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In 1929/30 Mahler introduced a new method for investigating the
arithmetic and algebraic properties of functions satisfying certain type of
functional equations. During the last ten years several papers concerning
Quantitative results connected with Mahler’s method were published. Galo-
thkin [4], Miller [5], Molchanov [6], and the author [2] derived transcen-
ence measures for the numbers studied by Mahler, whereas Nesterenko [10],
Moichanov and Yanchenko [7], and the author [1, 3] gave measures for the
algebraic independence of these numbers. The sharpest of these measures for
dlgebraic independence was proved by Nesterenko who used commutative
dlgebra to deduce his result. In this note we shall prove the following theorem.

THEOREM 1. Let A(z) be an mxm matrix and B(z) be an m-dimensional
Yector whose entries are rational functions of z with algebraic coefficients. Let
F(z) = (/1 (@), ..., fm(2) be a vector of formal power series with algebraic
Coefficients which converge in some neighborhood U of the point z = 0 and satisfy

F(z%) = A(2)F(2)+ B(2),

Where d > 2 is an integer, and which are algebraically independent over C (z).
Suppose that o is an algebraic number, acU, 0 < |a| < 1, and none of the
"umbers a, o4, o, ... is a pole of A(z) or B(2).

Then, for any H and s > 1 and for any polynomial ReZ [x,, ..., X,]\{0}
Whose degree does not exceed s and whose coefficients are not greater than H in
Gbsolute value, the following inequality holds:

|R(f, @), ..., fn(@)] > exp(—ys™ (In H +s2m*2)),

Where y is a positive constant depending only on « and on the functions f, ..., f,.

Theorem 1 is an improvement of Nesterenko’s result, Theorem 2 in [10],
Who showed for a smaller class of functions f; that

IR(f; (@), --., f,,(@))| > exp(—Cs™In H)
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under the additional hypothesis H > ¥ (s), where the dependence of ¥ on § is
not effectively computable.
If F(z) satisfies the functional equation

F(z) = A(2) F(z)+ B(2)

where the entries of A(z) and B(z) are polynomials in z with algcbrfiic
coefficients, we can improve the bound given in Theorem 1.

THEOREM 2. Let A(z) be an m x m matrix and B(z) be an m-dimensiond!
vector whose entries are polynomials in z with algebraic coefficients. L-‘:"
F(2) =(f,(2),....,[(2)) be a vector of formal power series with algebrait
coefficients which converge in some neighborhood U of the point z = 0 and satisfy

F(z) = A(z) F(z)+ B(2),

where d > 2 is an integer, and which are algebraically independent over C(2)-
Suppose that o is an algebraic number, acU, 0 < |x| < 1, and none of the
numbers o, o°, o, ... is a zero of det A(z).

Then for any H and s > 1 and for any polynomial Re Z[x,, ..., xm}\{o}
whose degree does not exceed s and whose coefficients are not greater than H it
absolute value, the following inequality holds:

IR(f1 @), -y frn (@) > exp(—ys™ (In H+5"* In(s + 1)),

where y is a positive constant depending only on o and on the functions f,, ..., fw
The algebraic independence measures given in Theorem 1 and Theorem 2

allow us to estimate the transcendence type (see [12], p. 100) of a special field of

transcendence degree m. In the case of a transcendence degree m > 2 this i
apparently the first algebraic independence measure which is sharp enough 10
give an upper bound for the transcendence type.

We will prove Theorem 1 by the method used by Nesterenko in [10]. The
essential fact that allows us to improve his result is an estimate for the zer?
order of P(z,f,(z),...,/,(z)) where P is a polynomial. This estimate was
proved by Kumiko Nishioka [11].

Theorem 2 can be proved in the same way as Theorem 1. Here one only
has to apply the same idea which was used in [2] to improve the result of
Miller [5]. Hence we omit the proof of Theorem 2.

1. Preliminaries. We say that a prime ideal p < Z [x,, ..., x,,] =:Z[]
has height q if there exists in p a strictly increasing chain of ¢ prime idea!-"
(0)=po=... < p,-y = p, = p and there does not exist any longer chain of this
type. We let h(p) denote the height of p and we define the height of an arbitrary
ideal a as follows: h(a):=min{h(p)| p = a}. Suppose that r is an intege"
1<r<m, andu; 1 <i<r, 0<j<m, are variables which are algebraically
independent over the field Q of rational numbers.
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For an arbitrary unmixed homogeneous ideal of Z[x] with r=m+1

Z [uyo, ..., u,,] (see [8], Proposition 2). Let F be the generator of this ideal.

€ let H(I) denote the maximum absolute value of the coefficients of the
Polynomial F, and let N(I) = deg,, F, where u;:= (ujo, ..., Ujm), 1 <j<r.
Uppose that @ = (w,, ..., w,)eC™"! is a nonzero vector, and S?
= (o« jk<ms 1 <i<r, are skew symmetric matrices whose entries are not
Connected by any algebraic relation over Z [x, u,, ..., u,] except for the skew
Symmetry s§}+s{) =0. For any polynomial E€Z[u,,..., u,] we let x(E)

denote the polynomial in the variables s, j < k, 1 <i < r, which is obtained

by substituting the vectors S?w, 1 < i < r, in place of the variables u, in E. If
CLs®™, ..., 8] is the ring of polynomials in the variables s with complex
Coefficients, and F is the generator of the ideal T(r), then we define

I (@)|:= |ewlg ™" H (x(F)),

Where |o|,:= maxg<;<ml®)] and H(x(F)) is the maximum of the absolute
Values of the coefficients of the polynomial x(F).

We will derive Theorem 1 from the following theorem. The main task of
this paper will then be the proof of Theorem 3.

THEOREM 3. Suppose that D > 1, H > 1 and the conditions of Theorem 1
are fulfilled. Suppose that I = Z [x] is an unmixed homogeneous ideal such that
InZ =), r=m+1—h()>1, and

N(OH<2mrpm ', InH(I)<A" D" "InH,
Where the constant A is greater than some bound which depends on the functions
fiv...,f, and the number o.

Then there exists a constant y depending on f, ..., f,., « and i such that for
Al H with InH > yD*"*? the following inequality holds
(1) InjI(1, £, (@), ... fu(@)| = = (DInH()+N()InH) D" 1.

Proof of Theorem 1. We now show how Theorem 1 follows from this
theorem. Suppose that the conditions of Theorem 1 are fulfilled and let
PeZ[x] be a homogeneous polynomial with P(1, Hpyoae X)) SR Eqsoes
"+, X,,), deg P = deg R, and H (P) = H(R). By Lemma 1 we have for the ideal
I« Z [x] which is generated by P the following inequalities:

N(I)=degR < s,
InH(I) <InH(R)+m?>degR <InH+C,s,

(1, f @) < [R(f @)| Cs.

The constants C,,C,,... depend only on f,,...,f,and o. Let r=m, D=5
and H, = Hexp(C,s*™*?). With H, instead of H the requirements of Theorem
3 are now fulfilled and we obtain
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In|R(f (@) = —C,s™(In H+5*"*2),

the inequality asserted in Theorem 1. .
In the statements of the following lemmas we denote by wmeC™"
a nonzero vector. :

LeMMA 1. Let I = (P) be the principal ideal of Z [x] which is generated bY
the homogeneous polynomial P. Then
N(I)=degP, InH(I)<InH(P)+m*degP,
[ (@)] < |P ()| |olg *5F (m+ 1)2mds?,
For the proof, see [9], the proof of Proposition 1.

LemMMA 2. Suppose that I is an unmixed homogeneous ideal in Z [-“:.l'
hh<m; I=I1 n...nI;,n...n1, is its irreducible primary decomposition, "
which for 1 <s we have | nZ =(0), I;xyn...0n[,nZ =(b),b#0; for | <%

let p,= \/I_,, and let k, be the exponent of the ideal I,. Then
1) Si-1kN(p) = N(D),
2) Inibl+ Yi=1 kInH(p) <InH()+m*N(I),
3) Inbl+ Yi-1 kyIn fp,(@)] < In I (@) +m? N ().

When s =t the term In|b| does not occur in 2) and 3).

For the proof, see [9], Proposition 2.

DEFINITION. For any two nonzero vectors « = (a,, ..., @,), B = (Bo> -+
ey B)EC™Y, we define

fle—Bll:= lalg * |Blo * max |o; B;—B; o).
0=i,j=Em
LemMA 3. Suppose that Qe Z[x], Q #0, is a homogeneous pofynomiﬂ!;
pc Z[x] is a homogeneous prime ideal, pnZ =(0), p #(0), r=m+!
—h(p) = 1;

@ @) <e*, X>0,

G 1Q (@)l wlg ***2 < H(Q) ™" (deg @ +1)"?m*2),

and, finally, the following equality holds for some ¢ > 1:
min (X, $In(1/0)) = —oin(|Q (v)) wls *9),

where ¢ = min |\@— |, and the minimum is taken over all zeros pe C™**, g # 0

of the ideal p.

Then for r > 2 there exists an unmixed homogeneous ideal J = Z [xJ,
JNnZ =(0), h(J)=m—r+2, with

1) N(J) < N(p)degQ,
2) InH(J) < degQInH(p)+ N (p)In H(Q)+m(r+1)N (p)deg Q,
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3) In[J(@)| < —X/20+degQInH (p)+ N(p)ln H(Q)+8m> N (p)degQ.
In the case r = 1, the right hand side of the last inequality is nonnegative.
For the proof, see [10], Lemma 5.

LemMA 4. Suppose that I < Z[x] is an unmixed homogeneous ideal,

1nZ = (0), and r = m+1—h(I) > 1. For every nonzero vector @€ C™"", there

exists q zero peC™*', B#0, of the ideal I such that
N(Dn|lo— Il < (In|I(@)])/r +3m>N(I).
For the proof, see [10], Lemma 6.

LEMMA 5. Let wq =1 and suppose that {€C is algebraic over Q(w,, ...
s @,) and integral over Z[w,, ..., ®,]. Furthermore, suppose that y, 7,
and Y are positive numbers, P is a polynomial in Z[X,, ..., X, y] which is
homogeneous in the variables Xgs ...s Xy and satisfies
v=1
P= Y P/xg,.... Xp)y, degP;+InH(P)<Y,
=0

—7,X <In|P(wg, ..., 0, | < =7, X.

Ifys y5 and X >y, Y, where y, and y, are constants depending on @, , ..., ©p,
Ly, 7, and y,, then there exists a homogeneous polynomial Q € Z[x] satisfying

the conditions

degQ < ysdeg,P, MH(Q) <7y:Y, —7:X <n|Q@) s —7sX
Where y,, y¢, 7, and yg are positive constants depending on @, , ..., @y, §, v, 73
and y,,

‘Remark. In the case that w,, ..., w, are algebraically independent
4 slightly different version of Lemma 5 can be found as Lemma 10 in [9]. If
@y, ..., o, are algebraically dependent, one can assume that there isann <m
Such that w,,..., w, are algebraically independent and w4y, ..., @, are
Algebraic over Q(w;, ..., »,). Hence there exists a {’ algebraic over Q(a,, ...
“.,w,) with the property that (' is integral over Z[w,,..., w,] and
Dnsyy..., 0, €Q(®y, ..., ®,, {). Now one can apply lemma 5 as already
Proved for algebraically independent w,, to prove Lemma 5 in the gen-
€ral] case.

For a formal power series f (z) we denote by ord f (z) the zero order of f(2)
at 7 — 0.

Lemma 6. Let f,(2), ..., f,(2)€ C[[2]] be formal power series satisfying the
Junctional equations

fi@ = Az, 1), .. ful2) (1 <igm),

Where d > 2 is an integer and A,(z, X, :-., Xy €C(D)[Xy, ..., Xp], 1 ST < m,
are polynomials with deg_A; < 1. Suppose that Q(z, X,, ..., X)€C[z, Xy, ..., X,];
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Q #0, is a polynomial with deg,Q, deg.Q < N. If Q(z, f (2)) £0, then
ordQ(z, f (z)) < yN™*!

where y is a positive constant depending only on the functions B oyl

Remark. Lemma 6 is an immediate consequence of the Theorem in [11]-

2. Proof of Theorem 3. We shall prove Theorem 3 by induction on r and
for each fixed r by contradiction. We assume that under the conditions of the
theorem inequality (1) does not hold, ie.

@) Injl(@)] < — A (DlnH(I)+ N(I)lnH)D" !

We shall show that this is impossible if 4 is larger than C, and if InH is larger
than C,D*"*?, where the constants C,, C, and all the constants C,, Cj, .-
appearing in the proof depend only on the functions f and the algebraiC
number a. The proof is divided into four steps.

Step 1. Reduction to a homogeneous prime ideal. There exists a homoge-
neous prime ideal p <« Z[x], pnZ = (0), h(p) = m+1—r with

(5} N(p) ﬂ im—rDm-r-} 1’
(6) InH(p) < A"~"D™"(InH +m? D),
7 Inlp(@)] < ~(2/3)(DInH(p)+ N(p)inH) D"~ *.

This assertion can be proved by the following argument: Suppose, on the
contrary, that there exists no such homogeneous prime ideal and consider the
ideals p,, ..., p, defined according to Lemma 2 for the ideal I. Since
InZ = (0) we have s > 1. The inequalities (5) and (6) follow from 1) and 2) of
Lemma 2 and from the assumption that I satisfies the conditions of Theorem 3-

If, as we assume, (7) is false for the prime ideals Pi» ..., P, We get by 3) of
Lemma 2

Il @) +m*N() > ¥ klnlp,@)

=1

> — (3D Y kInH(p)+D " InH Y kN (p))
I=1 =

I=1
> —(X3) (D (InH()+m*N(I))+ N(I)D" " 'InH).
Now from this inequality and from (4) it follows that for 4 > 1,
D (DInH(I)+ N(I)In H)+(D" + 3m)ym* N(I) > 30"~ "(DIn H(I)+ N (I)In H).

Thus we have a contradiction if InH > C, D and the existence of a prime ideal
with the above mentioned properties is proved.
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Step 2. Construction of an auxiliary function. We shall construct an
duxiliary function with a high vanishing order at the point z = 0. This will be
done by Siegel’s Lemma and therefore, we have to study the coefficients of the
Power series expansions of the fi(z) at z=0.

From our hypothesis that the f;(z) are algebraically independent we can
deduce that detA(z) is not identically zero. Hence we can find an m x m matrix
4,(z), namely A(z)"', and an m-dimensional vector B,(z) whose entries are
Tational functions with algebraic coefficients such that the functional equation
F(z) = 4,(2)F(z%)+ B,(2) holds.

Let e be a natural number with the property that the entries of z°4,(z) are
Tegular at the origin, and for 1 <i<m let )=, f,z' be the power series
€xpansions of the functions f;. Then we define

F(z) = (Z JuZ  Nhcism

It is easily checked that F(z) satisfies a functional equation
F(z) = A(z)F(z)+ B(2)

Where A(z) is an mxm matrix and B(z) is an m-dimensional vector whose
entries are rational functions with coefficients from K, the number field
8enerated by « and the coefficients of the entries of A(z) and B(z). Furthermore,
all these entries are holomorphic at z = 0. _

For i,j=1,....,m let Y a2 and ) “ob,z' be the power series
€Xpansions of the entries of A(z) and B(z) respectively. By the functional
®quation we have the following recursion formula:

m r—e
Je=bu-et Y Y GipSier—k-eya-
- k=0
dlit—k—e)

Since the entries of A(z) and B(z) are rational functions, we can find a constant
Cq such that for i,j=1,...,m, t >0 the houses of the coefficients a;;, and
b, are bounded by C4*!. From this and from the recursion formula we see that
the houses of the coefficients fu are at most C¥''. Let p,,...,p, be
Nonnegative integers and f,, be the power series coefficients of

f@:= f,@"... [P = ;o =g

Since the S are sums of products of the f,, we have the inequality
(8) 7] < ciiee
Where (ul:=pu,+ ... +4,,.

1o Acta Arithmetica 58.3
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By similar arguments one can show that there exists a natural number D
such that D¥*'f, is an algebraic integer. We set N:=[u*"D] where
p>™*2 =} and we have to construct a polynomial ReZ[z, x,, ..., Xu)’
R #0, with deg.R < N and deg,R < N such that the function G(z):=
R(z, £ (2)) has a zero of a sufficiently large multiplicity at the point z = 0. we
denote the power series coefficients of G(z) by y,, ie.

6= 17

These coefficients are linear forms in the coefficients of the polynomial R-
Hence we can apply Siegel’s Lemma (see [12], p. 10) to solve the system of
linear equations y, = 0 for 0 <t < C,N™*! where C, is a positive constant
small enough to guarantee that with x:= [K:Q] the inequality

(N+ 1)(””‘) > 2xC, N™*!

holds.

Thus we can find a polynomial Re Z[z, x,, ..., x,,] with the following
properties:

(a) deg,R < N,deg,R<N,

(b) InH(R) < CgN™*!,

(c) ordR(z, f(z)) = C,N™*1,

(d) ordR(z,f(z)) &£ O N+,

The properties (a), (b) and (c) are consequences of the construction vi2

Siegel's Lemma and the inequality (8). Property (d) follows by the application
of Lemma 6.

Step 3. Deduction of an analytic inequality. Suppose that K = Q(() wher¢

{ is integral over Q. and let a be a natural number with axeZ[(]-
Furthermore, let T (z) be a polynomial with coefficients from Z[({] such that all
the entries of T(z)A(z) and T(z)B(z) are polynomials with coefficients from™

Z[{].

We define a sequence of polynomials by setting R,:= R and for [ > 1
%) Rz, xyy ..., Xp):= T(2*R,— (2%, A(2)(x,, ..., x,))'+ B(2)).

Then, from the functional equation, we have

(10) Rz, f(2) = (Jl:_lo T(z"))”R(z"l,f(z"'))-

From (9) we can deduce the following inequalities for the degrees and length
of R;:

deg R, < deg R,_,, deg,R,<ddegR,_;+C,N,

Mabhler type functions 247

InA(R) < InAR,_)+C, N,

Where A(R,) denotes the sum of the houses of the coefficients of R,. Hence we
et by the result deduced in Step 2

deg, R, <N, degR, <C,,Nd,
InA(R) < Cy5(N"+I)N.
Let N,:=deg,R, for [>0. It is easily checked that the coefficients r,,, of

N

Rz, %505 %)= Y. ¥ rna2f@

v=0|u|<N

are from Z[{]. Hence the same is true for a"a’ry,, if 0 < v < N, and |y < N
For 1>0,0<v< N, |sl<N and 0<n<x we define 7,,, by

Ay = Y Tywl™
n=0

With
N x=1

P, x):= Y Y Y tumwa™ "y xilelxy. . xbm

v=0|p|ENn=0
We have a™R(«, f(®)) = P((, 1, f (@). P,eZ[y, x] is homogeneous in the
Variables x,, ..., x,, and we get the following bounds for its degrees and length:
deg P, < C,,, deg,P,<N
InA(P) < C,5(Nd'+ N"*1 +IN) < C,N(d'+ N™).
By (10) we have a relation between P, 1, f (¢)) and G(a*'), and therefore we
have to study the behaviour of G(z) for small z. From the definition of the y,,

the upper bound for H(R), and (8) we conclude that lnﬂ < Cy,(N™*141t) and
that D1y, is an algebraic integer for ¢ > 0. But we have y, = 0 for t < C,N™*!

and therefore lnlﬂ < Cyt for all t 2 0.
We let 7:= ordG(z) and we get

iy | ¥ 92| < CyollzleCrsy*t,
t=t+1

if we assume that |z <e €. By the fundamental inequality we have
Iy > C,ot. If we combine this with (11), we see that

.21 < 16@) < 3y.2,
if only In|z| £ —C,,t. Now we set z:= a? and the last condition is fulfilled as
Soon as d' > C22 N™*! Hence we get under this assumption

—Cs N™*1d < In|G (@) < —Cpo N™*1d.
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From these inequalities and from (10) we get
—CysN™ 1 d' < In|P(C, 1, f ()] < —CygN™1d!,

if N > C,, and d' > C,4N™**. By Lemma 5 applied to the polynomials P, it
follows that there exist homogeneous polynomials Q,e Z[x] such that

(12) deg,Q, < C,oN, InH(Q) < C,oNd',
(13) —~C31N"'+1d'gln|Q,{w)|£ —CHN'"“dt

where @:=(1, f, (@), ..., f,.()).

Step 4. Application of the results from commutative algebra and conclusion
of the proof. Let p be the ideal which was constructed in Step 1 and which
depends on the given positive numbers D, H and i. We define

o:=min{|lo—gl|| B is a zero of p}
and we deduce from Lemma 4 the inequality
In(1/g) = —(rN(p))™'In|p(w)|—3m>.
Together with (7) it follows that
In(1/g) = C33 D" *InH—3m>,

and if we assume D" 'InH > C,,N™*1d', we see that 3In(1/g) > 2C,, N™*'d"
It is easily checked that

L(DInH(p)+N(p)InH)D" ™! > 2C,, N"*1d',

as soon as D" 'InH > C,sN™*!d'. Hence by the results of Step 3 we can find
a natural number n >n' with

(14) 2C5, N™*1d" < min(32"(DIn H(p)+ N(p)In H) D"~ !, 4In(1/0))

< 2C, Nm+1gnt1
and
(15) —C3y, N"*1d" < In|Q, (@)l < —C;, N1 dr,
if the conditions N > C,, d" > C3,N™*", and
(16) D' 'InH > Cyg N™*1d™

are fulfilled. By Q we will denote a polynomial Q, corresponding to such
a number n.

We choose n’ such that d” > C;oN™*' > d" ! where C,, is a sufficiently
large constant.
Now we apply Lemma 3 to the ideal p and the polynomial Q and we set

X:=1(DInH(p)+ N(p)lnH)D" !
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and therefore, inequality (2) is true by the construction of p. Inequality (3)
follows immediately from (12) and (15) if we assume that N, n > Cy,, and using
(15) we see that

—2C3, N™*1d" < In(|Q ()| |w]g **9) < —C3, N™"1d".

If we combine this with (14) and if we define ¢ as in Lemma 3, then we can
Prove that 1 <o < 2C,,C3,'d. Hence the requirements of Lemma 3 are
fulfilled.

We set Q:= DinH(p)+ N(p)inH and we obtain from (5), (6) and (12)

(17) InH(Q)N(P) < C3oNd"N(p) < C4y A"D"N™"Q < Cyp p*"Q.
From (12) and the definition of N it follows that
(18) degQInH(p) < C,o NInH(p) < C 312" Q.
And if we assume that InH > C,,D, we get the inequalities
(19) 8m2degQN(p) < C,sNN(p) < Cuep®™Q.
In the case r =1 we have by Lemma 3
X/(20) < degQInH(p)+ N (p)In H(Q) +8m?deg QN (p).

The left hand side of this inequality has C,,u*""?Q as a lower bound
Whereas the right hand side is at most C,zu*"Q. Thus we have the desired
contradiction if A is sufficiently large and if H satisfies (16). But as (16) is
a consequence of the condition InH > yD*™* 2, Theorem 3 is proved for r = 1.

We now consider the case r > 2. By Lemma 3 there exists an unmixed
homogeneous ideal J = Z[x] with h(J)=m—r+2, JnZ =(0) and

N(J) < N(p)degQ,
InH(J) < degQInH(p)+ N(p)In H(Q)+m(r+ 1) N(p)degQ,
In|J ()] < —X/(20)+degQIn H(p)+ N(p)In H(Q)+8m’ N(p)deg Q.
Hence we get by (17), (18) and (19)
N(J) < Cyop®"Q,
InH(J) < Csoi®"Q,
InlJ (@) € —Cg g®™ D~ 1Q+Cqyu?™Q < —Csq®+rpr=1Q.

The last inequality is true if p > Cg,. It is easily checked that the ideal
J satisfies the requirements of Theorem 3. Hence from the induction hypo-
thesis, that the theorem is already true for r—1, it follows that
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InlJ (o) > —4~(DInH(J)+ N({J)InH)D" 2
—Cs A IDr 1m0 > —Cgoumtar-2pr-10

But this contradicts the upper bound for In|J(w)| as soon as y is sufficiently
large. Hence Theorem 3 is proved.
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On an irreducibility theorem of 1. Schur
by
MicHAEL FILASETA* (Columbia, S.C))

Dedicated to the memory of Emil Grosswald

" 1. Introduction. In Grosswald’s book Bessel Polynomials [7], he inves-
tigates various aspects of the Bessel polynomials

" ()
jZ:O 2(n—j)j P
In particular, he discusses several results about the irreducibility of y,(x) over
the rationals (also see [8, 9]). He proves that y,(x) is irreducible if n = p™, p+1,
or p—1 where p is a prime and m is a positive integer. He further shows that the
largest degree of an irreducible factor of y,(x) is asymptotic to n. Later,
Grosswald [10] pointed out that if p;<n<pj+; where p; and p;,, are
Consecutive primes, then y,(x) is irreducible provided that the product n(n+1)

as a prime factor > min{n—p;+ 1, p;+, —n}. This fact is sufficient enough to
Cstablish that y,(x) is irreducible for every n < 10°, It may in fact imply that
Cvery y.(x) is irreducible, but to prove so seems to require a much better
Understanding of gaps between primes than is currently known. On the other
hand, with a little work (cf. [5]), one can use Grosswald’s observation to show
that a positive proportion of the y,(x) are irreducible. More specifically, if k, (¢)
denotes the number of reducible y,(x) with n < t, then there is a constant ¢ < 1
Such that k,(f) < ct for all ¢ sufficiently large.

Mainly motivated by Grosswald’s work and his encouragemcnt the
uthor pursued the problem of determining when y,(x) is irreducible. He was
able to show [5] that k, () = o(¢). Later in Section 4, we will see how work of
Lagarias and Odlyzko [11] can aid in establishing that k, (t) < t/I;(t) where [,,(t)
denotes m iterations of logt. Under the assumption of the Generalized Riemann
Hypothesis (GRH), the same arguments lead to k, (t) < t/loglogt. On the other
hand, we shall see that Grosswald’s observation above and the Riemann
Hypothesis (RH) imply the better result k, (1) < texp((— 1/x/2+¢) /logt loglog?)
for any ¢> 0.

——
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