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Introduction. In a recent paper [5], Kohnen and Skoruppa, using the
:clnkin—Sclberg method, investigated a novel Dirichlet series Dy (s) associated
With a pair F, G of Siegel cusp forms of integral weight for the modular group
SD;(Z) of degree 2; prompted by the form of a functional equation it satisfies,
they established its “proportionality” with the “spinor” zeta function Zg(s)
altached to F by Andrianov, whenever F is a Hecke eigenform and G is in the
aass space.

~ An analogous zeta function Z.(s) (but with “Euler factors of degree 67) for
®igen cusp forms F of weight k with respect to the Hermitian modular group I',
of degree 2 over @:= Z[./—1] has been studied by Gritsenko [2], [3]. Using
the results of Kojima [6] on the “Saito-Kurokawa descent” Fi—f for F in the
televant Maass space, Gritsenko [2] proved (for k divisible by 4) the identity

Z‘F{s} = C(s-—k+1}L(s—k+2, (:))C[s——k+3lﬂ_,.{s)

Where R, is the (Rankin) symmetric square zeta function associated to f and
L(., (:f‘)f is a Dirichlet L-series for the character (=%).
This article is concerned with an analogue of D¢ for Hermitian cusp
forms of weight k (divisible by 4) for I', and its possible relationship with Z.
ven when F and G are both in the Maass space, we find that D¢ ¢ and Z; are
10 longer “proportional”, unlike in [5]. Although both Dg (s) and Z(s) admit
Unctional equations under s+ 2k —3—s, one faces at the same time a distur-
Ing difference in the respective I'-factors involved therein. Nevertheless, we

Can prove that

_l-k+)
Lis—k+2, (5%)
For a fundamental operator identity needed in the arguments, §4 provides

& proof (quite algebraic and) different from the rather sketchy proof in [5] for
the corresponding identity there; of course, both these identities have the same

D¢ (s) = constant x Z g(s).
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structure. We also need to work out anew, for the “Saito-Kurokawa desccﬂtj"
detailed arguments in regard to the aspect of its Hecke-equivariance which 1
somewhat slurred over in [6] and barely mentioned in [2].

1. Notation and terminology. For any complex matrix P = (p,), I
P:= (p;;) where the bar denotes complex conjugation in C; let ‘P denote th
transpose of P. For a square matrix P over C, let ¢(P), det P and || P| stand
respectively for the trace of P, determinant of P and absolute value of det P.
For any (2, 2) matrix P = (¢ 9), we define P* = (%, 7). By Diag(a,, ..., a,) ¥¢
mean the (n, n) diagonal matrix with a,, ..., a, as its entries in that order. FOf
any (commutative) ring R, let .#,(R) denote the ring of all (n, n) matrices wit
entries from R. We denote the (n, n) identity matrix in .#,(C) by E,; by 0, W
mean a matrix of the appropriate size with all entries equal to 0. Whenever the
product ‘GHG of complex matrices G, H is defined, we write H[G] for th
same. For teN, let .#,(Z),:= {Me#,(Z)| detM =1t} and T,:= .4 ,(Z)
= SL(2, Z), the elliptic modular group. For any matrix M with entries from Z.
let ged(M) denote the greatest common divisor of the entries of M. If ne N an
n=m? for m in Z, we write n = 0.

The ring Z[,/ — 1] of algebraic integers in K:=Q(./ — 1) is denoted by 0
by ./ —1, we always mean that square root with argument 7/2. For « in K i’
“trace” a +4 is denoted by tr(x). Moreover, for z = (z,, z,)e C x C and a € K, W¢
shall simply write tr(az) for «z, +dz,, without risk of confusion. By a positive’
definite matrix H, we mean a complex matrix H = 'H with all its eigenvalué®
positive and we then write H > 0. For any ye C, e(y) stands for exp(2n J_j P

Let # = #, denote the upper half-plane {t=u+./—1veC| t?
€R, v > 0}. For ke N and any Dirichlet character & (on Z) modulo N, the spac®
of holomorphic cusp forms of weight k and character ¢ for the congruenc®
subgroup I'y(N):= {(f Hel,| ce NZ} is denoted by S,(I'o(N); &).

The generalized upper half-plane {Ze.#,(C)| —/—1(Z—'Z)> 0} ¥
denoted by 5#,. The Hermitian modular group I, of degree 2 over ¢ consist’
ofall M = (£ ) in .#,(0) with (2, 2) matrices A, B, C, D for which A'B = B4
C'D=D'C and A'D—B'C =E,. For any such M in I', and Z in #,, !¢
M{Z):=(AZ + B)(CZ + D)~ . The analytic homeomorphisms Z s M (Z) fof
M in I', give a representation of I', as a discontinuous group of automo’”
phisms of #, and we denote by %, a standard fundamental domain for I', in
#,. Writing X :=3(Z+'Z) and Y= Im(Z):= (1/2./—1)(Z—'Z) > O for Z i®
#,, we have on #, an invariant volume element (det Y) *dX dY. A co™
plex-valued function F holomorphic on #, is called a modular form of integ™®
weight k for I', if F(M{Z))det(CZ+D)™* = F(Z) for every M = (4 8) in I'>'
Such an F has a Fourier expansion

(1) : F(Z) = Y a(T)e(s(TZ)
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dexed by (2, 2) Hermitian matrices T = (t;;) with t; and 2t;; in @ and having
Only) non-negative eigenvalues. We call F a cusp form of weight k for I', if in
) a(T) vanishes for all T which are not positive-definite. The space of
[holomorphic) cusp forms of weight k for I', is denoted by S,(I,); in the
Ollowing, we assume, as in [6], that k is divisible by 4.
We denote the subgroup {Mel',| M has (0 0 0 1) as its last row} by €.
Writing any Z in #, as Z=(;, %), the Jacobi modular group
M{ = SL(2, Z) o 0 acts [1] in accordance with its imbedding in I',, taking

at+b z +it+p z,+At+j
ct+d’ ct+d T ct+d

for (2 5 in SL(2, Z) and (4, p) in 0% For (k, m)e N2, let J§ ,, denote the space of
acobi cusp forms ¢ of weight k and index m for I'{, viz. holomorphic
9. # xCxC+—C such that for all M =(®5%) in SL(2, Z) and (4, p)e@?,

D (GhmM(E, 21, 2,)
) at+b z4 z, mezyz;\
o (P(cr+d’ ct+d’ cr+d)e( ct+d ) oln 21, 22)
(@I[4, uD(@, 24, 25)
1= (1, 2y + AT+, 2, + AT+ [) e(Adt + Az, + Az,) = (T, 24, 2,)

(t, 2y, z,)€EHX xCxC to (

B3)

g the function ¢(z, z,, z,)e(mt’) has on 3, a Fourier expansion of the form
1) indexed by T> 0. We note that any F in S,(I",) has a Fourier-Jacobi
®Xpansion
F(2) = Zl OmlT: 2y, 2,) e(mT)
mz=
With @n(t, 24, 2;) in JP,, which we shall refer to as the mth Fourier-Jacobi
“efficient of F.

- For (1,z;,z,)e ' xCxC, writing t=u+./—1v, z;= xj+\/:T_vj
S 1, 2) with u, v (> 0), x,, ¥,, X5, ¥, in R, we have on 3 x C x C an invariant
Yolume element du:= v~ *dudvdx, dy, dx, dy,. For @,  in Jg,,, we have the

ttersson inner product

“ U= [ 9l 21, )W 73, TJoke™ I~
&7

“here #7 is a fundamental domain for I'j.

Besides the zeta functions {(s):= Y ..vn ™ and {x(s):= 1) 0+ 1c0(A4) * and
¢ Dirichlet L-series Y ,en x(n)n~* for a Dirichlet character y, we recall also
Tom [3]), the “spinor” zeta function Z(s) defined, for any Hecke eigenform

in §,(r,), by '

Zos):=T1 4P 2972080 ) [IQF0™?
4 P

11
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with the accent on the first infinite product indicating that p (in N) runs over al
primes forwhich p@ is prime in ¢, while the second product is extended over
thg remaining primes from N. Moreover, |n the foregoing, the polynomlﬂ!
Q) (1) with t indeterminate is defined by Q1) F = QP,(¢) F for the following
exphcntly given operator-valued polynomials Q'(t) involving the standard
operators
T,:=TI,Diag(l, 1, p, p)T";, T, ,:=TI,Diag(l, p, p% p)T>,
T,:=TI,Diag(l, n, p, m)I'; for p=na in O,
_ d,:=T,(AE))T, for Ae@
in the Hecke ring for I',:

5 4
() 0P(0:=1-Tt+(pTy,, +p(@P*+p* —p+ 1) 4,) 1> —p* 4, T, 1> + p* 43!

for p@ prime in 0, ie. (5% = —1,
(i) QP():=1—T,t+p(T,T,—p*4,) > — 3(Tz.d +T24,—2pA, T)1
+p“AP(pTT p4A)t 2T:$+p”43z6

for p=n7 in 0O, ie. (;“)—I and
(iii) Q¥ (1):= 1 (T, =34, 4 )t 4+ 2(T =84+ (T + 4y 1)) 2
— (4414 (T,—34,.) 2 +(84,4)*t* with i:= /—1.
We also know from [3] that if &(s):= n~%2I'(s/2){(s), then

(s):= n_:"f‘(s)f"(s—k+3).'"2(s_k+

)c(s k+2)Z(s) = ZE(Qk—3—5)-

2. An Eisenstein series. Towards obtaining the meromorphic continuatio?
and functional equation of Dy 4(s), we first address ourselves precisely to thes
two questions but in the context of an Eisenstein series E(Z) on #,, of th
Klingen-Siegel type, relative to the subgroup % of I',. The latter is defined (cf.
[4]) for Z in 3 and s in C with Re(s) > 3, by

©) E(2):= (det Im(M (Z)/(Im(M<Z))),)

Me#$\I'y
where (Im(M (Z))), is the first diagonal element of Im(M{Z)). Let us rewrité
the general term of the series in (5) in a more convenient form, for M = (55
in I', with (badc) as its last row. For any (2, 2) matrix P, we hav®
PP* = P*P = (det P)E, and in particular, for P = Y=Im(Z) and P = CZ +D;

also we note that Z* = X*+ ./ —1Y* and further bd+aé—db—ca=0. It 1
now easy to check that .

Im(M(Z)) = Y[(CZ+D) ']1=|CZ+D| *Y[(CZ+D)*],

i czy), = iez+oi-2v|z+( 2 )+( <, )]
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) det Y(Im(M<(Z))),/det In(M(Z)
-l () (%) ()
~an(veo ()5 Jere ()

Under M (000 1)M, we can identify €\I', with
0 (@b e de0*| actbi—ca—db =0, a0 +bO+cO+d0 = 0)

¥hich is invariant with respect to (b, d)—(—b, —d). If we take g,:="(a b),
fi=Yc d) and g:= (g, 'g,) the defining conditions in (7) go over into

®) 'G,9,—'3,9, =0, g is “primitive” over ¢
"‘"here by a “primitive” column over ¢, we mean a column whose entries
"ogether generate (). Let S, H be (4, 4) Hermitian matrices defined by

) S=( 0 \/—152), H:(Y* 0 )(EZ 0)‘
/[Z1E, O 0 Y*!J\X*E

Thetl H >0 and it is a “majorant” of the indefinite (Hermitian) matrix S of
slgnature" (2, 2),ie. HS'H = S. After replacing (b, d) by (—b, —d) in (6), we
that

o) (Im(M(Z))),/det Im(M {Z) = H[g)

h of course g “primitive” and S[g] = 0, by (8). Any non-zero column over ¢/
hec'ifbmes “primitive” under multiplication by 47! for a suitable 4 # 0 from 0;
h“S from (5), (10) and multiplication by {x(s) to eliminate the inconvenient
pl'lmmvxty" condition in (8), we obtain

fig) tx(5) Ey(2) = Y (H[g])~?
]

“here the accent indicates that g runs over all non-zero (4, 1) columns over
With S[g] =0. This formula provides a link with a theta series associated
ith § and H and the possibility of using towards our own objectives, its
rVfllsft:un'nation] properties, by exhibiting (11) as a “transform” of the theta
es; tackling the condition S[g] = 0 has to be done at the same time, by
Opting an idea from [3].
For §, Hin (9) and t =

heta series

ft

—lve # with u, veR, let us consider the

(1) = 8(z, Z):= Y e(3(uS[g] ++/— 1vH[4)))
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where g runs over all (4, 1) columns over ©; the absolute convergence of th‘
series is ensured by “H > 0”. There exists an invertible (4, 4) complex matr*
V such that H = E,[V] and S = D[V] with D diagonal; also D? = E,, in vie¥
of the relation (HS™!)> = E,. Since § has “signature” (2, 2), we may, aftef
multiplying V on the left by an appropriate permutation matrix, assum®
already that D = Diag(1, 1, —1, —1). If now K = K(t):= vH —./— 148, the?
it is easily verified that

K-1=_" pg-t W —lu

=+l + R+ u s 1= (K{— l,f‘r)) [S™1], detK = {u2+vz}z.

We are thus led to the theta transformation formula

(12)  9(—1/7, Z) = Y exp(—nK(—1/7)[g]) = } exp(—nK~1[S~1g])
=Y exp(—nK '[g]) since SeGL#4, 0)
g

= (det K) 3 exp(—nK[g]) = [c|* 8(z, Z).

This transformation formula can also be proved by going over to the thet?

series associated with the (8, 8) matrix vP—./—1uQ and the lattice Z® (in lie?
of @* as above) where

E E

0 A 0
2P =" - - 4 4
¢ A(H 0)"’ 0 ‘(si)”’ 4 (f‘_m, _./—_154)

and applying the well-known theta transformation formula from ([6], §2
Now, for any (4,1) column g over O, S[g] is always in 2Z and $°
3(t+1) = 3(1). This together with the transformation formula (12) implies the
invariance of v29(z, Z) for every substitution 1+ (at+b)(ct+d)~! from I's’
Consequently, the same invariance holds good also for

O(t, Z):= L(v*9(z, Z))+20?3(z, Z)

where L is the invariant differential operator —v?(9%/0u® + 8%/0v?). Writing ®

B for H{g], S[g] respectively and taking f (1, v):= exp(—naw+n/— 1 fu), it
immediate that

(13) L(v*f (u, v))+20* f (4, v) = (4maw® —n* (e — B2 v*) f (u, v).

For s in C with large enough Re(s), integration over a standard fundamel‘lﬂJ
domain for the subgroup I'y . := {(& 5 erl',} in # yields
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(l4)
w1 oo 1
[ [ 1O, Z)v 2dudv = [ v >dv |} (4nH[g] v} —n2(H[g]*—S[g]*v*)
00 o 0g

x exp(—nvH [g]+2n./ —1uS[g]) du, by (13)

=Y Texp(—nﬂH[g])
st2o

dv
x (4nH[g] v’“—ﬂzH[g]zv"”]—v—

=n"*s(3—5)I'(s){x(s) E((Z), in view of (11).
On “folding back” the domain of integration for the left-hand side to recover
the (usual) fundamental domain #, for I', in 5, we see that the left-hand side is
lothing but
| O, Z)Er, (1, 25—2)v” 2 dudv

F
Where

Er(ro:=v"2 Y ler+d™®
[r.d)erl.s\rn
is the usual Eisenstein series for I',. It is well known that n~%I'(¢/2){(¢) Er, (7, 0)
is holomorphic in the entire g-plane except for simple poles at ¢ =0, 2 and is
further invariant under g+ 2—¢. For 1€ %, and s in any compact set, we have
|Ep,(t, 25—2)| < ¢;v*,  |O(r, Z)| < cexp(—¢; v)

for suitable constants v, ¢,, ¢,, ¢; independent of 7. These facts give rise (as
Usual) to the required meromorphic continuation as well as a _funf:lmnal
®quation under s+ 3—s (or correspondingly 2s— 2+ 4—2s). Multiplying the
®Xpression in (14) by n~ ¢~ VI'(s—1){(2s—2), we see that

n~ @O (s) M(s—1)s(3—5) (25 —2) {x(5) E2)
is holomorphic in the entire s-plane except for possible simple poles at Ll 1,2
and is further invariant under s+ 3—s. We have hence the following
LemMa 1. The function
EX(Z):=n" T () (s—1){(2s—2){x(5) EL(Z)
mits analytic continuation in s to all of C and is holomorphic except for
Possible simple poles at s =0, 1, 2, 3. Moreover, EX(Z) = E¥_4(2).

Remark. For Z in &, (and hence, due to I',-invariance, also for all Z in
#,), E,(Z) behaves at most like a power of det(Im(Z)) as the latter goes to
nfinity.
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3. The Dirichlet series Dy (s). For any two holomorphic cusp forms F,
G of integral weight k for the Hermitian modular group I', over ¢, W¢
associate, following [5], a Dirichlet series D (s) of the Rankin-Selberg typ®
Namely, if

F(Z)= } ¢nlt, z,,2)e(m) and G(Z)= Y Y,(1, z,, z,) e(nt),
neN

meN

we first consider, for s in C with Re(s)> k+1, the Dirichlet seri€s
Y men {Pum> ¥y m~* whose absolute convergence is immediate from “LP s V)
= 0(m")". To get this estimate, we start from the formula P nlT, zi,ﬂz}

= [1*1F(Z)e(~mt')dv with y = /—1c and any ¢ > 0 and note that for al
Z in X, (detY)?F(Z)=(vv'—|z,—2,)*/4?F(Z) is bounded wher®
vi=1Im(z), v':= Im(r'). We then choose ¢ = (|z, —Z,|*/4v)+ 1/m and are led:
from the foregoing, to the estimate
@mlt, 21, 25) = O((v/m)™*2 exp(nm|z, —Z,|*/2v))
and eventually to conclude that
Oty 2y, 2)Un(T, 24, 2,) v  exp(—nm|z, —Z,)2/v) = O(m*) on F,

yielding the estimate asserted for <¢,, ¥,,> at once.
For s in C with Re(s) > k+1, we can now define

Dre(s) = (x(s—k+3){(25—2k+4) ). {Pps Ypym™*
meN

and proceed to state

THEOREM 1. The Dirichlet series Dy ¢(s) associated to F, G in S,(I',) can be
continued meromorphically to the entire s-plane. The function

D¥s(s):= (4n3)~*I'(s)I'(s—k +2)I'(s—k+3) D¢ g(s)
is holomorphic in s except for possible simple poles at s = k—3, k—2, k—1,k and
satisfies the functional equation D¥;(s) = D¥ s(2k—3—5s).

Proof. Clearly Dp g(s) is holomorphic for Re(s) > k+1. To continue it
meromorphically to the left, we first note that for F, G in S,(I',) and

Re(s) > k+1,
(FE,, Gy:= { (det Y} F(Z)E,(Z) G(Z)(det Y)"*dX dY

is well-defined and by the (definition of E,(Z) and the) usual “unfolding

argument”, it is equal to

[ F(Z)G(Z)v™*(det Y)*~**5dX dY.

E\H 2
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Now, a fundamental domain for % in J, is given by the set

(i 2
Zy %

(z, 2y, 2,)€F7,

v=u+—10,0 > |z,—7,} 4, 0<u < 1}.
Hence (FE,, G) equals
1
(15) | § dudvdv' dx,dy,dx,dy,| ¥ @t z;, 2)¥,(1, 24, 25)
FI o> |z -22]2/40 0 m.neN
Nok=d [ o tz,—z‘z|2 k_4+sd '
x exp (—2n(m+n)v)e((m—n)uw)v L u

= I z (pm(T! Z1s zz] .Fm(r’ zi’zl}exp(_nmlzl_Ezlz/v}vf‘d'u

FJ meN

x [ exp(—4nnt) At dr (ti=v' —|z,—Z,|*/4)
0

= (@m)" I (54k=3) Y (P Yy,
meN
3 the interchange of the summation over m and the integration over & T is
Sasily justified. From the “rapid decay at infinity” of F and G and the
“Polynomial growth” of E, in %, (see the Remark following Lemma 1), the
left-hand side of (15) represents a meromorphic function of s all over C and
Provides the meromorphic continuation required for Dg g, as well. The asst?rled
Properties of Dfg(s) = n®~2*(FE¥ ,.,3, G> by (15) including jts functional
®quation under s+ 2k—3—s are now immediate, proving Theorem 1.

4. A proposition. This section is devoted to the proof of a basic identity
(needed in §6) involving certain operators ¥; and 7, in the spaces Ji,. For
leN, the operators ¥;: JO,—J9, and T2 J§,—J), are defined as follows:

Namely, for any ¢ in Jg, (cf. [1], [6]),
16)  (pl1?)( 2y, 25)

lez,z ar+b Iz, Iz, ) —
L k=1 _=e2 ] ; (ct+d)7 ",
=1 sarﬂ;\x & e( c'c+d)q}(c‘l'+d ct+d ct+d

@hiT) (5, 2, 25):=17% Y e(Alr+dz +Az) 12

A, uedflo

x Y (@kaR)(@ 2y + AT+ 2+ AT+ ).
Rel )\ # y(Z)
ged(R)=01
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For the representatives S, R here we can choose ones in the triangular for®
s 2). The definition of the operator 7 9: J2,—Jp, is the same as that of Iv
except that the condition gcd(R) = O is replaced by ged(R) = 1. We haVe
between Z, and J7? the identity F; = ) 52, d* " * T )42 just as in [1].

For the adjoint operator ¥"¥: J2,— Jp, corresponding to ¥}, we have the
formula

(17 WP, z,2z)=1F"3 Y e(l(AMt+1z,+12,))

A.pedfl®

g 5 l;'!(m:b,zl+?+p,22+?+'ﬁ)d'l'
5=(3 Del"\ #x(2),
We omit its proof, since it is on the same lines as in [5].

The following proposition deals with an identity connecting ¥, ¥ with
the Hecke operators 7, on J, and it corresponds to assertion (ii) ©
a proposition due to Kohnen and Skoruppa ([5], p. 549), where, howeveh
a good part of the details in the proof has been left to the reader. Our proof ¥
different and algebraic in nature.

ProrosiTION, For leN,

V= T YU 2T, on B,

1<l

where, for any reN,

Y@):=r[]1+1/p),

pir
the product being extended over all primes p dividing r.

Proof. It is clear from the definition (16) of ¥/ (taking the representati"es
S in upper triangular form as is more convenient) that for [ =/ [, a?
U, 1) =1,%, =, %, = ¥,,%, and ¥} = V¥ % = ¥ 1 ¥'1,. Moreover, tH°
mapping t+— t*~2y(t) from N is multiplicative. It is not hard to verify direc.ﬂy
from the definitions that, for (/;, /;) = 1, 7, commutes both with ¥}, and wit
T, (cf. [1], p. 51). Thus it suffices to prove the proposition for | = p" for any
given prime number p; we assume [ = p" in the sequel. From (16) and (17), wo
have

(18)  (VF¥D(@) (@ 2y, 25) = P*7° )y e(I(ATx + Tz, +A2,))
Auedfie
S, m (Y el \ N (Z), i=1,2

a,a,t+a,b,+a,b, 1z, +At+p) lz,+ 2t +f) K
8 (P( d,d, ’ d,d, ' dd, @)
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=10y e(l(Adr+ 1z, +22,)) Y, (@l15:8,) (1, zy +At+p, z,+ AT+ 1)
A 51,52
1
=F E ((Ik_z Z @lk,1 8,8, [4, P])(T, Z4y 2Z5)

A,ue0fl0 81,52

Where 2, 4 run independently over a complete system of residues of @ modulo
10 ang S;, S, run again independently over

ab
0d
For given reZ with 0 <r <n, let

R(r,n—r1)= R, (r,n—r):= v a_ O0a<p'" ael

P 0p
and g@*(r, n—r) = R*(r, n—r) the subset for which ged(a, p’, p"~") = 1. For
"= 0 or n, we clearly have &(r, n—r) = #*(r, n—r). To deal further with (18),
We need to know the structure of

&ryi=R(r,n—r) R(s, n—s):= {AB| AeR(r,n—r), BEA(s, n—s)}.

We now show that indeed modulo factors from I'; on the left

s s =

1 1l prtA*(s—u, 2n—2r—s—u)
O<u<s

1<d|,0<b<d ad= l}: I \A(2),

for r+s<n,
“9) R(r, n—r)-R(s, n—s) = T pn-s .
L L Rt 2s—n—v, n—r—u)

O<v<n-r

for r+s=n

-~

Where i signifies that the sets involved occur with the indicated mul-
Uiplicity * and t%#*(a, b):= {t4| A€ R(a, b)}. The left-hand side is just
M=y i) 0<a<p’,0<b<p"*}. First, when r+s=n, we
S¢e that the general element M becomes p' (% “x?); (modulo factors from I'; on
the left) this covers p"- 2(s, s) exactly once, for each fixed b, as a runs over
Z/pr-rZ. Hence, for r+s=n,

’ 4
Frs= L0 R, s)=1 LI P& @ P
O=sus<s
Proving (19) in this case. When r+s <n (respectively r+s > n), we have
_ ps apu—s-—r_i_b B g p2.1+r—ll a_|_bpr+s'—n
M = p’(O pZH-Zr—s )’ IESp. M = pll ( 0 pu—r £

Writing b = b, +p"~*"'b, with b,eZ/p" *"Z and b,eZ/p'Z, ap"*""+b
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=(by+ap" > ")+ b,p" """ =c+b,p" 57" covers, for each fixed b,, the €€
ments of Z/p>"~2""SZ once, as a and b, run respectively over Z/p" 'Z an
Z/p"~*"rZ. Thus, for r+s<n,

P
FLrs= LP R(s, 2n—r—s).

If r+s > n on the other hand, a+bp"**™" covers Z/p""Z once along with &
for each fixed b from Z/p" *Z and hence

g
Frs= Lp" *RQ2s+r—n,n—r).

The proof of (19) is complete, since (e, f) = || o<g<cp?R*(e—g, f—g) fOf
e<f

Remark. The second relation in (19) can formally be obtained from the
first by using (r, s, u)+>(n—s, n—r, v) followed by %#*(a, b)> #*(b, a). Thus
s With 45 > n are determined (already) by &, with r+s <n.

For *"2) 5 s, 0l.15,S, in (18), we get by (19) the expression

(20} pn(k—Z}{ Z pr Z (‘olp'+"M1+ Z pn—s' z (plpn—s’-l-u‘Mfz]

O0<r;s O<u<s O0sr's'<n UEYES o

r+s=n M, r+s'>n M
where M, runs over #*(s—u, 2n—2r—s—u) and M, over R(2r +2s—"
—¥ =/, n—r'—4). Under (¥, s')(n—s, n—r), the condition “r' +s" > n” goes
over precisely into “r+s < n”. The part of the sum over r, 5, u and M, in (20)
corresponding to the condition r+ s = n clearly reduces under ur—v (:= s—u) 19

@y Y r X Y elp'M

O=r=n OsvEn—r Me®R'(v,v)

Z (I+p+...4+0"") @l 1 #*(v, v),

O<vEn

using the abbreviation ¢|p*#*(-, ) for Y yea*c.)@l.1p*M and noting that
Ok, 1P *M = ¢l,.; M. The rest of the sum over r, s, u, M, as well as over 7', §, W
M, in (20) yields in all

(22)
S ¥ (cp|,(|1@*(s-u,2n—2r—s—u)+(plk‘IQ*Qn—Zr—s—u,s-—u})_

0<rs O0<u<s
r+s<n

=g 2 (@] 2* (v, 2(n—1)+0)+ 0| R* (2(n—1) +0, v))

-.‘<.
r+uv

(with t:=r+s, vi=s—u)
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= Z“: Y (e R, v+2w)+ | R*(v+2w, v))  (With wi=n—1)

w=1 O<rw
wtr+vsEn

= % L X P) (@ | Z* (v, v+2w)+ @ | #* (v + 2w, v)).

1tw0<y O<SrSn—v-—w
vtwsn

Hﬂnce, for the innermost sum over S, Sz in (18), we have, in view of (20)+22),
derived the expression

(23

1
D (1 4p. AP ) (@l BX (0, 4 2W) + @i s B* (042w, N3

O<so,w
vtwsn

With § = §,,0:= 1 for w = 0 and 0, otherwise. Taking a = n—v—w, b = v and
€= 042w, (23) becomes
@4 p-d T (Q4pt. D) @ha BB, )

0<ab,c
2a+b+ec=2n

=p*? ¥ eI T+ T+
Zagf:‘:’:ZN

--+¢(P“_‘_”"”2)-} @l 1 2% (b, ¢)

=pMk—2} Z W(Pd) Z . (plk.l‘@*(b! C),

0=d<sn 0sb.crieZ)
b+ec+dr=2(n—d)

collecting together ¢@|#*(, ) corresponding to the same d

i Z w(pn—d)ptn—d)(k—upltk—z,? Z QJf.@*(b,C).

. 0=d=n 0=b.,r(eZ)
btct+d4r=2d

We know, from the definition of 7,4, that, for peliy,

Tpal@) = p**™® ¥ 2 el#* b oll4 pl

A ue@| pd® O=b,c.r
b+ctar=2d

COnsequenlly, from (18), (23) and (24), we obtain finally, for [ =p",

D@ =1/ Y (DYt Y pn M- 0pik=2 T o) B*(b, 0))| [4, K]

Apeoile  d b.c,r
= Y YY1 Y (X @l R*(b, )[4 4]
0=d=n A ued@pn@ b.e,r
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— gw(pn—d)p{n—d)tk—llpdtk—ﬂ_(I/pd-d) . Z (Z (PIQ*(b, C})l[ﬂ.', )u-*]

A u'el[pi® b.,r

= 2 Y)Y T ,4de)

0€d<n

and the proposition is proved.
5. The Maass space and Saito-Kurokawa descent. The subspace

M,(T',):= {FeS§,(I'y) for whose Fourier coefficients a(T) in (1), there

exists @ defined on Z with a(( o a/Z)) = Y d'a((dmn—|u?)/d?)}
II/2 m 1 <d|(m,n.a)

is called the Maass space for I', and weight k. It is stable under the action of all

the Hecke operators and if ¢ is the first Fourier-Jacobi coefficient of F, thlﬂ

map F ¢ from M,(I',) to J?, is a Hecke-equivariant isomorphism. If F 1

a Hecke eigenform in M,(I',), so is ¢ and let us denote by 4,(]) the eigenvalu?

of ¢ corresponding to the Hecke operator Z,. Defining the theta series

0,(t, 2y, 2,):= Y e(tlm+h|*>+tr((m+h)z))
mel@
for (z, z,, z,)e # x C x C and any h in $0/0, we know that any ¢ in J{, can be
written as a finite linear combination

(T, 2y, 2,) = 0a(1) 0,(z, 24, 2,)
hedo/0

and the “0y,-component” ¢, of ¢ actually belongs to S;_(Io(4); 1) with
2(n):= (59, _

The map 2: ¢(t, z,, z,) > @o(1) from JP; to S,_;(Iy(4); x) is ¥
jective. Defining @, by (Pol-1 Wy)(r) = @o(r) under the Fricke involu”
tion z+» —1/4z corresponding to W,:=(§ 5'), one obtains as isomor
phism D: J§, 5 8¢ ,(Fo(@); x) where S, (Fo(4); 7):= {g€Sk-1 (o) il
g(t) = Y451 b(n)e(nt), b(n) = 0 for x(n) = 1}. This subspace has a basis give”
by {fi—f¢| i=1,2,..., a} where each f; is a normalized Hecke eigenform 1
Sk-1(I'o(4); x) in the sense of Atkin-Lehner, f2(1):=f(—17) and a:= dime?
sion over C of S{_,(I',(4); ). The isomorphism I: Fi— @, is precisely th®
“Saito-Kurokawa descent” from M,(I',) to S;-(I'y(4); x) [6].

We will show that the map & is Hecke-equivariant with respect t°
a homomorphism, say 8, between the associated Hecke algebras and thereby
compute the eigenvalues A,(l) of ¢ in J?, under 7, where, in view of 0'-!I
proposition, it clearly suffices to take | = p" for prime peN and n > 1. (T
direct computation of 4,(p") spares us from having to find explicit generator®
and relations in the local Hecke algebra for J§ ,.) Again, in view of the relali"{:1
between 7, and 77, it is enough to find the eigenvalues A(/) of ¢ under T
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for I = p*; along with these simplifying steps (and symbols) we shall also. take,
1 the sequel, ¢ to be of the form G=1(f—f9 for f = f; with some i (1 < i< a).
With obvious notation, we have the following

Lemma 2. With | =p", ¢ and f as above and f(1) = Y1 a(t)e(tr),
290 = {a(pz")—p_":‘x(p)a(pz”‘z) for any odd prime p,
a2 +a* for p=2.
Proof By definition, (7 3.¢)(t, z,, 2,) equals

= P T+Uze—s Zy+ATHU Z,+ AT+
p"(k—ﬁl Z pk(s " E ‘p( pZn—zs L - pn—s ’ pn—s

0<s<2n Uzn-aidil
x e(AZt +tr(42))
peo 3 e T LT a(Cor)
0<s<2n Uin-gidip h me@ p

x e((PT4uz0-5) P*~ 2" Im+h|* +(z, +At+p)(m+h)p°"
+(z,+ To+ @) (R + ) p* ="+ ATu + tr(dz)

Where, as in the rest of this proof, in the summations carried out, ¥, runs over
Z/p'z subject to the additional proviso that p ¥ u, for 0 < r < 2n, h Tuns over
0/0 and A, p run independently over O/p"0. _

We need to compute the 6y -component of 7 %.¢p. First, we restrict
Ourselves to that part of the sum above defining it where n < s < i:z and take
T+ HZH—J)

Up the remaining part later. For 0 < s < 2n, the coefficient of ¢, I

therein (for h, s, uz.-s fixed) is, upto the factor p"&— O +ks—n precisely

Q%) T T e(e(lpmm+H)E+ AT+ tr(p " (m+h) 2)))

A me0
+tr((I-Lp“"(m+h)z))e(u,,._,1m+hl‘p"”'+tr((m+h)p""p)).
If we write m =m,+p*"~*m, with m, running over 0 and m, over
O/p*=s0 then
e(uzn—s Im+h|2 p*~2") = €(uzn—sIP* " "(my +H)* P~ )

is independent of m, and therefore the sum over m, A, u in (25) reduces, for
"<s<2m to

P Y e(tlp"my+T+p T (my +R)P +tr((p"my+ T+ p " (my +h)z))
maell;d
mye8/p2n =0

X e{tizn—sImy +hI? P~ 2").
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When m, runs over @ and 1 over 0/p"0, x:= p"m, + I (and likewise, for every

fixed m, € O/p*"~0), also x+p* "m,) runs through @ exactly once. Thus thé
last-mentioned sum (for n < s < 2n) becomes

P Y e(tlx+p P+t ((x+p " "h)z) Y e(uzn—s|my +h|? p>= ).
xeld myedfpin=sg
Here, let us note that the series over x is nothing but 04(z, z,, 2,) for odd p and
n<s<2norp=2with s =n and 04(, 2,, z,) for p = 2 and s > n. The sum
over m, is a generalized Gauss sum which can be evaluated. In fact, it can be
shown that, for pfueZ, r>0 and heio/o,

Gu, h; p)i= Y e(ulm+hi>p)
med/pre
(Px(p)y for odd primes p and r > 0,
My /-1 ifh=0,r>2 p=2or
if h=4(1+/-1),r=1, p=2,
0 otherwise (for p =2 and r > 0).

We see therefore that the total contribution to the 6-component of 7 gn¢
from terms for which n <s<2n is

Z pn(k—6]+kts—u}+ 2n (px(p] 2n-s Z (pﬂ ((psT+H2,, _5) ps—zn)

nsss2n Uin-g

for all odd primes p; the relevant contribution for p =2 from terms with
n<s<2n can be seen to be

ik =6)+2n {Z@o(t+ u,27") G(u,, 0; 2

+ ) e (2T +u2n-) 272" G(uzp-, 2=a},
n<s<2n hiuzn -
The contribution arising from terms with 0 <s<n can be treated
similarly. We give the detailed arguments for the case p = 2, since the case of

odd p is simpler. Carrying out in (25) the summation over p (while keeping the
other summation-indices fixed) and noting that

2% if (m +h)2*""ei0,
0 otherwise,

Y e(tr (u(m+h)2s~) =

n

we can have non-zero contribution only from terms with h = 0 and me 2"~ 10
(as the first alternative above on the right-hand side would entail, under
“n > s7). Consequently, writing m = 2"~ 1| with le 0, (25) now takes the form

2" ¥ e(tll/2)+ M2 +tr (/2)+ 2 2)+ g, /21 27).
lel;4
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AEEl.in, we put I/2 = x+h, with xe @ and h, €30/0 and further x = x, +2%«,
With x, e¥/2°0 and x,e0. We also note that
e(uln—s |xl +23x2 + hllz 2—3) = e{uin—s |xl +hll2 2-8)

s independent of x,e® and moreover, as A and x, run respectively over
020 and 0, T+ 2°x, runs through O precisely 22"~ times. Thus (25) finally
Teduces to

2WH2= N GlUaygs Iy 2904, (%, 255 25)
hyetojo

and ysing the above-mentioned values of the Gauss sums, we see that th'e
%ntribution to the f,-component of 7 %.¢ from the terms with 0 <s < n is

272" @o((t+uzg)2?")  for s=0
and
2-"(2*—4}4—1 /- I Z x(ulﬂ—;) (Po((zst_i_uz"_s)zs—),n) 2(3—2,“"(_1}

for1 <s<n. Now, using the relation ), @,(t) = =2/ —nl %_(— 1/7) ' 7% (see
63, p. 221), we conclude that the 6,-component of J 3.¢ is

(26) o2k =4)

25Tty
X {Z %(f';::’") 2"kl o /-1 ( Y Xu2-9 9o (2T—zs)

l<s<2n—lug, -,
25t = L P
><2-(2u—s}(k—n+q’“+‘/__m2( 5 )2 (k 11__9%(22"T (22 ‘c) k=1L

The 6,-component of 7 %.¢ for odd primes p is given by

pn(k—4]+k(s—u}+Zn—sx(pln—s}q)o((pst_i_uzn_s]px_zn]

0<s<2n

st+u n=3 n—g —{2n—s)k —
—pe- ¥ Z‘Po(p pzﬂ_ls )X(PZ ) p~@n=sk=1)

O0=s5S2n Y-

Which is nothing but ¢, |T(1, p*") where, for a, be N, we denote the Hecke
OPerator corresponding to the double coset I'o(4) Diag(a, b) Io(4) by T(a, b)
Now T(1, p*") commutes with W, and hence 8(7 %) = T(1, p*"). This gives us
0" = a(p>)—p* > 2n-2) at once for any odd prime p.
olP") = a(p>)—p* *x(p)a(p* ), a y )

Using also the relation ¢, , — (1) = 0o (t/Qr+ 1))/2t+1)* 1 (see [6],
P. 222), we obtain from (26),
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~
@27) (T35 9o = G| TR*, 1)+2,/—1

. 2’ Ugp-s\ (-
X{ Y x{uz..—,)qoolﬁ’;(o 22,._,) Wyt
2

£5€n—-2u3,-,

. 243 _ - 0 -1 _
+¢0]W4( 2n 4)W4 l"()oolw4(22,. 0 )"‘i l}'

2/ TGl Wo= = ¥ ¢o|({‘) j)

ceZ/4Z

From

(see [6], p. 226), it is seen that ;
. 0 -1 - o of1 2%
—2\/ —1¢o| W 420 Witl= Z @ol P
240 cezjaz 0o 2

likewise,

N 22||—1 1 _ . 1 22u—zc_22n-3
—2\/_1‘P01W4( 92n 4)M '= z ‘Pol(o 220 ),

ceZ/4Z
if we note that

—4c—1 cz
—16 4c-—1 €ly@ and y(4c—1)= —1.

Now for 2<s<2n-2, let

2n—2-1t 1
t:=s—2 and P1:=( uz,,_sr22_ ¢ 2)
—an-e 0

with given odd u,,_, modulo 22*"* and ¢ modulo 4. There exists (&?
odd) uh,., unique modulo 22"~ 27* such that w:= u’z,,_,(uz,,_,+22"‘2""l
= —1(mod2*""27) and again w= —(1+22""2""uy,_.c,)(mod22"~") fof
a uniquely determined ¢, modulo 4. If we set r:= 2'(22"~2'¢, +u),_,), the?
r/2'eZ and 2'+(uzn-s+2%" "2 'c)re2® Z. Moreover,

s N A
PZ'_PI(O 2—2;; )“(_22:!—! rfz.r)erﬂ(4)‘

The pair (uz,-s, ¢) determines (u5,-s, ¢,;) uniquely and this gives rise ¢
a bijection of (Z/2?"~*Z)* x Z/4Z, where the first factor is the group of 0dd
residue classes modulo 2275, Since x(uiy-s) = —x(Uzn-s) and P,ely(4), we
have

Po Py = x(r/2) §o = —x(U2n-s) Po-
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Tl'lus, for 2 < s < 2n—2, we obtain
(28)

2 u n—s -
2\/?1x(uzn-s)fﬁolw4( . )m'

—1uza-5) ), BolPy

ceZ(AZ
(with P, as above)
- |1 2‘(22"_2_'61+H'z..~s))
¢ " :
c;eg,;atz X (0 22

Together with the residue classes 227~ 2¢, 227~ 2¢—22"~3  the residues r ﬁbove
Cover all the residue classes modulo 2%". Hence we get by (27) and (28),

" 0 1 0
(% Q) = 60“"0(4}( 0 l) Ty(d)+ @y 'uFo(4)(0 22.;) I'y(4)

I

0 221!—.-:

= (a2 +a(2)*) &,.

8(78) = (a(2*"+a(2)*")1d
Where Id denotes the identity operator. As a result, we have
227 = a2y +a(2)*
and this concludes the proof of Lemma 2.

Remarks. For n = 1, the results in Lemma 2 appear as assertions (without
detailed proof) in Propositions 4.2 and 4.3 of [2], wherein one should read 2*~3
'nstead of 22*~° in the expression for y4(1) in Proposition 4.3 on page 19 and

"2*=2 instead of 3-2¥"* in the last line of page 20; the second term in the
Ormula for Desc(T;,) on page 20 should read p*~*(p>+p*+p—1).

We are thankful to Professor A. Krieg for having rushed to us, at our

®quest, a copy of [2] from Miinster.

6. A relation between Dy ¢ and Z,. For the Fourier-Jacobi coefficients ¢,
m respectively of a Hecke eigenform F and any cusp form G in M (I",), we

MV (g, ) = {Fn@1, V1) = <Y 01, Y1) and 50, by the proposi-
IOn'

Dy g(s) = Lx(s—k+3){(2s—2k+4) <@y, ¥, X, LU (@) d 2 A, (t/d) 1™

teN djt
=<¢1, dn)Cx(s—H3)((2S~2k+4)§lll(d)d""" Y. A0t

=<0, Y Exls=k+3){(s—k+1){(s—k+2) Y Ao, ()17,

teN

o i i
Acta Arithmetica LVIIL2
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on noting that

T y(@d = e— 1))

deN
Now

Z j’m(t)t_s = l_[( E lw:(pn)p_m)
reN p nz0 .
where the product is taken over all primes pe N. We know from Lemma 2 thab
for odd primes p,
Ao:(P")

= Z er{k—Z}a(p:!(n—Zr))_p—lx{p) p(2r+ 1)(&—2]0@2(n—2r—1})

0<r<(n/2) 0<r<[in—1)/2]
where [x]:= largest integer not exceeding xe R. Therefore
Y dp @™ = (3 pPE 279 ply(p) ¥ p@DE-29) (Y a(p"‘)p"")
nz0 JEX) jzo0 uZ0
which is precisely the pth Euler factor of R (s)/L(s—k+3, x), where
R, (s)
e o =y |
i={(1-a@?27)(1-a(d)?27%) [] (1 —aZp ™) (1 —x(p) 2, &,p~*) (1 —&p "}
p*2

is the symmetric square zeta function associated to f and o,+ x(p)&, = a(p
a,&, = p*~% By Lemma 2 again

z '1¢1(2n)2_m= z ( Z 0(2)2"'};(532"1)2_"’
nz0 nz0 .:',’f,f,io,

= {(1-a@r27)(1-aBr 2.

Hence

Y Api(t)t ™5 = R(s)/L(s—k+3, )

teN

which implies that
Dr(s) = @y, Y12 Ls—k+3){(s—k+2) {(s—k+1) Ry(s).

Since Gritsenko [2] has shown that Zg(s)={(s—k+1)L(s—k+2 ?
X {(s—k+3)R(s), we have finally the following

THEOREM 2. Let F, Ge M, (I',), F being a Hecke eigenform. Then

Dr(s) = <oy W:)C(S—k+2)fa(s—k+2, (_—4))_12;:(8)-
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