250 P.-G. Becker

InlJ (o) > —4~(DInH(J)+ N({J)InH)D" 2
—Cs A IDr 1m0 > —Cgoumtar-2pr-10

But this contradicts the upper bound for In|J(w)| as soon as y is sufficiently
large. Hence Theorem 3 is proved.
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On an irreducibility theorem of 1. Schur
by
MicHAEL FILASETA* (Columbia, S.C))

Dedicated to the memory of Emil Grosswald

" 1. Introduction. In Grosswald’s book Bessel Polynomials [7], he inves-
tigates various aspects of the Bessel polynomials

" ()
jZ:O 2(n—j)j P
In particular, he discusses several results about the irreducibility of y,(x) over
the rationals (also see [8, 9]). He proves that y,(x) is irreducible if n = p™, p+1,
or p—1 where p is a prime and m is a positive integer. He further shows that the
largest degree of an irreducible factor of y,(x) is asymptotic to n. Later,
Grosswald [10] pointed out that if p;<n<pj+; where p; and p;,, are
Consecutive primes, then y,(x) is irreducible provided that the product n(n+1)

as a prime factor > min{n—p;+ 1, p;+, —n}. This fact is sufficient enough to
Cstablish that y,(x) is irreducible for every n < 10°, It may in fact imply that
Cvery y.(x) is irreducible, but to prove so seems to require a much better
Understanding of gaps between primes than is currently known. On the other
hand, with a little work (cf. [5]), one can use Grosswald’s observation to show
that a positive proportion of the y,(x) are irreducible. More specifically, if k, (¢)
denotes the number of reducible y,(x) with n < t, then there is a constant ¢ < 1
Such that k,(f) < ct for all ¢ sufficiently large.

Mainly motivated by Grosswald’s work and his encouragemcnt the
uthor pursued the problem of determining when y,(x) is irreducible. He was
able to show [5] that k, () = o(¢). Later in Section 4, we will see how work of
Lagarias and Odlyzko [11] can aid in establishing that k, (t) < t/I;(t) where [,,(t)
denotes m iterations of logt. Under the assumption of the Generalized Riemann
Hypothesis (GRH), the same arguments lead to k, (t) < t/loglogt. On the other
hand, we shall see that Grosswald’s observation above and the Riemann
Hypothesis (RH) imply the better result k, (1) < texp((— 1/x/2+¢) /logt loglog?)
for any ¢> 0.

——
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252 M. Filaseta

We begin, however, by investigating polynomials of a different form which
lend themselves to a similar analysis. In 1929, I. Schur [13] proved that if do
a,, ..., a, are integers with ay, = +1 and a, = +1, then

x" b
fi(x)= aom+al("—'_l—)~!+ oo ta,—1x+a,
is irreducible. We shall be interested in investigating polynomials f,(x) in which
the conditions @, = +1 and a, = +1 may not hold. Clearly, a result as strong
as Schur’s cannot be true for every such polynomial since every f (x)e Z[x] can
be expressed in this form. It is our intent to employ Schur's method and
a method similar to that used by the author [5] in proving the irreducibility of
almost all Bessel polynomials to prove the following result:

THEOREM 1. Let BeZ™. Let a,, a,, ... be non-zero integers such that
(i) each prime divisor of each a; is < B, and
(i) laj < (j/2Y for all j sufficiently large.

Let
f“(x)=j§0a*‘(n_—})7 forn=1,2,...

Then almost all f,(x) are irreducible.

We shall furthermore see that as a consequence of Schur’s method, each
f,(x) satisfying plaga, = p < B has an irreducible factor of degree > n—B
(see Lemma 3). From the above theorem we easily get the following:

COROLLARY. If ag, a,, ... is a bounded sequence of non-zero integers and
n x" -
fui(x) = 8j——»
" Jg';) Y(n—=))!
then almost all f,(x) are irreducible.
The proof of the theorem appears in the next two sections. We will show it

Section 4 that we may obtain that if a,, a,,... is a bounded sequence of

non-zero integers and k,(t) denotes the number of reducible polynomials f;(*)
as above with n < ¢, then k,(t) < t/l,(t). Under the assumption of the GRH, w¢
get here that k,(t) < t/l,(t).

2. Preliminaries. Using the notation of Section 1, we define
F,(x) = n! f (x).

Thus, F,(x)e Z[x] and F,(x) is irreducible over the rationals if and only if f,(¥)
is irreducible over the rationals.

LEMMA 1. Let F,(x) be as above and suppose |a|<(n/2y for j=1
a;eZ Vj, and a, #0. If « is a root of F,(x), then |a| < n?.
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Proof. Assume the lemma does not hold. Then for some root a of F,(x),
lo| > n2. Thus,

F, () n nn—1) n!
- —_ - e a T o
0 pr .a(,+c.'11m+irz2 =3 +...+ "o
n n(n—1) n!
= lagl _la1_| I“_l_lazl —lalz - —la,| W
n * n"
= |agl—lay| m_laz’lw‘“ cee lanlll_aF'

Now since || = n?, 1/ja] < 1/n?. So

i j
(ﬁ) < G) for all j>1
o

and hence
j i
—iJé—l for all j = 1.
|| n
Thus,
F"(..a) > lagl—lan = ...—lan™" = 1—(lay|n" + ... +lan"").
o

Now |a| < (n/2y implies |ajn™/ < (@3, so

la,In" '+ +|a1n_"-€..£+l+ .+1<1
3 e 2 4 >
Thus,
0= |25 1 1 =0,
o

which is a contradiction. Hence, |o| < n? for all roots a of f,(x), which
Concludes the proof.

LEMMA 2. Let n and k be non-negative integers with k <n. Suppose
k= n (modp) for some prime p. Then F,(x)= x""*F,(x) (modp).

Proof Assume n, k, and p are as above. Then
F,(x) = n! f,(x) = apx"+a;nx""*+ ... +nla,
=ax"+a,n" "+ ... +ann—1)...(n—k+1)x""* (modp)
= x""Magx*+a,kx* '+ ... +k!a) (modp)
= x""*F,(x) (modp).
This completes the proof.
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Throughout the rest of this paper we shall let Q(a) denote an algebraic
extension of Q. Let R denote the ring of algebraic integers in Q(«). Let N(f)
denote the norm of § where feR. If A is an ideal in R, then N(A) will denote
the norm of A.

The next result will play a major role in what follows. We note that it is
essentially due to Schur [13]. In fact, the result of Schur mentioned in the
Introduction follows from the case B =1 below.

LeMMA 3. Let n and B be positive integers. Let a, a,, ..., a,e€ Z be such
that if playa, then p < B. Let f,(x) be as above. Suppose f,(x) = a(x)b(x), where
a(x), b(x)e Q[x] and 1 < dega(x) = k < n/2. Then k < B.

To prove Lemma 3, we will need the following three lemmas. The first
lemma is a nice generalization of Bertrand’s Postulate and was originally
proved by Sylvester [16]. Schur rediscovered it in obtaining his result
mentioned in the Introduction (also see [4]). We omit its proof as well as the
proof of the third lemma below which can be found in [1, p. 202].

LemMMA 3.1. Let k and m be positive integers with m > k. Then one of the
numbers m, m+1, ..., m+k—1 is divisible by some prime p > k.

LeMMA 3.2. Let feR and suppose p is a rational prime dividing N(f). Then
there is a prime ideal P dividing (p) such that P|(f).

Proof. It suffices to show that GCD((B),(p)) # (1). Assume to the
contrary that GCD((f), (p)) = (1). Then (B)+(p) = (1) and thus there are A, and
A2 in R such that 4, +pA, = 1. Thus N(B)N(4,) = N(BA,) = N(1—pA,). Now
since p divides N(f), we get that N(1—pi,) =0 (modp). Let A" = i,
AP, ..., 2" be the field conjugates of A,. Let g, = AV +... +10, ...
voey O = A 2§ be the elementary symmetric functions for A%, ..., 24"
Then oy, ..., 0,,€Z, and

N(1—pi) =[] (0—=p2)=1—0a,p+0,p*—... +(—1)"o,p" =1 (modp).
j=1

Hence, we get a contradiction which establishes the lemma.

LeMMA 3.3. Let k be the degree of the minimal polynomial for «, and let P be
a prime ideal dividing (p) where p is a rational prime. Then N(P)= p’ where
1< f<k

Proof of Lemma 3. Suppose k > B. Define
F(x) =nlag™" f,(x)
= (aox)"+na,(agx)" "'+ ... +nla,_,ay" *(apx)+nla,ad*.
Define

G(x) = x"+na; x"" ' +... +nla,_,a) x+n'a,a)*
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G(x) = F(i) = a(i)b(i)n!a;‘.
ﬂo ao ag

80 by Gauss’ Lemma G(x) = A(x)B(x) where A(x), B(x)e Z[x] and degA(x)
=dega(x) = k. Since G(x) is monic, we may take A(x) to be monic, say
AX) = x*+ b X1+ ...+ by

Suppose p is a prime such that p|b,. We prove next that p < k. Since p|b,,
PInla,ay~* and hence pla,ay™! or p|n!. If plag™'a, then playa, and hence
P < B < k by assumption. Thus we may assume p 4 a} 'a, and hence p|n!.
Factor A(x) into irreducible polynomials, say A(x) = A4,(x)...A,lx) where
4i(x)eZ[x]foralli=1, 2, ..., k,. Note that since p divides the constant term
in A(x), there must be an irreducible factor of A(x) such that p divides its
Constant term. Let us consider this factor and call it 4;(x). Observe that we
may take A,(x) to be monic since A(x) is. Let A,(x) = x*+d._x* "'+ ... +d,
and let o, =, o5, ..., « be the roots of A,(x). Let R denote the ring of
dlgebraic integers in Q(a), and note that since A4;(x) is monic, a€ R. Then
dy= 4+]]i-; and hence N(x)= +dy =0 (modp). Hence by Lemma 3.2
there exists a prime ideal P in R such that P|(a) and P|(p). Write (2) = P*M and
(p) = P°N where (M, P)= (N, P)=(1) and r > 1 and s > 1. Also, by Lemma
33, s<egk

" Now since A;(@) =0, G(2) =0 and thus

S0 that

(1] o"+na 0" 1+ ... +nlaah !t =0.

Let yeZ* and h, = [v/p]+[v/p*]+ ..., and so p*[v! but p**! ful.
Consider the term (n!/v!)a,-,ap ° ‘o’ in (1) where ve{l,2,...,n—1}.
Note that

n! n!
i ha—ho+1 11
p lv! and p *v!

From the relations p*~"|(n!/v!) and P*|(p) we get that P**=~™|(n!/v!). So

_nst (M oK fiAD
PJ!..x+ru ..-sl (_1) (a" —g)(aﬂ)" v (t!) .
V!

Note also that PPs*m=hs — pm djvides («)". Suppose there does not exist
ave(l, 2, ..., n} such that rv < h,s. Then for each ve {1, 2, ..., n—1}, we get
that phns+1 divides (n!/0!)(@,-.)(ao)"°~*(«)* and P***!|(x)" which implies that
Phst1 divides GCD((n!)(a,-1)(@o)"~ %(@), .., (). Thus, from (1),

nla ad~te(@'+ ... +(nla,- ay 2a) = GCD((@), ..., (n!a,~ab 2a)) = P

Therefore (n!a,al~!) < P*! and hence P***!|(n!a,ah™"). But p is a prime
Such that p 4 a,a, and P|(p) so that GCD(P, (a,,aa“))_ = (1). Thus, we get lh:%l
Phs+1)n1). On the other hand, P¥||(p) and p™||n! imply P"*||(n!) which is
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a contradiction. Thus rv < h,s for some ve{l,...,n}. Fix such a v I8
{1, ..., n}. Since h, < v/p+v/p*+ ... = v/(p—1), we get that

vs vk
S<—<K
-1 "p-1
and thus p—1 < k. Hence p <k if p is any prime divisor of b,.
Now let m =n—k+1. Since k < n/2,

v<rv<h

m=n—k+1=>2k+1>k
so by Lemma 3.1, there is a prime p > k such that p|(n—k+1)...(n—1)n. But
G(x) = A(x)B(x)
=x"+na;x" '+ ... +nla,ap”!
=x"+na; x"" '+ .. +nn—1)...(n—k+2)a,_ a2 x""**! (modp)
=x"TMR e X 24 L =) (n—k+2)a,- a5 ?) (modp)-
Now degB(x) = n—k and hence A(x) is divisible by x modulo p. Thus plbo

which implies p < k. This contradicts that p > k.
Consequently k < B, which completes the proof.

We will now explain our strategy behind the proof of the theorem. FiX

a non-negative integer n and assume F,(x) is reducible. Then F,(x) = g(x)h(¥)
where

gx)= Y b and  h(x)= ¥ c;x’
ji=0 i=0

with b, c;eZ for all j and r, s> 1.
Let k be a non-negative integer and p be a prime such that p > B and

n =k (modp). Suppose further that F,(x) is irreducible modulo p. It follows
from Lemma 2 that
[ ]

Fo(x) = g(x)h(x) = F(x)x"~* (modp).

Now since F,(x) is irreducible modulo p and polynomials in Z,[x] have uniqué
factorization, F,(x) must divide either g(x) or h(x). Hence, the other factor 1
a constant times a power of x modulo p.

Now since p > B, p does not divide a, and hence p divides neither b, nof
¢,. Thus, either g(x) = b,x" or h(x) = ¢,x* (modp). Hence, p divides all th¢
coefficients of g(x) or h(x) with the exception of the leading coefficient.

Next we prove that at least one element of {b,_,, b,—,, ..., b,} where
u = max{0, r—B} is non-zero. By Lemma 3 either degg(x)=r < B—1 0f
degh(x) = s < B—1. In the first case where r < B—1, b,¢, = a, # 0 and henc®
by # 0. Suppose now that r > B. Then s < B—1. Assume each of b,-1’
b,.__z, chey b,__g is 0. Then

900) = b,X +b,_p_ ;X514 ... +b,x+by;
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if » = B, then we interpret this to mean that g(x) = b,x". Thus,
@ F0) =gkt
= b, X" h(x) 4 by-p-1 X "2 h(x)+ ... +by xh(x)+boh(x).

Now we observe that all the terms in (2), with the exception of b,x’h(x)', have
degree less than or equal to r—2 since degh(x) < B— 1. Thus, the coefficient of
X"~1 js 0, which contradicts our original assumption that all the ajjs are
Non-zero. Hence, one element of {b,_1, b,—2. ..., b,} is non-zero. A similar
argument shows that one element of {c,—y, C-2, .05 c,; Wwhere
V= max{0, s—B} is non-zero. .

Fix uge{r—1,r—2,...,u} and voe{s—1,5—2,..., v} with b,.c,, #0.
By condition (ii) of the theorem, we have that for all j sufficiently large,
la;| < (j/2) so that for all n sufficiently large, we get that |g;| < (??/2}’ for everzy
j€{1,2, ..., n}. Hence, by Lemma 1, each root a of F,(x) satisfies x| <n".
Now by considering the elementary symmetric functions for the roots of g(x),

We see that
<(Jor<(e
Ib,-1l < ) (’1’) n* < agl (’l’) .

br‘-l
b

r

Which implies

Also

3

and hence,

Ibr-2l < lagl (2) .

Continuing in this manner, and using that 1 <r—uy < B+1, we obtain
r - n 2(r — uo) B+1 ,2(B+1)
2yr—up o0} < n £
< n < la n < |agln
|bl-‘o| = ‘brl (r "0)( ) = | Ol (r—ﬂo)
Similarly,

- +
)nzts vo) < |a°|nﬂ+1n2{3 1),

n
Jeuol < laol{

Uy
Hence,

(3) Byllcy,l < lagl*n®®+ 1.
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The idea is to show that there are many such k and p as above. Sincé
b,,c,, # 0 and each such p divides b,,c,,, we will get that |b, c, | is large. We
will, in fact, show that almost always |b,c, | is too large for (3) to hold. In othef
words, for almost all n we will get a contradiction to the assumption that F,(X)

is reducible. Hence, our theorem will follow.

3. Proof of the Theorem. Let ¢ be a sufficiently large real number. Fof
each positive integer k, define

A, = {p prime: F(x) is irreducible modulo p}
and
A1) = 4, (1, 2]

Let m and n denote positive integers with n < t. Also, let p, q, p,, P, 4;, and 4z
denote primes. Define 6 = 1/4, ¢ = 1/3 and

4 a(n) =a,m)= Y Yy L
B<g<m 1f<p<i¢
peAdg
n=g(mod p)
Now suppose m < t so that if pe (t°, t*], then p > m. Observe that if g, and 42
are distinct primes in (B, m], then since p > m, at most one of n = g, (modp)
or n = q, (modp) can hold. Thus each prime p in (4) occurs at most once. NoW
if we can show a(n) > 24B + 25, then by Lemma 2 and the discussion at the end

of the last section, we get that there are > 24B 425 distinct primes p dividing
b,,Cs, With each p > t°. Also, b,.c,, #0 and n <t imply that

lb c ? (tﬂ}243+25 — £(2¢B+25]!4
U H
- tlH-rﬁ(B-flJ ; £1f4n6(8+1] - |a0I2n6(B+I}
since ¢ is sufficiently large. As we previously described, this would imply that
F,(x) is irreducible and hence f,(x) is irreducible. Thus, all that remains t0

show is that a(n) > 24B+25 for almost all n. We shall prove the stronger result
that for any constant C, a(n) > C for almost all n. We begin with

LEMMA 4. Let m be a positive integer which is < t°. Define I = (¢°, t*]-

Then
B ) 1
S(am-( ¥ T )=ty ¥ L+
n<t B<g<m pelnd, P B<q<m pelnd, P

where E < t34m?,
Proof. We first estimate

Y an) and Y o«*(n).

n=t n=t
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For the first sum, we get

(5) Ya=Y Y Y 1= %Y ¥ X |1

n<t n<1 B<g<m pelNdg B<q<m pelNdg  n<t
n=g(mod p) n=gq(mod p)

-3 ¥ (%+om)=r( ¥ = 1)+El

B<g<m pelNAq B<g<m pelNAg

Where

EE= Y Yong ¥ Y 1<y Yi< ¥ om0,
B<g<m pelNAq B<g<€m pelNdq B<q<m p<t?® B<g<m
Where 7(x) denotes the number of primes < x. Hence, by the Prime Number
Theorem,
I¢
|E,| < @m.
For the second sum we get

rm=Y( X PR EEDWE DYE DI DM

n<t nst B<g<m pelNAd,
n=g(mod p)

=y % % L

n<t B<gsm pelNd,
n=g(mod p)

o=3Y ¥ X Y L

n<t B<q<m pielNAdg p2eINAg\lp1)
n=q(mod py) n=g(mod p2)

Ya=2 X X Y L
n<t B<g1<m B<qga5m pelNAdq,NAq;

q2#q1  n=qu(modp)
n=gz(mod p)

=Y L E K L L

n<t B<gqi<m B<g2S<m pielNAq, p2cINAdqg;\{p1}
g2#q1 n=gqi(modp;) n=ga(modp3)

Where

Next we estimate the above sums. By (5),

):1=Za(n)=r( ¥y T 1)+sl.

n<t B<g<m pelNAq

Also,

a=¥ L X r 1

nst B<g<m pielfdg paelNAg\ip1}
n=g{mod p1) n=g(mod p2)

=Y X ( X 1= 2 1

nst B<q<m pi.pelNAdg pel’nqu
n=g(mod p1p2) n=g(mod p?)
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t

D)

B<q<m pi.preindg \P1P2

1 2
e T (5 3+
B<g<m \pelndq P

+0(1))— y ¥

where
t
E;= ¥ Y om- 3y ¥ (—z+0(1))
B<qS<m py.paelNA, B<g<m peINAdq \P
1
<) X 4t ¥ ¥ 5+ ¥y ¥
B<q<m py,p2elNAq B<q<m pelNdy P° B<g<m pelna,
Now
1 1
t ¥ ¥ =€t Y ¥ =
B<q<m pelna, P B<g<mnzre I
but
1 1 1™ 1
__gh — = —— =
nzg n! J. yzdy Yiz—1 Z—l‘
z—1
and so
1 1
t Y Y <t ¥y g—=<t''m
B<q<m peInd, P B<qsm b —1
Hence,

< £ (T P+ T T 1+07m

B<gsm pelndg B<gs=m pelnAg

Therefore, by the Prime Number Theorem,

.
t&ﬁ 2
Fa (qblog!) (B<q£m

y Y 1+t'm,

9+(7igs)
.f.. —_—
) ¢logt B<q<m

S0
* \% (24
|E)) <{—— | m+—m+1'"°m.
logt logt

Observe that ) ; =0 because p > {° implies p > m.
Finally,

2a=r ¥ ¥ X

nst B<q1€m B<q:€m pielN4,,

g2#q1

B<qi1.92<m pielNAdq; p2elNdaq,\lp1)
Q@*Fq

= Z 1

P2l Ag,\p1}
n=gi(mod pi) n=gqzimod pz)

S |

n=t
n=gi(modpy)
n=qa2(mod pz)

Il

(t
2
B<gsm pelNAd,y P
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+0(1))

X z 2

( t
B<g1,q2<m pielNAq, prelndg\(p1} \P1P2
92¥4q1

1 1) 1 ]
B<q§u€m li(per;»l.. P) (psl’%:dn P pernEnA., |

q2¥q1
p3

+0(1))

=1

+

z

o)

B<gi,g2sm pielNdq
a2#a1  prelNAay\(p1)
1, 1 1
B<qng2<ml \peInaq, P/ \peindq, P
2#*q
Where
1
E= Y Y om-t ¥ ¥ 4
B<gyg2sm pielNAq B<q1,q2<m pelNAq,NAq, P
q2¥q1 p:emdn\fm} q2#4q1
Now
1 1
t X Y =<t X = 0
B<q1.q25m pelNAq,NAq, P B<qi.q2Sm n=1°®
Q2¥Fq q2¥q
Which, as before, yields
L<I z <t1 —ﬂmz
t z Z 2= [8—'1 .
B<qi1.q25m pelNAdq,NAdq, p B<qi.q2€m
q2#4q1 2#q
Hence,
E,<( Y T 140w
B<gi,q2sm pielNAq
q2%q1  paelNAgy\(p1) -
i o -8,.2
D) Y 1+7f'mPg Y 7 +t170m?,
B<gqiq2Sm p1elNAq, B<gig2S€m ¢ ogt
q2¥q1 p2eiNAqg, qQ2¥q
Thus
t® \?
|E, < — ] m*+t' °m?.
logt

By combining these estimates for ), Y,, )3, and ) ,, we get

2
Y a*(n) = r[( ¥ Y 1)+( T 1) ]+E1+E2+E4.
n<t B<q<m pelNAdq P B<q<m pelNd, P

%~ Acta Arithmitica 58.3

(6)
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Now

s(o-(z, 2 30))

-zem-2ga)( £ 2 (2 2 Hm

nst nst B<q<m pelNA, B<g<m pelNAg
Thus, from (5) and (6) we have
1\\? 1
S(am-( ¥ 3 1)) -c 3z 3 L4k
n<t B<gq<m peln, P B<g<m pelNAg

where

1-2 3 Zl

B<g<m pelnA, P

E<E,+E,+E,

l 2
B<g<m peInA, P
 \2 e ¢ \2
<|l— | m+l— |m+t" 'm+| — | m*+t' 'm?
logt logt logt

Ié 1 1)2
+l—m]| 142 -]+ ol IE
(]ng )( B*cg‘-.‘ﬁ.m pe%jq P) (B{E‘at_m pefzn:n.q P

We note that

L L i€ T T gesm

B<g<m peinA, P B<gqsm p<t¢
Now our choices of 6 = 1/4 and ¢ = 1/3 imply easily that
E < t**m?.

This completes the proof.
To apply Lemma 4, we will make use of the Chebotarev Density Theorem:
For g a prime, we view the Galois group G associated with F (x) as a subgroup

of §,, the symmetric group on g letters. We will establish that the proportion of

g-cycles in G is at least 1/g. In fact, for any subgroup G of S, (where n is any
positive integer) which contains at least one n-cycle, the proportion of n-cycles
in G is at least 1/n as we now show. Let C, denote the set of n-cycles in G. Not¢
that by definition, |C,| > 1. Fix g,€C,. Define ¢: G— G by ¢(g) = g~ 'go¥

LeMMA 5. Let g, eIm¢. Then
{geG: ¢(9) = go}l = HgeG: @(g) = g,}I-

Proof. Define A = {geG: ¢(g9) =g,} and B = {geG: ¢(g) = g,}. Not®
that A, B # @. Let he B and define 0(g) = g~ 'h where ge A. We prove first
that |4| <|B| by showing that 6 is a one-to-one map from:A into B.
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Since heB, h™'g,h = g,. So ge A implies

(97 'h) 'golg "h)=h""g(g " 'go9)g 'h=h""goh=g,.

Therefore, g~ ' he B. Now suppose there are g,, g, € 4 such that g 'h = g5 'h.
Then h = g, g5 ' h which implies e = g, g5 * where e is the identity element and
hence g, =g,. So 0 is 1-1. Thus |4] < |B|.

Now define 0'(g) = hg~! where g, he B. We now show that € is
4 one-to-one map from B into 4 and hence |B| < |A4|. Since heB and geB,
h‘lgoh =g, and g7 'gog = g,. So

(hg™ ") 'golhg™") = gh™*(hg,h~"Yhg™' = gg,9™ ' = go.

Therefore, hg~' € A. The same argument we used to show 0 is a 1-1 function
also shows that 6 is 1-1 and thus |B| < |A4].

Hence, |{geG: ¢(9) = g0}l = l{ge G: d(g) = g,}I.
Lemma 6. [{geG: ¢(g) = go}l = n.

Proof. Let A = {geG: ¢(g) = g,} as before. Note that ¢(g) = g, if and
only if g~'g,9 = g, if and only if g,9 = gg,- Thus, the elements in 4 are
Precisely those elements geG that commute with g,. Clearly
{9, g2, ... gh} = A. We will show that 4 = {g, g3, ..., gb}.

Suppose geA and g, =(a,a,...a,). Then gj(a,) = ay, g3(a,) =ay, ...
Hence, {go(a,). ..., gb(a,)} = {a;, a3, ..., a,, a;}. So g(a,) = gh(a,) for some
J=1,2,..., n. Thus, we have g(a,) = g(gb" *(ay) = gb*(g(ay) = g5~ (gblay)
= gs~1*i(a,) = ghlgb '(a,)) = gb(ay). Since a, was arbitrary, g = gh. Thus,
4 ={g,, g3, ..., gb}. Since g,(a,), gé(a,), ..., gh(a,) are distinct, so are the
Clements g,, g3, ..., gp of 4. Hence, |4 =n.

LEMMA 7. Let G be a subgroup of S, containing at least one n-cycle. Then
the number of n-cycles in G is > (1/n)|Gl.

Proof. Let G, C,, ¢, and A4 be as in the above lemmas, and let ge G. First
We note that g~ 'g,g is indeed an n-cycle since if g, = (a,a,...qa,) then

97 'g09(9™ (@) = g7 "go(a) = 97 (a;+1)
and so
97909 = (97" (a))...97" (@,).
Thus,
|C.l = [Im @] = |G|/|A].
This relation and Lemma 6 imply that |C,|/|G| > 1/n.
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We are now ready to apply the Chebotarev Density Theorem.
LeMMA 8. If q is prime with q > B, then

t
At)~r, —
B~ logt

where r, is independent of t and satisfies 1/q <r, < 1.

Proof. If ¢ is prime with ¢ > B then F (x) = q! f(x) = aﬁ.x*7+4:11q)c“‘1
+...+a,q! is such that g ¥ a,a,. Thus, F,(x) is Eisenstein with respect to g and
hence is irreducible. Let r, = |C,|/\G| where G denotes the Galois group for
F (x) and C, denotes the set of g-cycles in G. Clearly, r, < 1. For any root & o
F (), the extension Q(«), which is contained in the splitting field of F(x), has
dimension g over Q so that g divides |G|. Thus, since g is a prime, G must
contain at least one g-cycle; hence, by Lemma 7, r, > 1/q. The ChebotareV
Density Theorem (cf. [3], [6]; also see Section 4 of this paper) implies that the
proportion of primes p for which F(x) is irreducible modulo p is equal to the
proportion of g-cycles in G, which implies the desired result.

Observe that by Lemma 8, for a fixed g, we have that

e *
1 1 1 ™ 1
Y == |-d4,0) =-4,00) + | 54,dy
pelNAq A y y 10 y
t 1

1%

1y 1 P 4
~T, F —logyderO(@) ~ r,loga = rqlog(g)

as t — oo. Thus, we get
Y 1/p =rlog(4/3)+o(1)
pelNAq
as t— o0.
Recall that we wish to show that a(n) > C for almost all n. Let ¢ > 0.
Define

umy= Y r,

B<g<m
and note that since 7, > 1/g, u(m) tends to infinity with m. Fix m so that
(1/2)log(4/3)u(m) = max{C, 9/(2¢)},
and consider ¢ sufficiently large so that m < ¢°. From Lemma 4, we get that
1\)? 1
y (a(n)—( Yy X —)) =t ¥ Y =-+E
n<t B<q<m pelNAq B<q<m pelnNAq P

=ty (rlog(4/3)+o(l))+E

B<g<m

= tlog(4/3)u(m)+of(t).
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For each n <t such that a(n) < C < (3)log(3)u(m), we get
1 1 4 1
- ik [P0 o 727 i =
(“(“) B<§:$m pe%dq P) = (2 o (3) u(m) B<§-‘.§m perin:a,, P)
1. (4 4
< (Elog (5) u(m)—log (3) u(m)+o(l))

1 4
< —3 log (5) u(m)

for ¢ sufficiently large. Thus, we get a contribution of at least {(3)log($)u(m)}* in
the first summand in Lemma 4. Thus, by Lemma 4, the number of n < ¢ such
that a(n) < C is

& log($)u(m) 9

= {BlogBulm)}? log($)u(m)
Since ¢ > 0 was arbitrary, we get that the number of n < ¢ for which a(n) < Cis
o(t). Hence, almost all n satisfy a(n) > C and the proof is complete.

t+o(t) = t+o(t) < et+oft).

4. Strengthening the asymptotics. We begin by considering f,(x)
= B=0a,,_ j(x/j!) where a,, a,, ... are non-zero integers with absolute value
< B. However, we note that results analogous to those established in this
section can be obtained with a,, a,, ... being non-zero integers satisfying only
(i) and (i) of the Introduction. In the previous section, we showed that
k,(z) = o(), where k,(t) denotes the number of reducible f,(x) with n <t. In
this section, we make further improvements on estimating k,(t). We will then
explain how one may similarly improve on the author’s previous work with
Bessel polynomials by further estimating k,(t), the number of reducible y,(x)
with n < ¢

The main idea is to make use of strong versions of the Chebotarev Density
Theorem due to Lagarias and Odlyzko [11]. For a given polynomial
S (x)e Z[x] which is irreducible over Q, we define G = G, to be the Galois
group of f(x). Let C = C, denote the union of the conjugacy classes of
G consisting of n-cycles where n = deg(f (x)). Let K denote the splitting field
for f(x) and R its ring of integers. Note that [K:Q] = |G| < n!. Let D = Dy
represent the absolute value of the discriminant of K. For a rational prime p,

K _ )
we use the Artin symbol [—/—Q] to denote the conjugacy class of Frobenius

(p)

automorphisms in G associated with the prime ideals P in R such that P|(p).

K
We will be interested in those p for which [—Q] is a conjugacy class of

(p)
n-cycles. Let p be such a prime, and let P be a prime ideal in R dividing (p).

Then the Frobenius automorphism associated with P is an n-cycle, and
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therefore, its powers act transitively on the roots of f (x) modulo p. This implies
that f(x) is irreducible modulo p and that (p) is unramified in R.

Now, suppose we are given a prime p, and we know that f(x) is irreduciblé
modulo p. Let P be a prime ideal in R dividing (p). Then one can show agaif
that the powers of the Frobenius automorphism associated with P act
transitively on the roots of f(x) modulo p. This implies that the Frobenius

automorphism associated with P is an n-cycle in G. Hence, [E(}%Q—] is

a conjugacy class of n-cycles.
We define

my(t) =

{p < t: (p) is unramified in K,

K/Q|. .
—(l-’—]— 1s a conjugacy class of n-cycles

Then the above arguments imply that

ne(t) = |{p <t: [%] is a conjugacy class of n-cycles}

= |{p < t: f(x) is irreducible modulo p}|

(also see [6]). We are now ready to state the results of Lagarias and Odlyzko
[11] employing the notation and observations above.

LemmA 9. Let f(x)eZ[x] be an irreducible polynomial over Q of degre€
> 1. Then {(s), the Dedekind zeta function for the splitting field K of f (x), has
at most one zero in the region defined by

s=o+it, 1—(4logD,) " *<o<1, |t|<(4logD,) '

If such a zero exists, then it must be real and simple, and we denote it by Bo-
Furthermore, there exist absolute positive constants ¢, and c, such that if

t > exp(10|G|(log Dg)?),
then
IC|

(1) ——— Li(t)

C
iG] < u Li(t”°)+c1texp[—c2|Gf|' 12(logt)'?),
S

Gl

where Li(t) denotes the logarithmic integral [% dt/logt and the term involving o
above is present only when B, exists.

LemMa 10. Let f(x)eZ[x] be an irreducible polynomial over Q, and
assume that the GRH holds for [y(s). Then there is an absolute constant ¢3
(independent of f(x)) such that for every t> 2,
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[ e (|C| i Gyl
t)——— Li(t)] € c3| — t'"?log(Dgt'“")+log Dy |.
7, (t) |G,rl ) 3 G/l Wk K

It follows from work of Stark [15] that there is an absolute positive
Constant c, such that

B, < max{l—(4logDy)~ ', 1—(c, DY)}

(cf. [117]). Note that Dy > 1 (cf. [1, p. 129]) in the above bound. Also, the
bounds on ¢ in Lemma 9 imply that we could omit the quantity 1 —(4logDy) ™"
above: however, this would not alter our final results. To apply the above
lemmas, we need now only to estimate D,. We will make only a crude estimate
for D,, noting, in particular, that there are exact expressions for the
discriminant of Bessel polynomials [7, p. 119].

Write f(x) = Y7-0a,-;x’, and let a,, ..., &, be any ordering of its roots.
Suppose M is such that |a)| < M for every je{l, ..., n}. One can show that
K is spanned by S = {[]}=1§: 0<e;<j—1} over Q so that some subset
T of § consisting of [K : Q] = |G| elements forms a basis for K over Q. Note
that each element of S and, therefore, T has absolute value < M™™~V/2 < M™.
We next form a basis for K over Q consisting of elements of R. In fact, since
By = ayu; is a root of x"+ Y724 @,-:as~ ' ~'x' for each je{l, ..., n}, it follows
that

T* = {ai" V2¢: te T}

is such a basis. Note that |T*| = |G| and t*e T* = |t* < (apM)™. It is well
known that (cf. [1, p. 403])

4 = |det(o;(tH)?,

where G = {0,, ..., Ox.qy}, is divisible by the discriminant of K. Hence;,
D, < A. Also, from the definition of T*, one has that each |o;(t¥)] < (aoM)".
Hence, we get that

) Dy < 4 < (G]! ((ao MY™) €.

Recall that Lemma 1 implies that for n sufficiently large, f(x) = F,(x) and

je{l,...,n} one has that |x]| < n® Thus, one can take M = n?. Since

IG| < n! < 60" 3, we get from (7) that for f(x)= F,(x),
(8) Dy <n™

for n > n, where ny = ny(B) is sufficiently large. Also, one gets that if n 2> n,
and n, is sufficiently large, then

(9) ‘DK < ninzlﬁll
From (8), we get that for n = n,

exp(10|Gl(logDy)?) < exp(60n*">log?n).
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We consider now n satisfying

(10) no < n < 3/ L0/15()
where t is sufficiently large. This easily implies that
t > exp(10|G|(log Dy)?).

Hence, Lemma 9 can be applied. .
We now turn to our estimate of f,. We shall assume, henceforth, that ¢ 15
sufficiently large. If

max{1—(4logDy)~', 1 —(c, D'~} = 1 —(4logD,)~!,
then (8) and (10) imply easily that tfo < t/logt. Also, if
max{1—(4logDy) ™', 1—(c, D¥') 7'} = 1—(c, DY),
then (9) and (10) imply that tf° < t/logt.
Since |G| < n! < n", we get that
16 < VL) < | /logt.

Since Li(°) < tP°/logt, we get from Lemma 9 that if f (x) = F,(x) is irreducible,
then

t
-1 Lig] <« -
il |G,| 10 < or
and hence,
Icl ¢
11 t)—— —— | € ——.
v s (0) iG, Togt| < iog?t

We are now ready to establish

THEOREM 2. Let agy, a,,... be a bounded sequence of non-zero integers
and let
xn |
J(x) =a, +a,( D +...+a,_;x+a,.
Let k,(t) denote the number of reducible f,(x) with n < t. Then k,(t) < t/l,(t). If
the GRH is true for the Dedekind zeta function associated with the splitting fiel
of f,(x) for each prime g, then this estimate can be improved to k,(t) < t/l5(1)-

The idea is to replace the argument at the end of the previous section with
an argument which makes use of (11) with f(x) = F,(x). To prove the desired

result, it suffices to only consider the case when t is sufficiently large and the
bound B on the sequence ay, a,, ... satisfies B > n,. We want (10) to hold with

each n = g so we set m = 4, /1,(t)/15(t) and consider B < g < m. Note that sinc¢
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tis sufficiently large, m < t'/° < ¢%. Recall that F (x) is Eisenstein with respect
to the prime ¢ and, hence, irreducible. Also, r, = |C|/|G | > 1/q. With 4, and
I'=(¢%, t*] as before, we get that
1®
1 1
Y o= J;dn;,m

pelna, P
i

¢ L

1 1 1
- 40l | ——=—ili O —=
r“.[ ylogy T (I ylog?y y) (logf)
I 1
4 1
= r"log(3)+o(logr)

With u(m) = Y B<q<m?,> We get that u(m) > ) p<g<m /g > loglogm > 1,(t). The
arguments at the end of Section 3 imply that there is an absolute constant
Cs >0 such that the number of positive integers n with ny <n <t and
%(n) < ¢ l,(t) is <t/l(¢). In particular, since ¢ is sufficiently large, a(n)
<24B+25 (ie., f,(x) is reducible) for < t/l,(t) positive integers n < t, giving
the first part of Theorem 2.

If the GRH is true for each (g(s) where K is the splitting field for
I(x)=F ,(x), then one can obtain (11) from Lemma 10 provided only that

1/2

t
(12) log(D1'%!) < T

Recall that Dy < g% and |G| = |Gy | < q! < ¢*. Take m = logt/(3loglog?). Then
One easily checks that (12) holds for each ¢ satisfying B < g < m. Here,
u(m) > loglogm > I,(t), and we get conditionally that k,(t) < t/1;(¢).

We now turn to the Bessel polynomials. It is more convenient to consider
Z,(x) = x"y,(2/x) which is irreducible if and only if y,(x) is. Furthermore, z,(x)
1S a2 monic polynomial in Z[x]. The argument for showing that k, (t) = o(t) in
[S] was very similar to the argument given in Sections 2 and 3. In fact, the
argument was simpler allowing for u, = r—1 and v, = s—1 and, therefore, not
Needing a result like Lemma 3. Letting 4, now denote the set of primes p for
Which z,(x) is irreducible modulo p and setting

am) =Y y 1

B<gqs=m pelNd,
n=g{mod p)

Where [ = (¢, t*] = (¢'/*, t'/*], then the author showed that Lemmas 4 and
8 hold by using arguments similar to those already given here. For Bessel
Polynomials, one can in fact take r, = 1/¢. To prove that z,(x) is irreducible for
almost all n, the author [5] showed that it was sufficient to establish that
(n) > 20. The arguments in this section all carry over to give the same
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estimates for k, (t), the number of reducible z,(x) with n < ¢, as we obtained fof
k,(t). To further improve on the estimate for k, (), we make use of the fact that
k,(t) = o(t) and

LemMa 11. If z,(x) is irreducible, then the Galois group for z,(x) is S

The proof of the lemma can be found in [7, p. 116]. In particular, the
lemma implies that the proportion of k-cycles in the Galois group for ap
irreducible z,(x) is 1/k. Note that without such a lemma, the Galois group need
not have a k-cycle.

We consider now

a*¥(n)= ) Y. I
B<ksm pelNAx
n=k{mod p)

where k represents any integer and not necessarily a prime. Following the
proof of Lemma 4, we get

LeMMA 12. Let m be a positive integer which is < t°. Define I = (&%, t*]-
Then

(o (3 2 -5 3 L

n< B<k<m pelNAx B<k<m pelnAxP
where
E < t3*m?,
Define
(13) u*(m) = Z 1/k.
k<m

Zx(x) irreducible

Using u*(m) instead of u(m) in our arguments gives that

L t3*m?
ky(t) < t‘l,,,(m}+0(u*(m))
provided that m < logt. Since z,(x) is monic and its roots have absolute valu¢

<n(n+1)<2n® (cf. [7, p. 82]), we can use the same bounds on t_be
discriminant D, that we had for F,(x). As a consequence of (10), we requir®

no <m < 3./L,(t)/15(0),

where ny = ny(2). The key now is to make use of the already proven result thal
z,(x) is irreducible for almost all k so that one can obtain the estimate

u*(m) > logm,

thus saving a logarithm factor over the estimate we had for u(m). The end result
is the following
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THEOREM 3. Let k,(t) denote the number of reducible Bessel polynomials
2,(x) of degree n<t. Then ky(t) < t/l5(t).

A similar argument works in the case that the GRH holds. We get that if
the GRH holds for the Dedekind zeta functions associated with the splitting
field of each z,(x), then k,(t) < t/loglogt. We note that the GRH need only be
assumed, in fact, for a positive proportion of such Dedekind zeta functions
since u*(m) > log m will follow even when the z,(x) in the definition of u*(m) are

further restricted to be from any set which consists of a positive proportion of
the z,(x).

On the other hand, one can get a better conditional result only under the

assumption of the RH. Let y =exp((l/ﬂ)./logrloglogt). It follows from
a result of de Bruijn [2] (also see [12, p. 13]) that ¥(t, y), the number of

Positive integers n <t with all the prime factors of n being. <y, satisfies
P(t, y) < t(log?y)exp(—aloga),
Where o = logt/logy. Hence, one easily gets that

P(t, y) < texp((— 1/\/5.+8)~ /logtloglogt),

Where ¢ is an arbitrary positive real number. On the other hand, assuming the
RH, Selberg [14] has shown that

Y (pre+1—p)* < t(loge)?,
Pk St
Where p, denotes the kth prime. Hence,

z (Px+1—p2) < (tlog?t)/y.

Pe<t
Pi+1—p>y

Thus, the number of positive integers n < t lying in a gap between consecutive
Primes of length >y is

< (tlog*1)/y < texp((— I/ﬁ +¢)/logtloglogt).

For n>3, let k(n) = min{n—p;+1, pj;—n} where p; and p;,, are the
'=0nsecutwe primes such that ne(p;, pj+,]. Assuming thc RH, the above
implies that the number of mtegers n>=3 and <t for which k(n) >y is

< texp((— 1/\/5+5),z‘logtloglogt the other hand, at most

< texp((— 1/\/—-1-8), /‘logtloglogr) posrtlve integers n < t have all their prime
factors < y. Thus, assuming the RH, the number of positive integers n < ¢ for

Which n(n+1) does not contain a prime factor > k(n) is < texp((— l;‘\/i+s}

x /logtloglogt). Thus, by the observation of Grosswald mentioned in the
lntroduction, we get

THEOREM 4. Let ¢ > 0. Assuming the RH, we have that

ky(t) < texp((— 1/5/2 +¢)/logtloglog?).
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In closing, the author would like to thank Jacki Pitts for organizing and
writing up a good deal of this material as part of a requirement for her M.S.
degree at the University of South Carolina. The author further thanks Carl
Pomerance for suggesting using reference [14] as in the final part of this paper:
In addition, the author is greatly indebted to David Richman for sever
helpful comments and suggestions including the proof of Lemma 7. Finally, the
author is grateful to Emil Grosswald for his constant encouragements through
the years knowing well that they will remain with this author in the years 10
come.
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LVIIL3 (1991)

Norme relative de Punité fondamentale et 2-rang du groupe
des classes d’idéaux de certains corps biquadratiques
par

StéPHANE LouBouUTIN (Caen)

Notations. k désigne un corps quadratique imaginaire de nombre de classes
didéaux h(k) impair, de discriminant Dy, donc égal & —4, —8 ou égal a p,
P =1 (mod4) premier, d’anneau des entiers R, de groupe des classes d'idéaux
H(k) et de groupe (fini) des unités (ie. de ses racines de I'unité) U,.

K est une extension quadratique de k, Ry son anneau des entiers, h(K) son
nombre de classes d’idéaux et H(K) son groupe des classes d’idéaux (re-
marquons que K étant totalement complexe, les notions de classe stricte et
large coincident). Nous notons jx, 'homomorphisme canonique de H(k) dans
fl' (K). Le nombre de classes de k étant supposé impair, cet homomorphisme est
Ici injectif (car Ny 0jxu M'est autre que I¢lévation au carré). Nous notons
Dy, le discriminant absolu de K/Q, dx l'idéal de R, égal au discriminant
telatif de I'extension K/k et Do le discriminant absolu de k/Q. Nous avons
donc Dy = N, wo(0ki)(Di)® . K étant totalement complexe et de degre quatre,
Son groupe des unités Uy est de rang 1 et nous notons nx une unité
fondamentale. La norme relative Ngpu(nx) de ng étant une unité de k, elle est
Une racine de l'unité de k et est égale 2 + 1 pour k # Q(i), Q()), elle est égale
d 41, +i pour k = Q(i), et est finalement égale a +1, +j, +j2 pour k = Q(j).
!‘ est aisé de voir que pour k = Q(i) on peut se ramener aprés multiplication
eventuelle par i au cas ou Ngu(ng) = +1 ou i, et que pour k = Q(j) on peut se
tfamener aprés multiplication éventuelle par j ou j2 au cas o Ng, () = +1 ou
~1. Finalement, nous posons g = —1 lorsque k # Q(i), et ¢ =i lorsque
k = Q(i), de sorte que U, est inclus dans Ng,(Uy) si et seulement si g,
appal'ﬁeﬂt a NK,‘I(UK)’

Introduction. Nous déterminons premiérement le 2-rang du groupe des
Classes d’idéaux de K. L'imparité du nombre de classes de certains de ces corps
biquadratiques nous permet de secondement donner au corollaire 6 une preuve
Tapide, dans notre cas particulier, de la loi de réciprocité établie, par
E. Hecke, et au corollaire 11 une preuve de la loi de réciprocité établie par
P. G. L. Dirichlet. Nous développons finalement aux propositions 13 et 14 des

Moyens de calcul de la norme relative de I'unité fondamentale de K. Nous nous
astreignons, délibérément, a n’utiliser que les fondements de la théorie
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