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1. Introduction. One of the oldest problems in the theory of numbers is the
so-called binary Goldbach conjecture: Every sufficiently large even integer can
be expressed as the sum of two primes. In 1948 A, Rényi proved that there
exists a constant mge N such that 2N = P, + P, for all sufficiently large N.
Here, P,, denotes an integer having at most m prime factors, equal or distinct.
For m=1, P, is simply a prime. Subsequent researches were aimed at the
reduction of m, in Rényi’s result. The best approximation up-to-date is due to
Chen and enables us to take m, = 2. The proof combines Selberg’s weighted
sieve, Bombieri’s theorem on the distribution of primes in arithmetic progres-
sions, the large sieve and also some analytical methods. A very clear exposition
of Chen’s proof was given by H. Halberstam and H.-E. Richert in [1].

Several mathematicians have established versions of the sieve procedure
for use in algebraic number fields. Specially, these investigations lead to
approximations to Goldbach’s conjecture in the language of a number field.
We recall that an algebraic integer a # 0 is said to be even if all prime ideals
p with Np = 2 divide «, and is said to be prime if the principal ideal (x) is
a prime ideal. Let us write [T, for a totally positive algebraic integer which has
at most m prime ideal divisors, counted according to multiplicity. The first
result on the Goldbach problem in number fields was obtained by
H. Rademacher [9]. He was able to show that every totally positive even
algebraic integer £ with sufficiently large norm can be represented in the form
¢ = I1,+11,. In this terminology, Rademacher’s approach has been improved
to & = IT,+ 11, by A. 1. Vinogradov [14] (see also [4] for a simpler proof) and
to { =11, +11, with a fixed m, by the author [7].

In the special case of a totally real algebraic number field K of degree
n over the rationals further improvements are possible. An application of the
author’s version of Bombieri’s prime number theorem in K (see [7]) yields
& = IT, +I1,. The primary concern of the present paper is to generalize to K in
an appropriate way the result given by Chen, namely to prove that
E=11,+11,.
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In the sequel, let Z, denote the ring of integers in K. For a given totally
positive even number e Z, we consider the sets

(1) R=RED, ..., 8" ={aeZ;0<a® < W, k=1,...,n}

and

@) P =PED, ..., &) = {weR; » prime}.
It is convenient to assume for the computations that

(3) ci (NS EPM Ly (NE, k=1,....m,

where the positive constants ¢, and ¢, depend on the field K only. If the £ do
not obey the inequalities (3) one can restore (3) by multiplying the ¢ by
a suitable chosen totally positive unit of K.

Our object will be to derive an explicit lower bound for the number of
primes we P such that ({—w) consists of at most two prime ideal factors.

TueoreM. There exists a positive constant Ny, = No(K) such that, if & is
even and Né > N, then

@ Hwe®P; {—o=I}|

n—1 = : Np_l NC
>034,/d""*hR)"2 T] Np ] (l—wp_l)z) I N2 iogne

Np=2 Np>2 Np>2
plg

Here, d denotes the discriminant, h the class number and R the regulator of
the field K.

From a quantitative point of view, this result should be compared with the
author’s upper estimate (see [6], Theorem 1.2)

weP; E—w =11}

1 Np—1 N¢
< n—=1pR)"2 N 1-
<8,/ ) NEZ pngz( (NP—l)z)NngzNP_ZIOgZN‘:
P
loglog N¢&
X{IJFO(_logNﬁ )}

We continue by making a few remarks about the proof of (4). The method
is influenced by the elaboration of Chen’s corresponding result in the rational
case, given by Halberstam and Richert in [1]. It is possible to model some of
their main arguments appropriate to our situation.

First Selberg’s weighted sieve method and Bombieri’s prime number
theorem are essential ingredients in Chen’s work. The author ([3], [7]) has
succeeded in extending these concepts to K.

Chen’s basic idea may be outlined very vaguely as follows: At first one sifts

the sequences {2N —p; p < 2N} (resp. {2N—p; p < 2N, 2N—p =0 mod p, })
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in a conventional manner by Selberg’s weighted linear sieve method, getting
good lower (resp. upper) bounds for the cardinality of those elements which
survive the sifting process. Then one removes in a suitable way the contribution
of unwanted representations of 2N in the form 2N = p+p, p,p;. To this end
Chen introduces the novel procedure of sifting the sequence

(5) {ZN_(Pl p2)p; p < 2N/(p,p,)}

instead of the different set {2N —p; p < 2N, 2N—p =0 mod p, p,}.
It turns out that one of the main difficulties in K arises in connection with
the transformation of

{—w; weP, E—w=0 modp,p,}

in a sequence which is analogous to the one given in (5). Let us only mention
that the product p, p, need not be principal. Consequently, we have to carry
out a reduction from ideals to algebraic integers; this amounts to using the
finiteness of the class number h of K. These steps have no parallel in Chen’s
work.

Another complication in number fields comes from the fact that one needs
some information about asymptotic estimates for sums of type

2;“ x(ald(g), x modgq.

a=0moda

Here, the ideal a must not be principal. This problem does not occur in the
rational case, where one can simply substitute and appeal to the prime number
theorem. Using the Siegel summation formula we succeed in obtaining suitable
estimates.

Finally, our method represents even in the rational case a substantial
simplification of the analytic part of known proofs of Chen’s theorem. In
connection with the application of the large sieve we avoid the technique of
contour integration. The argument presented here utilizes ideas introduced
already by the author in [7]. In our approach the basic inequality of the large
sieve method is used in an extended form which gives a proof of Chen’s result
by essentially elementary means. This is the most novel feature of the
paper.

The positive constants ¢y, ..., ¢,5 coming up in the sequel and all the
constants implied by the « and O symbols depend at most on the field K;
where other parameters occur and dependence on them is to be kept explicit,
we use e.g. «, or O, to indicate that the constants implied here depend also
on .

Throughout the paper, small German letters stand for integral ideals of K,
particularly p, p,, ... always denote prime ideals. The letter @ will be used for
primes in K only.
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2. Fundamental lemmas. We begin by deriving a weak form of the author’s
version of Bombieri’s prime number theorem in K which is most appropriate
for our sieve applications.

Let q be an integral ideal of K. We put, for sufficiently large N¢,

& & du,...du

I=1(&Y .., &M= hR)"' | ... | —/——.
(€0 o € = @R L gt

An evaluation of I can be obtained from [2], Lemma 6, in the form

n

- ., N¢ N¢
s =1 1
(6) I=(2""*hR) |ogN.;'+0(1og2N¢)'
LemMma 1. Let
1-L(q)
R(&; q) = l——=,
(& q) wZE;n o@
w=¢modq

where ® denotes Euler’s function in K, and where L is defined by
0 if(aq#l,
L) = { if (¢, a) #

Then there exists a positive constant A, = Ag(n) such that, for
N& 2 Ny(K),

(M

% 2 (@)3° IR (&; a)] « N&(logNe)™>.

NqENEV2{logNE) ~ 4p

Here, v(q) denotes the number of distinct prime ideal divisors of g.

Proof First, we note that, for 4 > 0,

1@ 3R (& q) « 3 1 (q)3" ):Nu L.

Nq<NEV2Z(logNg) — A Nq<NEV2(logNE) ~4
(a.5)#*1 wla

It is easy to check (cf. (9) in [2]) that

Y 1« (logN&)y""'log Nq,
weP
wlq

and an appeal to the simple result

1 (qym"@

<, (logQ)", meN,Q=2
Nq

®)

Nq=Q

leads at once to the stated « term, if we choose A = n+6.
Let us now suppose that (g, £) = 1, so that L(q) = 1 is satisfied. We begin

by noting the trivial estimate

R(&; q) -AE—l—l
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Then, by Cauchy’s inequality,

S RP@FOREG Q<N Y “‘“” RGP

Nq<N&'/2(logNE) = 4 NqQSNEV2(logNE) - A ”2

ma)=1 @y=1

) .

(qjgvtql 1/2 I 12

<<(N§)”2{ Y ) i } { max l———} 2
% “E"d (q)

w=ymodq

vasng NG Na S NEV2(logN§) =4 (,0) =1
To complete the proof it only remains to apply (8) and the author’s version
[7] of Bomb:z?ri’s theorem in the setting of a totally real algebraic number field.
’ We continue by stating the important inequalities for the weighted linear
sieve in a form introduced by the author in [4].

LEMMA 2. Let q be a squarefree integral ideal of K having no prime ideal

Jactor p such that Np < z, where z is a real number satisfying 2 < z < \/N&/Nq.
For brevity we write

5S¢ 9,2 = |{weP; 0 =¢ modq, (¢—o, V(z) =1},

where V(z) is the notation for the product over those prime ideals of K whose
norms are less than z. Then, for sufficiently large NE,

S(-f;q,z)_.‘% I T1 (1_Npl_l){F(log(\ch,’Nq))

Np<z IOEZ
pts
(loglogN¢&)* )}
o( Ry(a),
(loglog./N&/Na)’ Rl
(Q) 1 log(\/_/NQJ
8 q,2) = =5k I- ] (1 Np— 1) {f( logz )

Np<z
(224
(loglog N¢)* )}
o —Ry(q).
(uoglog\/wcmq)" °
Here, we have used the abbreviation

Ro(@)= Y 3" R( aq)l, where M= max(l, —“Né(log—"Né)_uo)_

: N N
iz 1 %

The given estimates are also true if 1 < \/N&/Nq < z but z « (\/NE/Ng)*.
The functions f (t) and F(t), which were introduced in [12], are defined by
f()=0, F()=2e"t, O0<t<2,

(tf@) =F(e=1), (tF@) =f@—-1), t>2.
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Proof. This is a slightly modified form of Lemma 7 in [4]. The procedure
is in all ways analogous to that at the corresponding stage in [4] (see also [3]).
Apart from minor changes, there are no new difficulties. The main difference is
that in our case, we use the sequence {¢—w; we P(EW), ..., &™)} and Lemma
1 instead of the sequence

{E—0,0,; 0, 0, BL/ED, ..., JE}

and Lemma 2 in [4].

Our next object will be to quote from [7] an extended form of the large
sieve estimate in K. Let x,,..., X,, Vys...» Vu» Z15--.» Z, b€ positive real
numbers satisfying (with x = x,...x,, y = ¥,...¥,, 2 = 2,...z,) the conditions

1/n

xPM«x, «xt P« y <yl 2WP«z«zi™ k=1,...,n,

and suppose that 1« z<« xy. Let a, b be integral ideals of K. We require
a non-trivial upper bound for the expression

% ;T" 2" max [} e, (@), (B)x(ap),
NesQ q)xmodq I «f
where the coefficients ¢, (), ¢,(B) are arbitrary complex numbers. The asterisk
indicates that the sum runs over primitive characters y modulo q, and Z" is
used to mean summation over such integers e R(x,, ..., x,), LER( s ---5 V)
for which both
«=0 moda, pf=0 modb
and
O<a®pP <z, k=1,...,n,

are satisfied.

LeMMA 3. For Q = 1 we have

> o Y max |} ¢, (@c,(B)x(@B)]

Na<£Q (b(q) xmodq zx a.f

& 3 % 1 3 e n (g 2112 o 21112
0+;) (@+75) Goear{Z i@ (T e (AP)
+Q%(log xy){Y1 ley @) e, (B + X2 ley @) e (B}

The dash at the sign of summation indicates that the sum is restricted to those
aeR(x,, ..., X,), BeR(Yy, ..., y,) which are divisible by a and b respectively.
The sum Y contains all ae R(x,, ..., x,), « =0 moda and BeR(y,, ..., V)
B =0 modb for which there exists at least one integer m <n such that
ad™pB™ < 1, In E; we group together all a, B under consideration which satisfy,
in addition,

1<a®pO <z +1, k=1,...,n,
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and
ampm > 2 —1
Jfor at least one integer m < n.

Proof. This is (3.12) of [7].

Moreover, we need some information about asymptotic estimates for sums
of type

2 x(a)A(§)= Y z@logNp, x moda.

Our essential tool is an identity given by Siegel. We start by making the
preparations necessary for the application of this summation formula.

Let q be an integral ideal of K and 7,,...,7,-; totally positive
fundamental units mod q, ie., with n,, =1 modq, m =1, ..., n—1. Consider
the matrix

M@= [...............

logn ... logn™,

and the inverse matrix of M(q)

A Grdssencharacter 4 modulo q for ideal numbers § is defined as
n sl ()
) = JT =k,
k=1

where m,, ..., m,_, are rational integers. Let us introduce the abbreviation

n—1
Eym)=E,(my,....m,_) =21 Y mel®, k=1,...,n.

g=1

By a - (@) we denote an integral ideal of K coprime to q, which will be kept
fixed in the sequel. We are now in a position to introduce the author’s extended
version of the Siegel summation formula (see (9) in [5]):
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For ¢ > 1 and for positive real numbers y,, ..., y, we have

¥1

® I g{ . E .. Jx(a)A(oa—t)}du,...du,,

e - o o T TR _of Cx(s, Axp)
=§E(2 'hR) 1§m ‘‘‘‘‘ ,§,=~w Axup(aa)a_jm (Na) (-C——-—“K(SJN))

n {xk+yk}s+ l—iEn-tm}__xi+ 1 —iEg(m)

x [1

=i (—iE (m)(s+1—iE,(m))

ds,

where the mark at the sign of summation indicates that the sum runs only over
such numbers m,, ..., m,_; which determine a Grdssencharacter Ay for
ideals. ), is used to mean summation over all characters of the Abelian class
group of order 2"h; the unit element of this class group being the class of all
totally positive integers of the field K. Finally, {4(s, Ax¥), s = o +it, denotes
Hecke’s well-known zeta-function.

LEMMA 4. Let y be a primitive character mod q. Suppose that a satisfies
Na < x and q satisfies Nq < (log(Zx/}\.’u}]‘4 Jor a fixed constant A > 0. Then we
have, in an obvious notation,

> x(a)A(E)
ZER(X110000%n)

a=0moda
By @@ hR) 40 (X exp( —c,(10g 2%
= Eo(q)(2"" "hR) Nu+04(NG°XP( C.c.(log Na) )

where Eq(q) =1 if q=(1) and Ey(q) =0 if q # (1).

Proof. In connection with the evaluation of Siegel’s formula we shall
make use of the following results (see [8]):

If A is non-principal, ie., not all m,, ..., m,_, in the definition of 4 are
zero, then there exists a constant ¢ > 0 such that { (o +it, Axy) has no zero in
the region

g > 1—c,{log(Nq ]:[ (2+|t--E,((m)I))}_l.
k=1

Moreover, we have, in this range of ¢, the estimate

(10) C3(a+n, Axy) < log(Nq ﬁ 2+t —E,(m)))).
K k=1
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The stated results are also true for A=1but |t| >5. ifm, =...=m,_, =0,
then for any a > 0 there exists a constant ¢4 = c4(a, K) > 0 such that, in the
region

1 <5, o>1-ce(Ng)™,

the following formulae hold:

Ey(q)
s—1

s, 2)(s— 1) 5 0, g-’fts, W)+ =2 ¢ Ngs.

Suppose now first that A is non-principal. Then we replace the line of
integration on the right of (9) by the curve

Cu: Sp(t) = 0,(0)+it, —o0<t< o0,
where

Onlt) = 1=c5{log(NaP, )} ",  Pp(t) = [] (2+It—Ey(m)).

k=1

It is easily seen that this transformation is justified. Using (10) we obtain
a contribution of order

log(NqgP
<L I

L 2 log(NgP (t}) n (X yp | T es108(NaPm(e) ~
< (No)™* [T (et p* X° . L dt.
) .I'.l:[l * }’k EO —!uo ]:'m(ty2 *_1;11 Na 2

(Na)~om® ﬁ (i +y )0+ s, (1)

Let us now introduce a formula for E,(m) given by Rademacher in [10],
p. 347:

n—1
E (m)=Exm)=2rn ) f@m,+z), k=1,...,n,
a=1
where
1 -1
1 1 = loge® ... logell,

e 5. 1
e L fen - loge{” ... loge™,

The numbers ¢, ..., &,-, denote the totally positive fundamental units mod(1).
Changing the variables of summation from m,, ..., m,_, tom', ..., m,_, and
changing the variable of integration from t to u given by u = ¢ — E.,(m’), we find
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that the expression under consideration is less than

ﬁ (o, + J’h)2

o o log{@ ) TT (4 e (Eem)— Exom))
x z I n—kl=l 2
M= =0 =% {0 4 1)) kf_ll (24 |u—(Ei(m')— E,(m))])}

X eXp {— nc_sllog(Zx/Na} } du.
log{Nq(2+1u) [T (2+[u—(Eitm)—E,(m)))}

The sums over mj, ..., my,_; can be estimated if one observes that

n—1
u—(Ex(m)—Ey(m')) =u—2mn Y (ff”—ff“"’)(m;+zq), k=1,...,n—1,
g=1
and that the determinant
fW_f® D _ g logel) ... logel, 7!
et s oo ssan s e nomms & n . =4det |..............
FCRS I
does not vanish. Thus, the vectors

LT L O IR R L T N = B R

generate a (n— 1)-dimensional lattice, depending only on the field K. Hence the
expression we wish to estimate is at most

log 2Nq 1_[ R i": ?exp {_ cslog(2x/Na) }
Na Havens ln-1=0 0

log {Nq(2+ Ju) [1 3+1))

)@+ TT @+1)) " du

It remains to deal with the sums over [,, ..., [,_;. Using the abbreviation

x 2x \ 12
(11) T=T(—ﬁa)=exp{(logN—u) }

we dissect the sums under consideration into two parts ), and ), correspond-
ing to [, < T for all k and I; > T for at least one j, respectively. The term ) , is
easily estimated by distinguishing the cases 0 < u < T and u > T respecting the
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integration. This leads us to the bound

(;6 log(Zx/Nﬂ) } o« du o n—1 -3
- 2 N
Zl & cxp{ log Nq+c,(log(2x,fNa))m !(Iog u)s,rz ;,,z, =c kl_[ (2+1)
©  du 32
+;[(2+m)3"’2 Z_, =0 kl_l Y

2%\ 12
<<exp{—cs(logm) }

For ), we obtain at once
T du el 2y \ 112
-1/4 5/4 s it
Yax T £ G, ;Z.. » k]_[ (2+1)7 % « cxp{ (logN ) }
so that finally

m#0 Cm ()’

(Na)™om TT (x, + y )"0+ ds, (1)
k=1

n 2% \ 112
< (Na)™ ' TT (x, +yk)3exp{—cg(log —) }
k=1 Na

Let us now consider the remaining case of 4 = 1. Here, a segment C, and two
curves C are defined as follows:

Co: s(t) =0o+it, 05=1—co(Ng)™ Jt| <5
C: s(t)=oa()+it, o(t)=1—c,o{logNqlt}™!, |t| > 5.

We combine the two pairs of end points of C, and C by two segments parallel
to the real axis. In this path we shall denote by W,, W the sum of three
segments and two curves respectively. Taking the constant c¢,, suitably for
a > 0 Hecke’s zeta-function (i(s, i) has no zeros on the right-hand side of
this path and satisfies the inequalities

c( W)+=2F “‘“” T« (NoPif <
K

gj(s, ) « log(Nagltl) if |t|=5
K

Replacing the line of integration in (9) by W,u W and taking, for q = (1) and
Y = 1, account of the simple pole of the integrand at s = 1 with the residue

12 o +y)’—xi
Na ,Bl 2
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we find that
(xk+}’k)s+l_xi”

1 = a+im n
5 (2"~ 'hR)~ ’EX'/’(%)’ Im (Na)~ (_(;’_K( x‘f’)) ,‘11 s(s+1) s
u(q) n-1pg)-1 T St 0’ —xi s MJ}
o @ hR) k]:[I 5 +0{(Nq)" JO(N) ;Dl e %

+ O{j (Na)_""’l—':-)-g—g\lr-‘:llEQ n (%, +y, o+t ds(t)}
W

|2u

The first remainder term gives a contribution of order

«(NaF(No) ™ (xﬁy.fexp{‘w}
k=1 q

oy 2 2x\'7
« (Na) l_[ (x,+y)* expq —¢q4 logN_ >
k=1 “

which is admissible provided that a < (24)™!. For the second error term we
divide the integral at T given in (11). This leads us to the upper estimate

c,,log(2x/N u)} log(tNq)

N -1 = + 200 {_ 3 dt
« (Na) 11;[1 (x4 ) .! €xp log(tNq) "

log 2Ng ~

Na “(xk"'yk] {e P{

¢y,10g(2x/Na) }}' logt
log Nq +(log(2x/Na))**J 5 1*"

2 logt
g - I tl,f?.tln— 1/2 dt}
T

2x \1/2
« (Na)~! n (xp + y)? exp{-—cu(logN ) }

Summarizing, we have shown that

n ¥n o
I f { b x(u)A(—)}dul...du_
o 0 LaeR(x; +u;....ax.. +un) 9

a=0moda

Eo(@) pn-1ppy-1 17 Fat ) —xi
(2" hR) k[=]l :

O ‘_l_li.[( + )2 l 2x 1/2
Na L Xt Vi) €Xpy —Cy3 OgNu .
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Now it is easy to investigate the asymptotic behaviour of the sum

Sy x)= ) x(a)A(g).

aeM(xy,....xn)
a=0moda
Let us first deal with the special case of q = (1). For 0 < y, < x,, k = 1, n,
we have the inequalities
¥i

f...jS(x,—y, +uy, ooy Xy — Yo+ u)du, ... du,
o o

»1

¥n
g PaS 0, L x) < f L j' S(xy+uy, ..., x,+u)du, ...du,.

4]

To complete the proof in this case it only remains to choose y 15445 Yy SUitably,

y 2" NG ’ e

If q# (1) we write S(x,,..., x,) in the form

I Y1 ¥n
S(X1y 0005 X} = Jooe J(SCers ooy Xx)—S0xy +uy, ooy x,+u,))duy ...du,
Yi---Yao 0
l » ¥n
+ [ (S +uy, .., x,+u)du, ... du,.

1 Yno 0
As for the first integral, we have, with the above choice of Viseees Vas

|S{xl? LR xn)_s(xl+u1! R xn+un]|

SN
2eR(x; +ur,xntun)  \Y  aeS(xgn..xn \@
a=0moda

a=0moda

= (2"“‘hR)’l[Nﬂ)"{lj (X +u)— H xk}.a-o{—*exp{ Cu(log%)UZ}}

k=1
X 2x \ 14
« }—\I—.acxp{ —cls(logN—u) }

This completes the proof of Lemma 4.
Finally, we shall make use of the following result.
LemMMA 5. If N¢ > N, then
Z Z i 0.493
(NEMIOS Npy <(N&IP (N&)V3 < Npa<(Ng/Npy) /2 NPy szIOS(NC/(NPINPz)] £ log N¢'
Proof. The proof runs analogously to the one given in [1], Lemma 11.1.

4 — Acta Arithmetica LVIIL 4
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3. Proof of the Theorem. Let ¢ € Z, be a totally positive even number with
sufficiently large norm. Our method starts from the inequality

{weP; ¢—ow =1,}|

1
> Y {1 _ 1
wed) 2 Npnogig, <Ngis
(- V(NE/10) =1 pilé—@pidd

1 1}
e ’
2 NEWI0Z Npy < NEU/3 NEVUIS Npa <(NENpy)l/2
pilé—a,pi ke p2|&—w,paki
(E—w)=pipzps

where the dash at the sign of summation here indicates that, in addition, w}¢
and & —w is square-free relative to the prime ideals p, and p, occurring in the
inner sums on the right. To prove this, we have to show that the only positive
contribution of the weight (the expression in parentheses) can arise from those
elements weP for which & —w are IT,’s. If the weight is equal to 1, we have

(¢—w, V(NE) =1;

and in this case ¢ —w can plainly be only a IT,. It remains to consider a weight
of size 1/2. Here, we observe first that ¢ —w = p, -a, where Np, < N&'/ and
(a, V(NEY) =1, so that a is at most a IT,. If

a=7p,p;, NE&<Np,<Np,,

we must have Np, <(NEY*(Np,)" "%, since otherwise N({—w)2
Np,(N&/Np,) = N¢&, which is impossible, in view of (2). This contradiction
implies that

((—w)=pyp,ps,  NEVIO< Np, < NEY3,  NEU3 < Np, < (N¢/Npy)'?.

But then the weight is reduced to 0. Hence, there is only a contribution of order
1/2 if a has at most one prime ideal factor, so that £ —w is again at worst a IT,.

Next, we may set aside from further consideration the restrictions implied
by z'. To see this we have only to observe that their contribution is at most

N
<y 1+ ( ¢2+1)
WEI? NEUI0 < Npy < NEV/3 Npji
w

N
+ Z ( 6 z+1
NEV/10S Npy <NEW3 NEVI < Npa <(NE/Npy)h/2 Np,Np;

« (log N+ NE/10 4 NEV3 + NE*Plog NE « NEI1O,
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It therefore follows that

Hoe®; {—w = I,}| > S(& (1), Né'”")—%' S(¢; pyy NEV'O)

NEVIOS Np < NEL/D
3V 44

1
3 e ) T 1+ONE),
NEUIOS Npy <NE1/3 NEV3 S Npy <(NE/Npy)1i2 wef
Pidé p2dd (§—w)=pip2ps

Now Lemma 2 enables us to bound the first two terms on the right. We find
that

|
8(¢; (1), N§10) - S(; py, NEVIO)
N‘:um EN;5<N{”3
P1

1
> I'N <ln:£1;lo(1 _Np— l){f(s)

[ 2¢4
1 F(10103(~/N§/N91))
log N¢&

1
2 NEV10.< Npy < NE1/3 Np,—1

—O0((loglog N&)~ 3)}

—R(M)= ¥ Ro(py).

NEU/I0< Np; <NEV3

R;specting R,(1) and R, (p,) we have at our disposal Lemma 1, according to
which

Ry(1) < z

2(a)3"|R(&; N&(log N&)™3
mm?uogm—nop() IR(&; a)l « N&(log N&)~3,

Rolpy) < b > 3“9 R(Z; ap,)|
Ng!/10€ Npy <NEY3 Na<(vVNE/Npi)logNg) ~ Ao
a|V(NE1/10)

< ¥ #2(@)3°|R(Z; q)l « N&(log NE) 3.
Na<VNEtlog N&) ~ Ao

N§H1O < Npy <Ng1/3

Let us still approximate the sum
Y= 1 log(./N¢/Np,)
o Y F{10—————
Nglflongl.cN‘ljsz]—I lOgNé

by an integral. Arguing in the same way as at the corresponding stage in
Chapter 9 of [1] we find that ), can be written in the form

10
5 - ] r(s-10) s of(oglaNc)
3

t log N&¢
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These results now yield

S(E: (1), NgH19) T sEe, N
N‘;IHD Npi <NEgt/3
pi14é

244

Our next step will be to cite from the literature ([4], Lemma 3; [1], p. 323) the
following two estimates:

Nu,(l—wﬁ)

pre
1 Np—1 1 { (loglogN{)}
1+40| ——— ¢,
KNp i N‘,,z( (Np—l)z)nl:l%sz—Zlogz logz
P

where 7, denotes Euler’s constant and where ay is the residue of Dedekind’s
zeta-function in K,

10
lOe"“{ f(S)—1 § F(S—E) d—:} > 1.32028.

From these we deduce readily

HweP; E—w =IT,}|

132f 1 Np—1 N& 1
> @ "hR)? IT Ne 1] (l"(Np—l)Z) I] Np—2logzN£_§zl'

\%

Np=2 Np>2 Np>2
plé
where
Z.l = Z Z Z 1.
NEWIOS Npy <NEV/3 NEW3IS Npy <(NNpy)'/2

wed
L7 ¢4 P2t (E—w)=p1p2p3
Now our problem has been reduced to that of establishing a suitable bound for
Y',. To this end we transform ), into an expression in preparation for the
application of Selberg’s upper sieve in K.

Let us introduce the abbreviation

M = M(E) = {p,p,; NEVI® < Np, < NEY3 < Np, < (NE/Np))''2},

so that
[ « NE23,

From now on, let
22 = (Né)(lﬂ)-w,
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where a > 0 will be chosen later. The counting number

I{wE"B; (—w)= P1pzpa}|
is at most _
HoeP; No >z, ((—w) = p,p,p3}| +|{aeR; Na < 2}
It is easy to confirm that

{aeR; Na < z}| « z(log N&)" L.
Hence

21 < Z {weP; No > z, (E—w) = p,p,p;}|+ O(NE112),
p1p2eM
(p1p2.8)=1

From our point of view, this representation is of little use as the ideal PP,
need not be principal. We may, however, use the following technique to carry
out the reduction from ideals to algebraic integers. Let p,p,eM belong to
a given narrow ideal class €. There exist ideals a,, b, in the classes €1,

(Shrespecnvely having Na,, Nb, \/_ . We write p,p,a, = (%), ay,b, —(60),
where

c16(Npy Npy Nag)'" < x™ < ¢y 5(Npy Np, Nag)'",
(12) k=1,...,n

¢18(NagNbo)'"™ < 057 < ¢,9(NagNb,)'",
Hence

(Bo(f—w” = (P1P2a)(P3bg) = () (n'), say.

P::turning to the estimation of ), we infer at once from these transformations
that

HweP; No >z, (E—w) = p,p,p;)l

B %11 g( 1) gﬂ ‘f(n)
= {neﬂl( 0 ); =0 modb,, (n)bg " = p,, C—? prime,
0

xm
Me-5)>+
1) £(1) ) E(n)
< {neﬂl(%x(i S s o8¢ ); =0 modb,, (1)bs* = p,,

¥
(B0~ 1, Vi(2) = 1}]

where

Vol2)= [T ».

N p<z
ptBod
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It is convenient to introduce the classical device of “weighting” the integers
7 with von Mangoldt's function A. Writing

& m(%ﬂg(l) 9{;"5"”)

oD T m

and letting a, = (log N&)™ 12 we have

o
A (—) 2 Y log Np
aefy,a=0 mod by ho neR;, x=0 mod by
(8ol - xa,Vo(z)) =1 (8of - xm, Folz)) =1
(m)bg ' =p, Np>(N&/NpiNpz2)! %
N¢
>(1-agflogr—t{ X 1- ¥ 1}.
NPI. pz neW;, n=0 mod bp neRy, n=0 mod bo

(Bo& —xnr,Volz))=1

o ' =p, Np<(N&/NpiNp2)! — =
()b 1 =p (m)bg ' =p, Np<(N&/Np1Np2)' ~ %0

It is easy to check that

Np,Np,

N C 1=ap o5
14 (m) (log N c)n ¥

N 1—ag
{rre&ﬁ,; n=0 modb,, (m)bg' =p, Np < (——E—) }

Thus
1 1

o
Zl = l—ao ; p[pZEZ!RnE lOg Né aewl.ua'zo: mod bg A(E;)

NP1 sz (B0d - xa,Volz)) =1

ol 1 () ")

< (142a0) Y, +((NQ)' 1),

where

1 a
Lo Al — ).
Zz § vw;ﬂnc l Né uE‘R;.uEZO mod bg (bo)

8 Nplez {00& - xa,Volz)) =1

On interchanging the order of summation this becomes

Ao(ﬂ],

B ) / ¢
= y 4 log = ¥
2 sss(ctlzh:....ctnl) p1p2eM p1palB (Plpz NpiNDy  pemqadn,....zm)
(B Folan=1 E-BVoln=1
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where

B )/ N¢
A = A lo )
O(ﬁ] mpzeill?z.pwz!# (pl P2 ngl sz

We are now in a position to apply Selberg’s upper sieve method in K, which
has been derived in [12] (see also [3] and [4]). It will be convenient to
introduce, for u(d) # 0, the multiplicative function

g®) = LE)[T(Np—1-L(p)"’,
plb

where L is given by (7). Using, for positive real x, the sum
G, x)= 3 p*(a)g(a),

Nao<sx
{ap)=1

we now define

~ 1 \"'G, z/Nv)
A“_“(D’E!(l Np—l) (. 9

pre
and observe immediately that this choice implies, as usual,
/1{1}=1, lb=0 if ND)Z, Illnl'g_ 1 if DII/O(Z)'
Furthermore, following the steps described in detail in [3], p. 239, we obtain

Y X Ak

1
vlVol) 2V | P([Dy, D,]) B
This leads us to the upper bound

Ya< Y AB{ Y A

BeR(E1),... Ltm) b|¥olz)
bj¢-4

G™((1), 2).

Ao(B)

A
170 ay,,, &
b1[¥olz) b2IVolz) o Rl

Aty Y 2 Y B4,

by, b2|Voiz) ¢([b1: bz]] xmod [by,b32] BeR(&L), ., Elm)

where the inner summation is over all characters y mod [d,,d,]. The
principal character y, provides the term

-1 Ay, A
G™1((1), Ao(B)— __wfyy A
(( ) Z) ﬂeﬁtﬁ“g}---.:‘"’l o) m.luzn:fo(z) @([d,, d,]) peg{iﬁt%_ﬂ,étr}) olf)

so that

(13) 2:<G67H 1), 2) Y AB+Ys+ Y.,

PeR(1),... 2n))
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where
w3
3= A
and
2(p)3v® =
L= T ES S H0 3 x(ﬂ)Ao(ﬁJ|.
m’gtﬁ xxn;}ih BeR(FM,....5m)

We shall deal separately with each of the expressions on the right of (13). For
the first we have at our disposal Lemma 2.5 in [6], according to which

G((1), 2)
() s )

Np=2  Np>2 ND'>2NP~—2]0gz logz
plé

Let us now estimate the sum

B N¢
¥ A( log .
ﬂemt.:mz.;..,ctnn pzelipipalp \P1P2 Np,Np,
We see that this sum is equal to

1
) T A( P )
Pipaet |0 - e, &) \ PP,

P, N;pz F=0 modpp2

1 1
PARIN 1+0 —)),
( y Emzsz Np, log. N¢ ( (’logNﬁ
Pii¥p, g—-_NplNPz

using Lemma 4 in the last step. An appeal to Lemma 5 now shows that
G ((1),z) ¥ AeB)

PeR(EN,....5m)

1972JHN H( 1 )an-1 N¢

(2" lhR)sz 2 Np>2 (NP—1]2 NpEzNP—ZIOSZNf
P

loglog N¢
()

We now turn our attention to the sum

2 v(b)
u*(d)3
3 R Aq(B).
b|Volz 2 ( ) BeR(EL),.,. 20
NSz (B.o)#1
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Recalling that if p,p,eM, then Np, > Né'3 > z, we obtain

1
L oape s w ()
PeREC). .2 Pipaed |0 N¢ peseD....gn  \P1P2
L Np,Np, "=pnei™

« (logN&)™t ¥ ¥y A(a)

p1p2eiR N¢ Na< N&/Npy Npz
log

Np,Np, (a,0)# 1

+(logNO™! 3 A(a)

Na<N§ N:lmswpg-m.:mu Np2 <N&/NpiNa N':
Pll Nplez
But
Y A@=)logNp Y 1<«uv(d)logx,
Nosx pjb Npmsx
(o)== 1
whence
i 5 Afa) 1
3. Ay (B) < v(d) M| (log N~ +(log N&)" Y — ¥ —
BeR(g11),. .. gtn) Nosnz Na s NPy
B0#1 Npy 2 NE10
< (| + NE1%p(d)(log N&EY 1.
Substituting in ) 5 we arrive at
- % (9)3"® v(d)
& NEMO(log NEP 1 —_—
25 BN L om
2 h 3u[b]
« NEO(jog N&y—! ¥ O i
No<z2 Nb

An application of Lemma 2.3 in [3] now leads us to the estimate
Y3« NE'0(log NEY'*3,

Summarizing, we have shown that

1972\[ 1 Np—1 N¢
Ez'\-(zn lhR}ZN’ S P I—[ (l"‘('N_p_l)Z) H Np_z lngNé

Np>2 Np=>2
»le
loglog N¢
X (1 + (—_logNé +Y4

) Y x(BAB).

x modb BeR(ED),. .. &m)
2# xo

and it remains to estimate ) , given by

_ v O3
& ?g:[,; ()
£z
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To this end we first carry out the reduction to primitive characters. Each
character y # y, occurring in 3 , is induced by a unique primitive character y*
to a modulus d* satisfying d* # 1 and d*|d. Since ¥(B) = x*(B) whenever
(B8, b) =1 we have

2 v(®)
LT EDT S| S FO T 06

b|Folz z) Nb*>1 x* modb® PeR(Z1),.., En))
Nb<z o
)3
bl"o(z} ) Nb*>1 x* modbd* BeR(EL),,., En))
Nb<z b (B.b/b*)# 1

In each summation over b we write b = d*d’ and use the fact that then
@D(d) = ¢(d*)P(D’'). It follows that

2 (p*)3v0"
9 To<f{ 3 ZOUT v ro_ T roaol)

x* modd* PeR(ENL), ., En))
1 <NV s:z
ol Ll
w<zz  P)

FZ{DQ b:)su{b‘b'] ” .
o0 ﬂ:z_,; AO(ﬁ”x' ...Z..:w (x|

Bo)#1

* 2

|V
Mo 223

2(q)3via @ =
«loghg* ¥ PO vx 2y Y BB

q|Vo(z) ?(q) X modq PeR(ELD), ... En))
1<Nqsz?

# ()3 # ()37
+* A N o ]
ﬂ;ﬁ@ B s 0@ i MONE-F0)
" A e

where the asterisk indicates summation over primitive characters mod q. For
the last step we have used the fact that

| ¥ #OxB)| = Hl Y #OxB)|< T Np=2)< [] Np.

xmodg plg xmodp pla plE—B.9)
X# %0 pls—8

By standard calculations it follows at once that, for fe R(EY, ..., &™),

#*(q)3+ #*(q)3°@
w@3 SR T
o 0@ NETRI=E 0 ﬂgz.és W

= ¥ /o ¥ LT

alé—p Nq<z? ¢( )
alq

«(ogNO* ¥ u2(a)3® « (NEY,
al—4
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for any b > 0. Thus the contribution of the second term on the right of (14) to
the sum ), is

2( 4"y 3ua’)
« (Né)” ): &'“3__ Z Ao(ﬂ)
Ng' <22 ‘p( ) i ﬂ?]g;l

#Z(Q)?’D{q] 9/10 - +b +
<(NO* ¥ ¥ (1R + N7 %)v(q)(log N&Y' ™ « NE10*b(log NEY'+3
Nq=z2

by the argument that was used in the estimation of ) ;. Returning to ¥, we
obtain

24 < (log NO*Y s+ NEOI20,
where
2(q)3vta
2s= 2 e IZ (é)ﬂZ x(B) Ao (B)|.-
eR

a|¥olz) ¢(q) xmodq
1<Ng<z?

We may therefore concentrate on ) . An application of Cauchy’s inequality

yields i 93
s < (X" (Z)"?
where
Ye= X “;T(“) Y X x(B) Ao (B)|
g ?:l;ﬂ(é);z q) xmodq feR
and

y,= ¥ & Q0 ———| ¥ WO Y x(B)1,(B)-

ql¥Volz) d}( ) ymodq PeR
1<Ng<z?

A straightforward verification shows that

2 9"@ 2(4)9uie)
To< ¥ KT 4 @NE-a)< LB 3 0@ 3 )
a|Volz) ?(q) BeR alz-g 1 <Ngq<z? P(q)
L<Nqsz? alq
<(0gNO™® Y Ay() T #*(@9°@ < (logNO'® T w2@)9"® T A,(p)
s l:r{é_z; Noss? B E‘?‘,'El:fndn

N¢
= (log N&)1° p?(a)9v@ A( )/lo
Nnézz 5 %;'ud p,Eﬁn PP nglez
Esmoda pip2

< (logN&® Y p(@9® Y Z/l( )« NE&(log NP,

Na<z2 BeR  b|p

=£&moda
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Hence

Ys < N2 (log N0 Y6
To attack the sum ) ¢ we consider small and large values of Nq separately. If
1 < Nq<Q,, where @, = (log N&)° with a positive constant C that will be
chosen later, Lemma 4 enables us to bound the sum under consideration. Since

N&/N(p,p,) = NEY2 for all elements p, p, € M, we may infer at once (in view of
Lemma 35) that
1

=
Ao(B) = TR T A
ﬁ);ﬂx(ﬁ) B= 2 NE ﬂemu);m{mx(ﬁi (P; Py

pip2ed lo i
nglez A=0 modpp2

1
« N&exp(—cyo(log NEYZ) Y

P1P2 Np, Np, log

Np;Np,
« N&exp(—c,o(log NE2),

so that
l *
Lo < D) | Y, X(ﬁ)Au(ﬂll + O(N{ exp(—cyo(log N‘:)m))_
Qi <Ng<z2 ¢[q} xmodq feR

The estimation of the first term on the right is one of the main difficulties to be
overcome. We transform this sum into an expression in preparation for the
application of the large sieve inequality given in Lemma 3. First we note that

the above sum over Nq can be included in a sum of « log N¢ expressions, each
of the form

2 N *
S0 0l D M VX ) |

Piz<no<p P(9) xmodg BeR(E,... Elm)

where Q; < P <z% Our main problem is now to develop

o= Z OB T 3 ()
BER(EOD,,.. am) p,pzmlog Best(&L),... &n) PP

=0 mod
Np; sz ] mod p1p2

into a more convenient form. To this end it is necessary to decompose the sum
over p,;p, into « log N¢ sums of the type

Y , where NE1330 <« M = 2m < NE23,
M{2<Nipipz) =M
pip2ei

Let p,p, e M satisfying M/2 < N(p,p,) < M belong to a given narrow ideal
class €. Then (f) = p,p,¢ with ce @', Next, we choose fixed prime ideals
ag, by satisfying

(15) P" < Na,, Nb, < 2P"
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in the classes € !, € respectively. This can clearly be done in view of the prime
ideal theorem for ideal classes modulo (1). We note that

(ag, 9) =(by, q) =1 for all ideals q with P/2 < Nq < P.

By the theory of units there exists a totally positive generator 6, of a,b, such
that

¢y N(aghp)'" < 0% < ¢y N(aghp)'”, k=1,...,n.
Hence
(05B) = (pyP2ao)(cho) = (0)(y'), say.

Again, we may assume that a, a representative totally positive generator of
p,p, satisfies

(16) cy3Na'" < a® < ¢, Na'", k=1,...,n.
Returning to ) ¢ we infer at once from these transformations that
(5)
— = s 0
Le=2X700) 3" x@x0)—ymns

Reptt et log Na

where R, is defined by

n INENB,)m
%, = m(czs(ZNﬁ%o) o Czs(%) )’ Cas = c;czz’

Ca3

and where IM* denotes a set of mod (1) nonassociated number o € Z, satisfying
(16) and

@e an.

—ﬂiNao < Na < MNa,, M =2"
2 a
0

5" again signifies (cf. Lemma 3) that the conditions «=O0moda,,
y=0 modb, and
0 <a®y® < gl p =1 . n,
are satisfied. Using the abreviated notation
‘Rl = 9(824(MN00)1!", Wy 024(MNQU]”|")

we put for aeR,, « =0 mod a,,
-1
(logN i “°) if we M,
Na
clw) =

0 if ae| \D*
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This leads us to

Zs=2§2(ﬂo) 1Y c(a)A(%)x{a)z(m.

aeWy, feRz

We are now in a position to apply Lemma 3, and we obtain

NG
M < T 2Ly

I_JP;2<Nqa5P ®(a) ymoda

Llog Ney Y ¥ (P2 + My 2( p2 4 NS ”212' |c(a)|2}”2{f Az(—)}m
<<'I;(08 <) %%( M) b,

ae'Ry feNs
/ B / B
+P(ogNO LT AT le@lA( = )+ Tale@ia( o= )
m & 0 0
By standard calculations it follows at once that

5 g2 (bﬁ) N ogNer T le@r « MlogNY "
0

feRa el
Thus we find that the first error term on the right-hand side of (17) is
<« (PN:”Z +N§5f6+Nél—lllfﬁﬂl_‘_%)(log Nc)n-!-l

« (Nﬁ‘ ""+g—£)(log Ng !

1

for a suitable small value of a. This is acceptable if Q, = (log N&"*36. It

remains to deal with the sums z’l and 2; in (17). As to Z', we put
V= Cy,Cy5(2NENay Nby)'/"

so that ; NEN
e (5) < (6o
Al — )< Al —][log
lef—‘(a" (bo) lg:'l uEZ‘J:N‘ géz by, Na
2=0modeog f=0modbg
nqq_(nﬂ(l]( 1

n
«(logN&)~' ¥ 3 > A Y
I=1 yeR(r,....v) NasM nobua
y= 0mod agho nl_‘-"_
O0<yil<y agbo

y = 0mod agba
0<yiic]

(NENagNbg)! = 1im
“ T NagNb,

+1« PT2NETUR L,
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on using the condition (15) in the last step. This leads us again to an estimate
which is negligible. Let us now turn to Y, as defined in Lemma 3. Putting
Z,=0P¢w k=1,... n,
we find that
(zl Ly zujl ~im

; B o -2 p7 £~ 1n
Zzlc(a)M(bo <y ¥ 1<<W+1<<P N¢ +1.

I=1 aeW(zy +1,...,20+1)
a= 0mod agbg
al>z;~1

Retracing our steps, we arrive at

Y6 « NE(log N&)™34,
This completes the proof of Chen’s result, in the form stated in the
introduction. '
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