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1. Introduction. Let A(n) be the universal exponent for the group of
residues modn that are coprime to n. A more explicit definition of 4 is:

A(p)= () =p* '(p—1) if pis an odd prime,
229 = $(29) if e=0,1, or 2,
A2 =1¢(29 ife>3

and finally,
An) = Lem.(A(pg), ..., A(p) if n=p%...pev (p;’s distinct primes).

This is Carmichael’s function [3]. Not only is it an intrinsically interesting
number theoretic function, A(n) has a connection with some primality testing
algorithms [1, 11]. In this paper we investigate the average order, normal
order, and minimal order of A.

Estimates for the minimal order are already implicit in the analysis of the
primality testing algorithms in [1]. But they are not immediately obvious, so it
is worthwhile to make them explicit here:

THEOREM 1. For any increasing sequence {n.); of positive integers, and any
positive constant c, < 1/log2, one has

A(n;) > (log n)colostoglogn:

Jor i sufficiently large. On the other hand, there exists a sequence n, <n, < ...,
and a constant ¢, with A(n) < (logn,)'osloelosn for g ;.

The normal order of log(A(n)/n) was stated without proof by the first
author in [5). Here we prove more:

THEOREM 2. There is a set S of positive integers of asymptotic densit y 1 such
that, for nes,
A[n) =n /{log n)lo;lng logn+ A+ 0((logloglogn)~ ! +¢)
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where (with q running over primes)

logg
Ai= —14Y —21 = 2269688...,
T(@-1)

and £ >0 is fixed but arbitrarily small.

Another result that was stated without proof in [5] is the following estimate
for the average order: for all e >0, k>0 and for x > x,(e, k),

_x k< 1 < ;
lmgx(lc.\glcngx) < x"% An) < Tog )"
We prove a sharper result here:
THEOREM 3. For all x = 16, we have
1 X Bloglogx
X ,,%, A= logx <P [logloglogx(l +0(l))]

where (with q running over primes)

_ 1
B=e ?H(l*m) = .3453?...

q

Before proving these theorems, let us fix some global notations that will be
used consistently throughout the paper. First, ¢, ¢/, and ¢” will be generic
positive constants, not necessarily the same at different places. Second, p and
g will denote primes. (Usually p will be a prime factor of n, and ¢ a prime factor
of A(n).) Third, let v,(m) denote the integer v > 0 for which g°|m and ¢"* ! fm.
Fourth, we let y = loglogx. Finally, if S is a set, let w(n, S) denote the number
of distinct prime divisors of n that are in S; if § contains all the primes, let
w(n):= w(n, S).

We are grateful to Andrew Granville for calling our attention to a small
error in the proof of Theorem 1 in an earlier draft of this paper.

2. Minimal order. In [1], using ideas from [14], it is shown that there is
a computable constant ¢, > 0 with the property that, for any x > 10, there is
a square-free number m, < x? for which
Z 1> 8:21(!5:!!03103:_
p=1lms
Let x;:= (logi)®/c2osloslos? and let n; = [],- 1im, P- Note that, for i sufficiently
large, we have

Cz logx: 1
n> [ 2> exp[(logz)e"p[loglogxf]] -h

P 1|ms,
But then, for i sufficiently large,

A(ni} é mx| < xi2 i {logj)(‘l-u}losluglosl' < (log ni)n Iosloslngm‘
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By _taking a sybscquence <n;,»;, we can obtain a sequence that is increasing and
satisfies the inequality for all ;.

For optimality, first note that it is obvious that A(n)— P,

k =lem.{A(p%): p*|n}.

Thel"l, since we lalways have p* < 44(p*), and since 1 is at most 3-to-1 when
restricted to primes and prime powers,

) n< I p* < J]@K) < (@kpaw
Ap=)|k dlk 4

Where d(m) denotes the number of divisors that m has. It i
. It is known [8, 17] that
d(m) < 20 *etlogmiloglogm  Pytrine this in (1) gives S

n < exp[(3log4k)2(t +otMoskiiogiogi)
so that
An) =k > (logn)(1/1o82 +o(1))loglog logn

as n—oo0. This concludes the proof of the theorem. m

It has been conjectured in [1] (see Remark 6 : .
constant”. [ rk 6.2) that 1/log2 is the “right

3. Normal order. First observe that
log(n/A(n)) = log ¢ (n)— log A(n) +log(n/¢ (n)).

It is well 'kr}own [9_, p- 353] that n/loglogn « ¢(n) < n. Hence, to prove the
theorem, it is sufficient to show that, but for o(x) choices of n < x, we have

(2 log ¢p(n)—log A(n) = ongy+Ay+0(—L—).
(logy)' ~*

(Recall that y = y(x) = loglogx.) For all n we have

(3) log(n) = ) v,(¢(n)logg, logi(n) = ¥ v, (A(n))logq.

To prove (2), we break the sums in (3) into several ranges for the prime q:
I,: g <y/logy, I: yflogy < g < ylogy,
Iyt ylogy<g <y, I;:g> )2

(These intervals are also listed in order of declining importance for (2).)
Le We first compute the contribution to log ¢(n) from primes in I, and I,.
t h(n):= 3 4<yi08y V(¢ (M)log g, so that h(n) is an additive function. The
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strategy is to apply the Turan-Kubilius inequality [4] to h(n). First we must

estimate
h(p"}( 1)
1—=].
p"Z&x Pl 14

We use the inequality h(p*) < log ¢ (p*) < log(p"), getting

b hwk)(l_i) =1 ia‘_@'*o(lh > logg ) uq(p_l)+0(1)
pk<x pk P p<x p g<ylogy pPEx

- % igd¥ X },+om

g<ylogy izl p=x
p=11q")

y log(q")))
J%, losa 2 2 (¢(9)+0( .

by the estimates in [12]. This in turn is equal to

© 2 l
( y 32 J’)=y T ot ology)

gsylogy i=1 q<ylogy\d

logg &

2
asyiogyd—1i=1
logq (2g—1)logg (29—1)loggq
= =y —_
Y X o LTy Y Lk @1y

+0(log?y).

If we let

ogq (2g—1)logg
———logx and c¢,i=) ————,
x—»w(qu g ) N § Q(q_ 1)2

then this is equal to (by the prime number theorem with error term)
@) ylog(ylogy)+cyy+0(ye™ ") +c,y+0(logy)
= ylogy+yloglog y+(c; +c,)y+O0(ye ™),

In order to apply the Turan-Kubilius inequality, we must also estimate
the quantity

h(p")? h(p)*
= +0(1).
p*z-ﬁx pk p%x P {)
We have
h 2
e R S
FES p pﬁxp g=ylogy

Z = Y v,(p—Vv,(p—1)logg, logg,
p<xPgig2<yl08y
al
Z logg, logg, Z Z l/p:=H,+H,
q1.q2<ylogy i,j=1 p<x,p=1(g})
p=1(g})

say, where in H, we have g, = q,, and in H, we have q, # q,.
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For H, we have
2 1
H <2 3 log’lqg ¥ Y -
q<ylogy izjz1 p<x P
p=1lgh

log(q")
= 1
qﬁyzlun o8 q:fgl(qs(ql) ( q ))

@ il 2 @ 2
Xy Z Zloqu+ Z 2 log q

gSylogyi=1 qb(q‘) gsylogyi=

log? 3
<y ) 24 q+ Y 84 ylog?y.

gs<ylogy 9 g<ylogy
Also
e 1
H,=2 Z logg, logg, Z z =
q1<q28ylogy ij=1 p<x P
P=1(g}q})
_ & log(q143)
=2 Y logg,loggq ( ‘?’.+0( ki ))
g1<q2%ylogy ! 3 i,jz= 1 ¢(qll ‘15) qil %

(255 (2,29

logq\? 2
<<P( b ig_q) +( b3 loﬂ) « ylog?y.

g<ylogy 9 g<ylogy 4

Now we can apply the Turan-Kubilius inequality, and conclude that

Y (h(n)— Y h;{k)(l—l))z « xylog?y,

nsx Pesx

hoh (| 1
puzsx P (1 p)

is given by (4). Therefore, the number of n < x for which

where

(5) |h(n)—ylog y—yloglog y—(c;+c )yl < y/logy

fails is o(x). We may therefore assume that (5) holds.
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We must estimate the contribution to log A(n) from primes g in I, and I,.
First we show that for all but o(x) choices of n < x we have
(6) Y. logg* < log?y.

q%>y?/log?y
a>1,g%|| A(m)

The average value of this quantity is found by summing:
1

1 x X
PI 3 ersy Ttz T2
-
- ;‘; lftai‘!ﬂ{:) = >‘r’ﬂos3v pg 1(g*)

y logg*
< (log q‘)(_+0( )) « logy,
sy B\ O
a>1
so the number of n < x for which (6) fails is O(x/log y) = o(x).

Then by (6), the contribution to log A(n) from the primes in I, is

7 Y. v(dm)logg« Y logy+log?y « y/logy.
q<yflogy g<yllogy

We now turn to the most subtle part of the argument, namely the
estimation of the contribution to log A(n) from primes in I,. Let P(q) denote the
set of primes p < x with p = 1(g). Also define

P,(g):={peP(q): p<x'” and for all g'el,, p # 1(¢q)},
P,(q):= {pe P(q): p = 1(qq’) for some q'el,},
Py(q):= {peP(g): x'” <p<x and p # 1(gq) for all g'el,}.

Then P(q) is the union of these disjoint sets: P(q) = P,(q)v P,(q)u Ps(q).
For n < x, we see from (6) that ) ..;,v (A(n))logg, the contribution to
log A(n) from all gel,, is given by

®) Y logg+0(Y ¥ logg)+0(Y Y logg)+0(log?y).
gl qelz  pin gel2  pin
w(n,Pi1(g)>0 pePalg) pePil(g)

We show that normally the contributions from pe P,(q) and from pe P,(q) are
negligible by averaging. The average contribution from pe P,(q) is

1

Y ) logg<yYloggy ¥ -

n=<xgelz pln,peP2alq) qela q'elz p<sx.p=1(qq’) p

_ y log(qq’)))
- q§1 . q§2(¢(qq’)+0( aq

2 z 1 2
« ylogy(z :}) +log2y(z 1) <<M.

qelz qelz q lOg y

1
x
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Thus the number of n < x for which

©) Y Y logg < y(loglogy)*/log y
qelz  pln
pePalg)

fails is O(x/loglogy) = o(x). We may therefore assume that (9) holds.

We now consider the contribution to log i(n) from gel, and PE Py(q).
Since the normal number of prime factors of n < x that are larger than x'” is
log y, we may assume that the numbers n that we are looking at have fewer
than 2logy prime factors larger than x'”. For these n,

(10) Y ¥ logg«log?y.
qel2  pin
pePilq)

Finally, we consider the contribution to log A(n) from gel, and pe P,(qg).
We are concerned with the expected number of g € I, for which n is divisible by
a prime pe P, (q). Towards this end, we estimate the number that do not have
this property. Let

gn:= Yy 1.
gela
w(mPi{g)=0
We would like to apply the Turan-Kubilius inequality to g(n). But it is not an
additive function, nor does it resemble an additive function. Nevertheless, we

can still establish a normal order for the function g(n). To do this, we shall
establish asymptotic formulas for the average value of g(n) and g(n)?. We have

ay  Tem=% T 1= Z{" Il (1_l)+o(L)}

2
n<x gel2 n<x gela pePilq) P ]03 X
w(mPi(gh=0

by the fundamental lemma of Brun’s sieve [7, Theorem 2.5]. To estimate the
product in (11) we need to estimate

Y =y 3!
pePi@P  psxinP  p<min P
P=1(q) pePa(g)

—1 1
. ogy+0(logq)+o(z 5 _)
q__] q g'elz P<x p
p=1(gq’)

1 loglo
= Z+0(———°gy)+0( y —y—) - £+0(y—--—g gy).
q q o1, 99 q glogy

Therefore, from (11) we have

(12) Ygm=xY exp{:q£+0(w)}+0( & )

nsx gel; qlogy logx ‘
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For y/logy < g < y/(2loglogy) and all large x we have

-y yloglogy 1
(13) exp{—+0( )} <« ,

q qlogy log*y
so that the contribution to (12) from the values of g < y/(2loglogy) is
O(xy/log? ).

For g > y/(2loglog y),
exp{o(y loglogy)} _ 1+0(y 1oglogy)'
qlogy qlogy
Together with (12) and (13), this implies that

yloglog y xy
E,""("’”"E,‘*""{ }(1 O( glogy ))+O(log’y)'

Thus, using 0 <exp{—y/q} <1, we have

(14) Ygm=xY exp{%y}+0(——xy (loglzogy )2)_

nEx gel; k)g y

We shall save the estimation of the last sum until later.
First we estimate

L gy = 3 1 !

n<x n<x q1.q2¢l2
of{nPilg))=0,i=1,2

=Y gm+2 Y Z fi

n<x q1.q2¢l2
q:#qz w(nr.{m!} 0: 1,2

By the fundamental lemma of Brun's sieve, this is

1
. M (1-ho(iZ)
n<x q';n’zg: pePi(q1)uPilqa2) p Ing

Yagm+2 ) x

Since P,(q,) and P,(q,) are disjoint for q, # g,, this is equal to

w9 Zowes(g 11 (1)) =2 11 (1) vo(s)
= (1/0( L, g(m)’ +0(xy),

nsx
using (11) and the observation that g(n) « y for all n.
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It remains to estimate the sum in (14). We have

16 -
(16) ZeXP{q}

gela
yiogy y y
= e~ '8 (n(ylog y)—n(y/log y)) — - | e_"’"—z(n(r)— n(—))dt.
yflogy t logy
But note that

1 2
e~ 183 (n(ylog y)—(y/log y)) = y— ?glogy # O(y ﬂoglzogy ) )
ogy log®y

In addition,

ylogy
§ e‘”‘%(n(t)—n(—y—))dt
yflogy t lOgy
ylogy
B -y Y L_{_O( t ) = Y —1flogy __ ,~logy
,,,;L,e tz(lo log?t ar=in log y (e € )

ylogy 1
= e*rffz( +o(1°gk:gy ))d:w(——yz )
yllogy t\logy log?y log®y

_ e e~m_Y du+0 y(loglog y)*
log®y

1/logy Hl gy

= %{e‘ 182 Joglog y +e "% loglog y)

logy l 2
] e y2 ogu . +o(y(logl<:1;y) )
u‘logy log®y

1/logy

=yloglogy_ y ]9 _1;,103 Bk O(y(logl()gy)z)
logy logyp log’y /)

We therefore have

2
17 Zexp{ }= _ 2yloglogy +lzsg); : O(y(logl()g 3 )

oS logy log?y
where

2 _ . logu 2
cs = ge ”"—ugTdu = — [ e *logvdv = y, Euler'’s constant.
0
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From (15) we get

2
5 (g(n)—i 5 g(m)) = 0(xy),
nEx

msx

so that from (14) and (17), the number of n < x for which

2y loglogy+ csy )J < y(loglog y)*
" logy logy log?y

(18) g(n)—(y

fails is -
xlog*y )
Ol ——— ] = o(x).
(y(loglogy)"
Thus we may assume that (18) holds.
Note that

loglogy y y(loglog y)*
n(ylogy)—n(y/logy)=y—y it +0( .

logy logy log?y
Note also that, for gel,, we have
log g = log y+ O(loglog y).
Hence, by (8), (9), (10), and (18), we have for all but o(x) choices of n < x

y(loglog y)“)

(19) 3 slitiogg= T log q+o( gl

qela
win,Pi{g)) >0

loglog y)?
— (logy+0(loglogy) Y ! +o(ﬁl§—g”—)
gelz gy
win,Pi(g))>0
= (log y+ O(loglog y))(n(ylog y)—n(y/logy)— 3. 1)

gela
win,P1(g))=0
loglog y)?
+O(y( og gy))
logy

yloglog y
= (log y+O(loglog y))(—%a—

y(loglog y)’))

log?y

+“‘“5)1o£y +0(

y (loglog y)*
= yloglogy+(l —Cs)y‘}‘O(—lW .
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We now turn our attention to the range I,. Since we may assume that
q*4n for gel,, we have by (6)
(20) —log’y+ ¥, (v, (6(m)—v,(A(m))logg< ¥ (vg(d(m)—1)logq
qels

qel3
velA(n)) =1

< Y ofn, P(g)logq % G(n).
" o)1

We now compute the average value of G(n). We have

Y. Gm)= Y logq Y i ¥y o1

n<x qels iz2 n<x
w(n,P(g)=i

<YloggYi ¥ ai s)jloqu.L(Zl)‘

gels i22 py<..<pieP(q) P1---Pi  qel, iz2(—1)! pEqu)E
x [y logq\Y xy*logg  xy

< logg - ( +O(—)) <« & —,
q§: .-;Zz(l—l)! q—1 q E, q’ logy

Therefore the number of n < x for which
(21) G(n) < yloglog y/log y

fails is O(x/loglogy) = o(x). We thus may assume that (21) holds.
Finally, we turn our attention to the range I,. It is easy to see that, for all
but o(x) values of n < x, we have

22 Zz(u,(qsm))— v,(A(n)))logq = 0.

Indeed, the number of n < x divisible by some g2, or by two primes in P(g),
with g > y? is

x y logg\\* x _
< Y S+x Y (Ff+o(_q'_)) «@—o{x).

q:qu g>y?

We now assemble all of our results. From (5), (7), (19), (20), (21), and (22),
we have

log ¢(n)—log A(n)

= loglog y)?

ylogy+yloglogy+(33+C4).‘P*J?108108P+(Cs"l)y+0(y( lng gvy) )
loglog y)?
—J’logy+(c;;+a+cs—'l)y+0(}’( ]g BJ’))

for all but o(x) choices of n < x.
Finally, we evaluate the constant 4% ¢, +¢,+c,—1. From [16] we have

logp logp
c3=—y— i B M
. %Ez p s plp—1)
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Hence

log p (2p—1)logp
A=—1-—
7 pp—1) § pp—1)°

logp < ,<logp
14y —" = 14 ¥V kY —.
?(P"’l)z kgl gPh“
Then, with the help of the numerical approximations in [16], it is straightfor-
ward to compute that 4 = .2269688... m
It is worth mentioning that, as an immediate consequence of (22), we have
the following:

I

COROLLARY. The largest prime factor of ¢(n)/A(n) is less than (loglog n)* for
all n in a set of asymptotic density 1.

4, Average order. In this section, we estimate the average order

F()t:}:=l > An).

It turns out that most of the contribution to F(x) comes from integers which
are atypical in the sense that they have only @(y/logy) prime divisors. Even if
we restrict our attention to integers with @(y/logy) prime factors, most of the
contribution is from a small exceptional set on which A is large.

~ Before embarking on the proof, let us first fix some notation. Let n'(x)
denote the number of primes and powers of primes up to x. Let §,, S,, ..., S,
be disjoint sets whose union is the set of odd primes less than or equal to x.

Define
E:= Y 1/p

pEEx

peS;
For us, j is a vector (j,, j,, ..., jp) With each j; a non-negative integer, and
lfll:=j,+j,+ ... +jp. Finally let C(x,j) be the set of integers < x with
exactly j, distinct prime divisors in S;. The following proposition is of
independent interest:

PROPOSITION. There is an absolute constant ¢ > 0 such that, for any z with
1 <z <x, and all vectors j # 0 as defined above, we have

. D Eji D
coureme i {E)

where ¥ (x, z) is the number of integers < x whose prime factors are all < z. (If
S, is empty, then O/E:=0 and 0°:= 1)

Proof. Suppose ne C(x, j) and n has a prime factor p > z. Say peS§,,.
Then n = mp® for some m, a > 1 with pfm and meC(x/z, j—e, ). For each
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me C(x/z, j—e,), the number of p* < x/m with pe S, is at most (for some
absolute positive constant c)

X cx cx
Tl — )< —.
(m) mlog(x/m) ~ mlogz

1 2 Ef\/j.
5 A<
meC(x/z,j—ei,) M =1Ji' J\Ey,

_ Putting these two bounds together and summing over all choices of io
gives the result. m

But clearly

COROLLARY. There is an absolute positive constant ¢ > 0 such that Jor all
x > e° and all vectors j as defined above, we have

; cx exy {2 EINS2 §
#CX, )€ o—m———+ 2 =l Ji
&) (1083‘)1°"+103x(il—j[1 Jit )(i; E;)
. Proo f Note that C(x, 0) is the set of powers of 2 up to x, so the corollary
is true for j = 0. For j # 0, take z = x, and apply well-known estimates of de
Bruijn [2] for ¥(x, z). (Recall that y = loglogx.) m
I'\lf)w we shall specialize; that is, we make a particular choice for the
partition” §,,8S,, ..., S,. Let m = [y/log®y], and let D = m!. From now on,
we del?ge Si:={p<x: gcd. (p—1, D) = 2k}. With this particular choice of
a partition, we can estimate the Es that appear in the proposition.

LEMMA 1. For k <log’y we have the uniform asymptotic estimate

y
E = @- P.-(1 +o(1)),

e’ 1 g—1
P =— 11— —
* k ql:lz( (g— l)z)ﬂzﬂbzq_z.

There is also a constant cg >0 such that, for all 2k|D, E, > 1/D*e,

Proof. Let k <log?y and let 5,(t) = #{p < t: gcd.(p—1, D) = 2k}. First
we shall use the fundamental lemma of Brun’s sieve to estimate 5. (1). Let
&:=(logx)7'°8?, and for ¢t > ¢, let

A=A@):={(p-1)/2k: p<t & p=1(2k)}.

where

Let
p = {q: qdivides D/2k}.
Finally, let
9/g=1) if v,(2k) =0 < v (D),
alg=<1 if 0 < v,(2k) < v, (D),
0 else.
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The restriction ¢ > ¢ is more than enough to ensure that the conditions of
Theorem 2.5 of [7] are satisfied. Hence

. _ (1@ _o(g)
Sk(t) - S(A» P, y) - (¢{2k}q|[[—[ (l q ))(l +0(l}),

D/2k)

where the function implicit in the o(1) can be chosen uniformly with respect to
k. But

WO o (jve)_ 0 (1) ()
¢(2k)ql(l:;[2t1 (1 q I1 g' =1 (g—1) n l q—1 qiqllla:{[iu : q
al2k q

q|lD
qk2k
li(z) q ( 1 ) ( l)
= — e l—— 1—==
2 qll_llkq_l }I_Ill q—1 qlwl_[.fz&l q
qr2k q|2k
li(r) ( 1 ) q
_ —_— 1——
2k H, gqg—1 qll;[,‘ g—1
942k q4(D/2k)
li(t) ( 1) ( 1 ) q—1 q
=— 1— 1- —_— —_
2k qlD q t!l—ll'v' (q__])z qII_ZI*q_z qlt—i[ﬁ g—1
q>2 9>2 q>2 4 (D/2k)
li(z)
—@ k(l+0(l)).

In the last step, we have used Mertens' theorem that

1 e’
l—— i~
QI;IT( Q) lOgT

and the fact that

q¥(D/2k)
for y large, i.e. the product is empty.
With this estimate for s.(t), it is easy to estimate E;: we have

1 1 1
pesep>eP  pesip<eP  peseg>1 P
The first sum is

5.%) 508 Ts ), P, Th() , yP,
¢ +£t—2d:_o(1}+(1+o(1))logy£t—1d:_(1+o(1))logy.

The second and third sums are at most
1 1
Y -+ ) —«logy

p<eP  piz1
and thus are negligible. This completes the proof of the first part of the lemma.
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Now suppose that 2k divides D. Let
0= [l ¢ and T=]]q"®.

aidizk) al2k
By the Chinese remainder theorem, we can choose o < QT so that a = 2(Q)
and a = 2k+ 1(T). By a well known theorem of Linnik [15], there is a prime
P <(QT)** < D* for which p = a(QT). Evidently, pe Si. Thus E, > 1/D%.

With these results available, we can now prove the upper bound. Certainly

1 1 1

—* A h) = — A S5 )

x R§X ( ) X uéx (n) + x ll;x A(") .
w(n) <y w(n) =y2

Tl:ne second sum is m;:gligil?le:: because there are only O(x/log?x) integers n < x
with more than y? prime divisors (set D:= 1 in the coroliary to the proposition,
or apply the well known inequality of Hardy-Ramanujan). The first sum is
equal to

1
8= = Y Y im).
11l <y? neClx, j)
(This would be true for any partition 84,85, ..., Sp, so it is certainly true for
the one we have chosen.)
For neC(x, j), we have
An) < f"(") P

5 :
t];[l (2k)* al—-lx (k)

Combining this estimate with the corollary to the proposition, we get the upper
bound

i cxyD) (D Ef‘ik )(D :’L) cxD D 1
(l"g" u:uzf-y* xl=_lx (2K j! ié—‘\_‘-‘l E,) " log™ luuzwznl;l: (ke

To estimate the second term, note that
D D
1

1

S fom<ll 3 ocf—L
i<y k=1 (2K) 11]1 J.Eyz (2K kl;ll 1—(1/2k)

Thus the second term is negligible. For the first, note that for ||j|| < y?, we have

by Lemma 1
D 2
i)  ¥D
(E, Ei) <%

Hence, we need only estimate

( g ) ‘j"z (k= ] *')

xy’D‘) ( 2 E, x . y
(logx L ,‘§12_k ~ logx/“*P (,Elﬂﬂ’(log y))

<2D.
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for our choice of D as [y/log®y]!. Now let /:= [log y], and consider the sum in
the exponent:

$n g5, f 5

S22 2k, 7 2K
First we show that the second sum is negligible. Using the Brun-Titchmarsh
inequality, it is easy to verify that E, « y/¢(k). Hence

D E
E . L«zzo(g*_)_
k=§+ 12k (Shkotk) 12 logy

By Lemma 1, the first sum Z:;,E,‘/Zk is asymptotic to
P \B ( 1 q—l) y
o B ’
108)’ ql:lz( ) kzl 2k* qml—!:»zq 2 logy
where
? 2. qg—1
Bt _ ( ) = =
2 l_l (q_llz g qu?.l_! —2
Observe that

1 g—1

kquu.pz q—2

is multiplicative. Hence our expression for the constant B can be simplified:

1
B= 2(”4+16+ )E(l_(q—nz)

2e7? 1 1
3 ql;[z(l_(q“1)’)(”({1“)(@—2))

i 1 _
=& 1;[(1 —m) = .34557...

We have proved the upper bound in Theorem 3. Before proving the lower
bound, we need some notation. Define

Q,(x; j):= the set of integers that can be formed by picking v = |jj|
distinct primes p,, p,, ..., p, in such a way that

(a) Vi, p; < x'*, and

(b) the first j, primes are in §,, the next j, are in §,, etc

Carmichael's lambda functions 379

2,(x; j) consists of those integers m = (p,p,.. D, )ER,(x; j) with the
additional property that g.c.d.(p,—1, p;—1) divides D = [y/log?y]!, Vi # .

Q;(x; j) consists of all integers n of the form n = mp where me Q 2(x; j)and
peS, satisfies max(x/2m, x'?) < p < x/m.

_'4(x,;) consists of all integers n=(p,p,...p,)p in Q2,(x;j) with the
additional property that gcd.(p—1, p;—1) =2 for all i.

Now we can proceed with the proof of the lower bound. To help make the
overall argument clear, we postpone several lemmas until afterwards. Let
I:=[logy], and let J denote the set of j’s with 0 < j, < E/k for k <1, and
Jx =0 for k > [ Evidently,

ngx ’1( z Z g (n)

x Jed neQalx; i)

2| o—

Lemma 2 yields the lower bound (using j, = 0 for k > I)
—2)() ()En(ﬂc)*‘" Yy 1.
Xn<x Jjel k nefa(x; )

To estimate the innermost sum, note that

Y 1=y ¥ 1

nefa(x; j) mefda(x; ) {p: (mp)eRa(x; )}
By Lemma 3, this is greater than
cx

mezix; ) My 10g X i

Of course one must check that the hypothesis ||j| < y* of Lemma 3 is
satisfied. But for jeJ, we have by Lemma 1

(23) il < X f

k<t

Thus

1 1
;gxi(n};(y log x )Z H(zk) O

Jel k= meRa(x; )

Lemma 4 implies that, for some constant ¢’ > 0, this is greater than

24) ——ex p[ —c'y l-'] B
logx " [ log y(loglog y)? Jzeu 1 (2kYj!

x —c'y ! 1Ew/k] (E,/2 k)}&
= €X
log x p[log y(loglog y)z] ﬁ. nzo Ji!

6 — Acta Arithmetica LVIIL 4
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Note that
2wl o
TR for w>=1
j=o0l: 2

Thus the quantity in (24) is greater than

] 1
x —c'y o E, X By y )]
2 —|= ex +o . =
log x m{p[lejg y(loglog y)z] R I:,Z‘l 2k] log x P [log y (log y

Finally, we prove the lemmas that were just used in the lower bound
argument.

LEMMA 2. If neQ,(x; j) then
D
An) > T @)~
Y k=1

where ¢ is an absolute, positive constant.

Proof. Suppose n = (p,p,...p,)P€ Q4(x; j). Let d; = gcd. (p;—1, D), and
let m;:= (p;—1)/d;. Then

A(m)=lem. (p,—1, p,—1,...,p,—1,p—1)
p—1 o) ¢
2 - v = D
2[1d; 2T] @ky
i=1 k=1

= (mym,...m,)

n X
> > [ ]

b D o
y TT @Ry y ] @k

LemMA 3. If meQ,(x; j), and ||j| < y?, then
# {p: (mp)e Q,(x; j)} > cx/(mylogx)
where ¢ is an absolute, positive constant.
Proof. In the proof of this lemma, let
{91,420 - 4.} = {@: 2< g <y}u{g: 9> 2, gl d(m)}.
Then

X

o]
#{p: (mp)eQ,(x;j)} = #{M(zm, —;—] p=3(4) and for i<s, q.-*%}-

To estimate this quantity, we use Brun’s sieve. Let p:= {g,, ..., q;} v {2}, and

let

ezt
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Observe that m is relatively small: m < (x'’p* = x'”, Then by Theorem 2.5 of
[7], we have
X

c s 1 c'x ol 1
St pamaxlon = o Al (1 'q.-—l) * T (1_'%)'

Note that s « log x. Hence the last expression is greater than ¢”x/(mylog x). m

LEMMA 4. If jeJ, then for all sufficiently large x,

¥ l_) expl:—cy loglogy] Iil Ei
mefz(x; ) M log?y iy !’

where c is a positive, absolute constant.

Proof. Since jeJ, we have j, =0 for k> I. Thus

1 1 1
b > - ‘ 3 ' . ' *
meate ™ Jiilat--Jit gy P1P2 Py

where the sum in (25) is over all sequences (p,>!-, of primes for which
v=|ljll =j,+j,+... +j;, and

(A) The first j, primes py, p,, ..., p; are in S,, the next j, in S,, etc,

(B) Vi, p,—1 has no prime factors in [y/log®y, ylog®y],

(C) Vi, p, <x'™,

(D) Vi, w(p;—1) < yloglogy and w(p,—1, [y, y*]) < loglog y,

(B) Vi#j, p; #p;,

(F) Vi#j, ged.(p;—1, p;—1) divides D = [y/log?y]!.

Let us examine the rth sum in the v-fold summation on the right side
of (25):

26) 5 U,

Suppose that p,, p,, ..., p.— have already been specified. In order to satisfy
condition (F), p,— 1 must avoid certain primes that may appear in the various
p;—1 for i <r. For this lemma, let

(25)

{91, 92, ---» 4.} = {qey, y*]: qlp;—1 for some i <r},

{Gi+1> Qev2s o5 45} = {g > y*: glp,—1 for some i <r}.

There is some k <! such that p,eS,; in fact k is such that
Izt Fje-r <T Sy i+ oo e

Let E; =Y 1/p, where the sum is over those pe S, for which condition (B)
holds. Since

1 6loglogy

aelv/logdy, ylog3y) 4 logy
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it follows from the proof of Lemma 1 (i.e., from the fundamental lemma of the
sieve) that

’ loglog y
27 E, = Ek(l+0( T ))

The sum in (26) is at least

where

1 1
Ty X —+ 2 =y
PEX p pEx p
w{p—1)Zyloglogy w(p—1.[y.y*NZloglogy

1
— Tii= -.
IZ] P, F izl p%x P
P=1{q)

rll s

Indeed, T, Ty, Tg, T; respectively take care of those p for which (C), (D), (E),

and (F) fail.

We have T ~ 3logy. Further, it is easy to see that T, is small. Indeed,

note that
1

1
T, < E = '?: E. =
m<x M Gimegelyy’) p<x P
w(m) = yloglogy wim)=loglogy p=1(m)

1 Y
& ¥ S ¥ oA
m<x M gimegelyyy P(M)
w(m)=yloglogy w(m)=loglogy

1 1y 1 1 )*‘
« :,ygs:logy_(q'zs:x qﬂ) y';h%o” ! (qe{y J”Z]¢3| ¢(q )

1.
< ¥ —(r:+y)+y L ¢

i;,\rlm;lcns,\rI i=loglogy

(c+ y}l.v loglogy] 4 # clioglogy]

€ Iyloglog ]! [loglog y1!

y
«(i2)
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Since r < v = [j|, we see from (23) that
T; < loglog y+ 0(1).

Since the primes p,, p,, ..., p,—, already chosen satisfy (D), we see from (23)
that

t <rloglogy < vloglog y « (yloglog y)/log v,
s<ryloglogy <
Thus, from «(B),

vyloglog y « (y*loglog y)/log y.

ty I
+3 &2 oglog y

<<yz +y Z

<

=1 s ylog y v logty

Combining these estimates, we deduce from Lemma 1 that
yloglogy E

T+ T+ T+ T « oty o(log"y :

Thus the sum in (26) is

e
log y

and so the lemma follows immediately from (23) and (25). =

S. Further problems. There are many questions about Euler’s ¢ function
mat remain interesting when put in terms of the A function. It has been known
since L. J. Schoenberg proved this in the 1920’s that n/¢(n) has a continuous
distribution function. That is, D(u), the asymptotic density of the n for which
n/¢(n) < u, exists for every u and is a continuous function of u. In this sense, the
correct “measuring stick” for ¢(n) is the function n.

It follows from Theorem 2 that, if A(n) has a “measuring stick”, it would be
about n/(logn)'*s's's"*4 However, we suspect that there is no monotone
function that stays within a constant factor of i(n) for most n. In fact, the
following is probably true: there is a function y(x)— co such that if ¢ > 0 is
arbitrary, if x > x,(c), and if A < [1, x] is any set of integers with |4] > cx,
then

Ma)
m =
o T A
Although we think we can prove the above statement, it may be a hard
problem to find the fastest growing function ¥ (x) for which it holds. We suspect
that it holds for y/(x) = exp [, /loglog x], but it is not clear whether this is close
to the best possible.
Let N(k) be the number of solutions to A(n) = k. From the proof of

Theorem 1, it is possible to show that the maximal order of N(k) is very large.
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In fact, we have

(28) N(k) > exp[exp [(c,— o(1))log k/loglog k] |
for infinitely many k. On the other hand,
N(k) < exp [exp [(log 2+ o(1))log k/loglog k] 1;

This contrasts sharply with what is known about ¢(n). The number of solutions
to ¢(n) = k is always less than the much smaller bound

kexp[(—1+o(1))logklog logloé k/loglogk].

Perhaps this is the best possible, but all we can prove is that there is some ¢ > 0
such that the number of solutions to ¢(n) = k is greater than k° for infinitely
many k—see [13] for a history of the problem. It is known that

#{n: ¢(n) < x} ~cx,

where ¢ = {(2)¢(3)/¢(6). In contrast, we see from (28) that no such result can
hold for A(n). We have

exp [exp [(C—Z_Oﬂloﬂ]] < #{n: A(n) < xj}

loglogx
(log2+o(1))log x
< exp[exp[ Toplopx :

Let Ry(x) = # {m < x: m = ¢(n) for some n}. It is known (see [10]) that

R, (x) = iexp [(c+o(1))(logloglog x)*].
What about R,(x)? Since few numbers have a large divisor of the form p—1
(see [6]), it is clear that R,(x) = o(x). In fact, the number of values of A4 up to
x is at most x/(logxy for some ¢ > 0. On the other hand, R,(x)>» x/logx
trivially because this is already attained on the primes. Perhaps one can find
a constant c, for which R,(x) = x/(log x)" *°"), Probably 0 < ¢, < 1, but we do

- ot know what to suggest for the “correct™ value of c,.
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