bounded, from the estimate (8) we see that there exists \(T_0 \) such that for \(T \geq T_0 \)
\[
\int_{\varepsilon > \delta} (X(f) - X(0)) dQ_T < \varepsilon.
\]
From (10)–(12) we find that for \(T \geq T_0 \)
\[
\int_{H(\delta \tau)} X(f) dQ_T - X(0) < 2\varepsilon.
\]
This proves (9).

Since the differentiation operator \(D \) is continuous on \(H(\delta \tau) \) (this is a simple consequence of Cauchy's formula), the function \(X(D(f)) \) is continuous and bounded (see, for example [1], p. 29). Consequently, from (9) we find that
\[
\int_{H(\delta \tau)} X(D(f)) dQ_T = X(0) + o(1)
\]
and upon transformation of the integral (see [1], Appendix II, formula (1)) we obtain
\[
\int_{H(\delta \tau)} X(f) dQ_T \frac{D^{-1}}{D(f)} = X(0) + o(1).
\]
Since \(X(f) \) is any bounded continuous function, we find that for every \(\varepsilon > 0 \)
\[
\int_{\varepsilon > \delta} (X(f) - X(0)) dQ_T \frac{D^{-1}}{D(f)} = o(1),
\]
and thus (7) is valid for \(k = 1 \).

The cases \(k = 2, 3 \) can be proved similarly.

The estimate (7) implies the relation
\[
\nu_T \left(\frac{|\zeta''(\sigma + it)|}{(\ln T)^{5/4 + \epsilon_1}} \right) \geq \varepsilon = o(1).
\]
Hence
\[
\nu_T \left(\frac{|\zeta''(\sigma + it)|}{(\ln T)^{5/4 + \epsilon_1}} \right) \geq \varepsilon, \quad \nu_T \left(\frac{|\zeta''(\sigma + it)|}{(\ln T)^{5/4 + \epsilon_1}} \right) \leq \frac{1}{2} = o(1).
\]
It is easy to see that if
\[
\left| \frac{\zeta''(\sigma + it)}{(\ln T)^{5/4 + \epsilon_1}} \right| \geq \frac{1}{2},
\]
then
\[
\nu_T \left(\frac{|\zeta''(\sigma + it)|}{(\ln T)^{5/4 + \epsilon_1}} \right) \geq \frac{1}{3}.
\]
In virtue of (13)
\[
\nu_T \left(\frac{|\zeta''(\sigma + it)|}{(\ln T)^{5/4 + \epsilon_1}} \right) \geq \frac{1}{3} = o(1).
\]
Therefore
\[
\nu_T \left(\frac{|\zeta''(\sigma + it)|}{(\ln T)^{5/4 + \epsilon_1}} \right) \geq \frac{1}{2} = o(1).
\]
Hence and from (14) the assertion of the lemma follows.

Proof of the theorem. Let \(\sigma = (2^{-1} \ln \ln T)^{-1/2} \). For all \(A \in \mathcal{B}(C) \) we have
\[
\nu_T \left(\frac{\zeta''(\sigma + it) \zeta''(\sigma + it)}{(\ln T)^{5/4 + \epsilon_1}} \right) \in A
\]
\[
= \nu_T \left(\frac{\zeta''(1/2 + it) \zeta''(1/2 + it)}{(\ln T)^{5/4 + \epsilon_1}} \right) \in A + o(1)
\]
\[
= \nu_T \left(\frac{\zeta''(1/2 + it) \zeta''(1/2 + it)}{(\ln T)^{5/4 + \epsilon_1}} \right) \in A + o(1)
\]
\[
= \nu_T \left(\frac{\zeta''(1/2 + it) \zeta''(1/2 + it)}{(\ln T)^{5/4 + \epsilon_1}} \right) \in A + o(1)
\]
where
\[
\Phi_T(t) = \int \left(1 - u \right) \zeta''(1/2 + it + u(\sigma - 1/2)) du.
\]
Similarly for all \(A \in \mathcal{B}(C) \)
\[
\nu_T \left(\frac{\zeta''(1/2 + it)}{(\ln T)^{5/4 + \epsilon_1}} \right) \in A
\]
\[
= \nu_T \left(\frac{\zeta''(1/2 + it) \zeta''(1/2 + it)}{(\ln T)^{5/4 + \epsilon_1}} \right) \in A
\]
where
\[
\Phi_T(t) = \int \left(1 - u \right) \zeta''(1/2 + it + u(\sigma - 1/2)) du.
\]
Since $\sigma_T - 1/2 = (\ln T)^{-1/3}$, from Lemma 3 we deduce that
\[
v_T\left(\zeta^{(1/2 + it)} / (\ln T)^{3/2}\right) = v_T\left(\zeta^{(\sigma + it)} / (\ln T)^{3/2} + o(1)\right) + o(1).
\]
Thus taking into account Lemma 2 we find that for every $\epsilon > 0$
\[
v_T\left(\zeta^{(1/2 + it)} / (\ln T)^{3/2}\right) > \epsilon (\ln T)^{3/4} = o(1).
\]
From the properties of the probability measure (2) it follows that the distribution
\[
v_T\left(\left|\zeta^{(1/2 + it)}\right|^{1/\sqrt{2 - \ln \ln T}} < x\right)
\]
converges as $T \to \infty$ to the function $G(x)$. (See also [11]–[13].) Hence for every $\delta > 0$
\[
v_T\left(\left|\zeta^{(1/2 + it)}\right| < (\ln T)^{-\delta}\right)
\]
\[
= v_T\left(\left|\zeta^{(1/2 + it)}\right|^{1/\sqrt{2 - \ln \ln T}} < \exp\left\{-\delta(\ln \ln T)^{1/2}\right\}\right)
\]
\[
= G(\exp\left\{-\delta(\ln \ln T)^{1/2}\right\}) + o(1) = o(1).
\]
Now from the estimates (16) and (17) we obtain
\[
v_T\left(\left|\zeta^{(1/2 + it)}\right| > 1 / \ln \ln T\right) = o(1).
\]
Similarly Lemma 3 and the estimate (17) give us
\[
v_T\left(\left|\zeta^{(1/2 + it)}\right| > 1 / \ln \ln T\right) = o(1).
\]
Consequently from (15), (18) and (19) we find that
\[
v_T\left(\zeta^{(1/2 + it)} / (\ln T)^{3/2} \in A\right) = v_T\left(\zeta^{(1/2 + it)} / (\ln T)^{3/2} + o(1)\right) + o(1)
\]
\[
= v_T\left(\zeta^{(1/2 + it)} / (\ln T)^{3/2} + o(1)\right) + o(1).
\]
Since by the results of [9]
\[
\int_0^T \left|\zeta^{(1/2 + it)}\right|^{2s} dt < T + \int_0^T \left|\zeta^{(1/2 + it)}\right|^{2s} \ln \ln T dt = BT,
\]
we conclude that for every $E_T \to \infty$
\[
v_T\left(\left|\zeta^{(1/2 + it)}\right| > E_T\right) \leq \frac{1}{TE_T} \int_0^T \left|\zeta^{(1/2 + it)}\right|^{2s} dt = o(1).
\]
Hence and from (20) it follows that
\[
v_T\left(\zeta^{(\sigma + it)} / (\ln T)^{3/2} \in A\right) = v_T\left(\zeta^{(\sigma + it)} / (\ln T)^{3/2} + o(1)\right) + o(1).
\]
Thus the properties of probability measure (2) prove the theorem.

Corollary 1 is an obvious consequence of the theorem.

Corollaries 2 and 3 are consequences of Corollary 1.