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CrnenoBaTenbHO CHCTEMA cpanneuaii

n
Y xju;=0 (modg), i=1,...,n+l1,
v=0
MMeeT pellieHHue C YCIOBHEM (U, Uy, ..., U,, ) = 1. OTcrona BeITEKaeT, YTO ¢
onpenenuTent A AeNATCS HA ¢. YYHUTHIBAfA, 4TO

0<AdA< [T (—x) T2 g,
1Si<j<n+1

ToJryyaeM npotuBopeqne. TeM caMbiM oueHka (7), a BMeCTe ¢ HeHd H TeopeM¥
JIOKa3aHkbl.

B 3akmiovenne 3aMeTHM, 4TO s £(g) — KOJIMYecTBa MPOCTHIX e/ T
nei q € Y4Y€TOM KpaTHOCTH, IJd INOYTH BCEX B CMBICJIE acumn-romecx"ﬁ
IUIOTHOCTH HATYpalbHBIX ¢ CnpaBEdJIHBa OLECHKa

Q(q) < 10Inlng

(cm. [3]). OTcrona BeITEKAET, YTO /1S MOYTH BCEX HATYPANbLHLIX ¢ BrmosHeR’
ouenka (6).
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An improvement of Lenstra’s criterion for euclidean
number fields: The totally real case

by

GERHARD NIKLASCH (Miinchen) and RoLAND QUEME (Breuillet)

1. Introduction. By a theorem of H. W. Lenstra jr. [Le 77), an algebraic
Number field is euclidean for the norm provided that it contains a sufficiently
long “exceptional sequence” of elements whose pairwise differences are units.
More precisely, the length must exceed the square root of the discriminant
times a (number-geometric) coefficient depending on the signature of the field.
We show that a modification of Lenstra’s argument leads, for totally real fields,
to significantly smaller coefficients, and present seven new euclidean number
fields thus obtained. (The totally real case is the hardest to handle because the
field discriminants are comparatively large.)

More than 600 euclidean number fields are known; see [Le 80], [LM 82],
[LN 87] and the references there. The majority of these was found with the
help of Lenstra’s criterion, originally formulated in [Le 74, Section 14], and
Published in its final form in the celebrated Inventiones article [Le 77]. [Le 80]
Provides a very readable survey of the topic.

In order to state the criterion, we need to fix a few notions and notations.
Let K be an algebraic number field and R its ring of (algebraic) integers. Let
N denote the absolute norm, defined on R by N(0) =0, N(x) = # (R/aR) for
@€ R\{0}, and extended to K by multiplicativity. R (or K, by a traditional
abuse of language) is called euclidean (for the norm) if for any «, f€ R with
B 0 we can find x, o€ R such that & = xf+ ¢ and N(g) < N(B). Equivalently,
for each ¢e K we need to find keR such that N({—x) < 1.

DEFINITION. An exceptional sequence of length m in K is a subset
L0 5005500 ) & K

such that each difference w;—w; (1 <i<j < m) is an invertible element of
R (ie., a Dirichlet unit in K).

THEOREM 1 [Le 77]. There are positive constants o = a(r, s), such that every
number field K with discriminant D, with r real and s complex places, and
Containing an exceptional sequence of length m > a(r, s)*\/|D| is euclidean for
the norm.
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The theorem is designed to be applied to several number fields at once.
First one needs good upper bounds & for the coefficients a(r, s). Lenstra
computed two series of values, derived from the packing constants of
“Minkowski sets” and spheres in the real vector space K ®,R. Then one writes
down a sequence {w,, ..., @, } in terms of a field generator x of K over Q, and
translates the condition that the sequence be exceptional into diophantin€
relations for the coefficients of the minimal polynomial of x. (This is discussed
in detail in [Le 77], [LM 82] and [LN 87].) Finally, one generates irreducible
polynomials of the appropriate degree and number of real roots, satisfying

these relations, and computes the corresponding field discriminants along with '

any other properties of interest of the generated fields (e.g., splitting behaviour
of small primes). If the discriminant turns out to be too large to apply Theorem
1, one can sometimes extend the prescribed exceptional sequence by direct
calculation in K. However, m can never exceed the norm of any nontrivial ideal
of R (the w, must belong to distinct cosets). When ideals of norm > 1 and
< &./|D] are present, the only way to make Theorem 1 applicable will be t0
reduce &.

To our knowledge, Lenstra’s & bounds from [Le 77] have never been
improved yet. Our aim in this paper is to derive significantly sharper bounds
for the case s = 0 of totally real number fields. The key to this improvement i$
a modification of Lenstra’s proof of Theorem 1, valid for number fields of all
signatures, which we discuss in Section 2. Our bounds will be established in
Section 3. Section 4 is devoted to examples. We present seven new euclidean
fields, including two quintic and three sextic fields. One quintic and three sexti¢
real fields were known to be euclidean before. In both degrees these represented
the smallest possible values of the discriminant, while our new examples belong
to some of the next larger discriminants.

It is not difficult to modify the arguments of Section 3 to handle fields of
mixed signatures with 2s < r. The bounds & thus obtained so far are only
slightly better than the previously known ones and have not yet led to any new
euclidean fields. Present research is aimed at improving them further and
extending our method to all signatures.

R may be replaced throughout with a ring of the form Ry, consisting of
those elements of K which are integral at all places of K outside the finite set
S (containing all infinite and some finite places). The norm Ng and the
euclidean property are defined as for R. A theorem of O’'Meara [OM 65]
implies that, given K, one can always choose § so that Rg will be euclidean-
Lenstra’s criterion is easily adapted to this situation (D and o(r, s) remain
unchanged), and one sees at once that m can be made as large as we please by
choosing an arbitrary sequence of w’s and collecting all prime divisors of their
pairwise differences into S. This yields a quantitative version of O’Meara’s
theorem, which also profits from our sharper bounds. We leave the details 10
the reader, cf. [Le80], [LM 82] and [Q 82].
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2. Lenstra’s criterion. For ease of reference and to fix ideas, let us sketch
nstra’s proof of Theorem 1. Using the r real embeddings
1y - 1,0 K—=R
ind representatives
Tpg g5 oons st K=C

“f_ the 5 pairs of complex conjugate embeddings, we may identify Kz = K®oR
With the R-algebra R x C*® by sending ¢ ®1 ((eK) to

(ll (C)’ vy lr+s(€))’

% the same time identifying K and R with their images. The norm function
Xtends to Kp as

r r+s

2

N(x],!"': Xps Zrads oves zr+s)= nlxii' ]_[ Izil .
i=1 i=r+1

fwe write v = {xeKg| N(x) <1}, K will be euclidean for the norm if and
Only if the translates of ¥~ by the integral lattice vectors R cover K. As a real
Yector space, K, has dimension n=r+2s=[K:Q]. We define the Haar
Measure A on R™ x C° to be the product of the ordinary Lebesgue measure dx
%0 each factor R, and twice the Lebesgue measure (i.c., dz A dZ) on each factor
C. Then the lattice R will have determinant ,/|D].

Let U = K, be a bounded Lebesgue measurable set with positive measure
J‘(U), and (x")2 , a sufficiently regularly distributed sequence of points in Kg.
To the family % of translates U+x” we can associate a density

o) = lim[z AU +x9)n C))/A(C),
i
C being a cube centred at the origin and becoming infinitely large. % is
2 packing if translates U+x® for distinct i are pairwise disjoint, which
°b‘-'i0usly implies o(%) < 1. The packing constant of U is 6(U) = supp(%),
%aken over all packings of U for which the density exists, and the centre packing
Constant of U is defined as 8*(U) = §(U)/A(U). (See [R 64] and [GL 87] for
Precise definitions.) :
Choose now U such that

M) AU = {u—v| u,velU} c ¥

F’enstra shows that if, in the situation of Theorem 1, m > 6*(U)\/|5 , then

ndeed all of Kpg is covered by the integral translates of ¥". As pointed out

ove, the strength of this approach stems from the fact that U depends on
only via K,, which is determined by the signature (r, s) alone.

The argument runs as follows: Given x€ K, we need to find k€R such

at N(x—x) < 1. Consider the family of translates of U by w,x+a, 1 <i<m,
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aeR. As this has density mA(U)/./|D|, which exceeds 8(U) by assumption, we
can find u, veU, 1 <i,j<m and a, BeR with (i, o) # (j, f), such that

o x+o+u=w;x+p+v.

Since an algebraic integer of norm less than 1 must be zero, (1) impli¢S
AU NR = {0}. Therefore we cannot have i = j, for otherwise f—a =u—v="
Again because of (1),

@) (@—w)x—(f—a)e V.

Since N(w;—w;) =1, we may now take k = (f—a)/(w;—w)ER. =

Our point of departure is the observation that condition (I) may b
weakened. Indeed, if we knew only that AU could be covered by integfal
translates of ¥, the last steps of the above argument would still work (possibIjr
with a different x). However, something else is now required to pre\“’fIll
translates of U belonging to the same w,; from overlapping.

THEOREM 2. Let T be any subset of R, containing 0. If U =« Kgisa bound"‘j
Lebesgue measurable set with measure A(U) > 0 and centre packing constar
o*(U), such that

(i) AU is covered by the translates of ¥~ by T,

(ii) AUNT = {0}, _
and if K contains an exceptional sequence of length m > 6*(U)./|D|, then Kg¥
covered by the translates of ¥~ by R, and K is euclidean,

Proof, In view of what was said above, we only need to fill in one st
Condition (i) obviously implies that AU NR is contained in T, and (ii) shO_Il
that it is in fact {0}. We may then continue as above, replacing f—a in (2) Wl:is
a suitable element of f—a+ T. (Lenstra’s original proof of course correspo®
to T={0}.) m

Let us consider what we have gained. By a careful choice of T, we ™
now hope to find a set U with larger volume and smaller centre pacl'ﬂf'g
constant, and thus to satisfy the criterion with a shorter exceptional sequf«'ﬂ‘:"
The price we have to pay, in general, is that T (and therefore 6*(U)) will depe®
on K. In order to obtain general results we will have to restrict T to cont?'
only rational integers, which are available in every number field; e
T={0, +1} or {0, +1, +2}.

In a sense, Theorem 2 is best possible. Recall that the “first inhomoge®”
ous minimum of the norm-form for K”, or inhomogeneous minimum for shor’ '
the infimum u(K) of all positive numbers u such that the integral translates ¢
the scaled set u¥" cover all of K [GL 87]. K is euclidean precisely if u(K) <
or if u(K) = 1 and the points of K which are left uncovered at u =1 do nif
belong to K; conjecturally the latter case never occurs [Le 80]. No¥ 1
u(K) < 1, we can always satisfy the criterion in Theorem 2 by putting T = ¥
w, =0, w,=1, and taking for U the interior of a (convex, bound

a¥
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fundamental cell for the lattice R: By assumption, the sets ¥+ (x€ R) cover
Ky, hence AU, and AU contains no nonzero lattice points. We have §(U) = 1,
A(U) = ﬁﬁl and m=2> 5*(U)ﬂ5|. (If larger values of m are known to be
Possible, one can get by with a smaller U. Maybe some stubborn candidates for
Cuclidean fields would yield to such an attack.)

However, here too something has been lost. As Lenstra himself observed
[Le 77, remark preceding Corollary 1.8], whenever his original criterion yields
K(K) < 1, it also provides a sharper estimate u(K) < 6*(U)\/ﬁ/m by scaling
down ¥ and U. This fails when T # {0} because our condition (i) is no longer
Scale invariant (T cannot be scaled).

3. The totally real case. We will now apply Theorem 2 to totally real fields
(r=n,s=0), using T={—1,0, +1} and a set U of the following shape. In
Kp > R", let A be the endomorphism which has 1€R as eigenvector for the
simple eigenvalue 1, and the hyperplane orthogonal to it as eigenspace for an
tigenvalue 7, > | which we shall prescribe later. Then we take U to be the
image under A of the open ball of radius \/r_1/2 about 0. U is convex and
Symmetric about the origin, so AU is just 2U, and this does not contain +1
(condition (ji)). Below we shall choose 7, such that

(3) the open ball of radius 7,./n about the origin is covered by ¥ + T

80 as to ensure condition (i) (this ball contains AU). The packing constant is an
affine invariant; therefore Rogers’ upper bound o, for the packing density of an
n-dimensional ball [R 64, Theorem 7.1] applies to U. Finally,

TR\ "
AU) =1 (4) /r(1+2).

THEOREM 3. Assume t, chosen as in (3). Then any totally real number field of
degree n, containing an exceptional sequence of length

m> t,{_"(;;)mr(l +;)a,,\/ﬁ

has inhomogeneous minimum u(K) <1 and is euclidean for the norm. m

Theorem 2 now gives

We turn now to determining suitable values for the t,. Recall that the
orm of x = (x,, ..., X,)€ Ky is just [} |x;| in the totally real case. Elements of

the algebra K r are multiplied coordinatewise. The euclidean length of x will be
denoted d(x) = (33 x)"/2.

LEMMA. There are constants t, = T > 1 such that for all xe Ky satisfying
Nx)>1 and N(x2—1) > 1, we have d(x) > r“ﬁ. (v does not depend on n.)

(Thus conversely d(x) < rn\/; implies xe ¥ U(¥ +1)u(¥" —1).)
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Proof. If n =1, we may take 1, = \/E so let n > 1. No coordinate x; of
x can be 0 or +1 if x is to satisfy the two norm inequalities. Applying the
inequality of arithmetic and geometric means to the left-hand side of
N(x*—=1)"> 1, we find

4 Y =112 n.

i=1
Therefore at least one x; satisfies [x7—1] > 1, and in fact x? > 1. Assumé
without loss of generality x? > 1 for 1 <i < k and x? < 1 for k < i < n, wher¢
1 <k <n. If k=n, we can drop the absolute value signs in (4), obtaining

d*(x)—n >=n, or d(x) > /2n. We shall have to take 1, < ﬁ If k<n, 4
reads

x}22k+ ) xF

1 i=k+1

or, adding the left-hand side to both sides and halving,

M~

k
&) Y x? 2 k+3d*(x).

From the means inequality (twice) and N(x*)>1 we get

n

Y xtz -k [] xjve»

i=k+1 i=k+1

? [ﬂ—k](ﬁ xiz)lﬂk-nl

] k kj(k—n)
> (n—k)(; ¥ xf)

i=1

and

k 1 k kjtk —n}
©) P> Y x%+(n—k)(; > x?)

i=1 i=1
The real function y+sy+(n—k)(y/k)* ™ grows monotonically for y > k-
Therefore we may substitute (5) into (6) to obtain

dz(x) kf(k=mn)

2k )

(7) d*(x) > k+%d2(x}+(n—-k](l+
Putting for 0 <t <1, O0<u,
F 2e-2(1 £ il
(t, ) = u—2t-2( —t)(l+ﬂ)

(7) may be written as

(8) F(E, m) = 0.

n n
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F is monotonic in u for each ¢, in fact 0/ou(F(t, u)) > 0. One immediately sees
F(t,2t) <0 and F(t,2) > 0, so that there is a unique @() between 2t and
2 such that F(t, ¢(t)) = 0, and (8) is equivalent to

d(x) > /ok/n)- \/n.

Furthermore, @(t) > 1, since, for t < 1/2, F(t, 1) < 0 is equivalent to

1 t 1 =1

Which is true (the left-hand side takes values between 1 and /2, while the
Nght-hand side is always larger than 2). Obviously lim,., ¢(t) = 2, and as, for
!iXed u, lim,_.o F(t, u) =u—2, we must also have lim,.,¢(f) =2. By the
Implicit function theorem, ¢ is continuous (and has continuous first and second
derivatives) on 0 <t < 1. We conclude that it attains a global minimum

Po = ¢(t,) > 1 for some t,. Hence we may take t = ./¢, and

7, = min {{/o(k/n)},

1<k<n

Which ensures ﬁ >1,21>1, and the Lemma is proved.
But we can get still more information about ¢. Restrict u to 2t <u <2
and write F(t,u) =0 as

9 u\_ . 2—u
©) rln(l+2r) (t 1)1n(1+2(£_1)).

Substitute u = ¢(t), take derivatives, use (9) to get rid of the logarithm on the
Tight-hand side, differentiate again and put ¢'(f) = 0. The resulting expression
fol' ¢"(t) in terms of t and u = @(t) is positive for all permitted values of ¢ and u;
In other words, every local extremum of ¢ must be a minimum. Therefore there
15 precisely one global and local minimum. Incidentally, ¢(t) is algebraic for
Tational values of ¢t (e.g., ¢(1/2) = ﬁ), but ¢'(t) = 0 is impossible for rational
t and algebraic ¢(t), so that t, must be irrational. =

It is easy to evaluate ¢ numerically by Newton’s method, and a
S¢cond-order iteration produces the approximate values

t, = 043072292,
Qo = 1.40844642,
T =2 1.1867798S5.

In order to compute t,, it suffices to check only the k/n adjacent to ¢, ie.,
k< |nt,| and [nt,]. :

In Table 1 we have collected, for 2 < n.< 20, the values 1, (rounded
towards zero), preceded by the corresponding k which minimize ¢(k/n), the
Coefficients &@ = t, ~"(4/(nn))">I'(1+n/2)o, needed in Theorem 3 (rounded
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away from zero), and (for comparison) the Minkowski coefficients &M = n!/n",
which were the lowest ones known before in this range. Exact-values have been
marked as such.

Asymptotically, the Minkowski coefficients grow like ./2nne™". For
sufficiently large n, Lenstra’s sphere packing coefficients [Le 77, (1.12)]

4 nf2
(—) r (1 +5) 0, ~ 0.652n%2 ¢~ 1:0724n
nn 2

become smaller than the former. Our coefficients are less than either, with
asymptotic behaviour

0_7?4}13!2 e~ 1 .24361'1.

Table 1. Coefficients for the Lemma and for Theorem 3

n | k 1, 70 740

2] 1 Y22 1.1892071 048549178 1/2=05

301 11917481 0.20176332 1/9 < 0222222223

4 | 2 2 0.07805681 = 009375

5 2 1.1872593 0.02877318 = 0.0384

6 | 3 3 0.01010640 0.0154320988

70 3 11867821 0.003 52448 0.00611989903

8 | 3 1.1883710 0.0011815 000240325928
9| 4 1.1868747 0.0003970 0000936656709
10 | 4 1.1872593 000013008 =0.00036288

1| s 1.1870657 0.00004238 0.000139905949
2|5 1.1868798 0.000013669 0.000053723218
13 6 1.1872582 0.000004354 0.00002055970
14 | 6 11867821 0.000001 390 0.00000784542
15| 6 1.1872593 0.0000004362 0.00000298629
16 | 7 11868030 0.00000013767 0.000001 13423
17 {7 1.1869618 0.000000042935 0.00000042997
18 8 1.1868747 0.000000013379 0.00000016272
19 | 8 1.1868271 0.000000004 1516 0.00000006149
20 | 9 1.1869670 0.000000001 2802 0.00000002321

Nevertheless, this should not be taken to suggest that our Theorem 3 were
best possible. The reader should draw a picture to convince herself or himself
that for n = 2 the “true” coefficient §*(U) should be 1 /\/_ ~ 0.4472136 (U is
a rectangle, and T= {0, +1}). In fact, if condition (i) in Theorem 2 iS
satisfied only for AU n K, one may still conclude that K is euclidean (start theé
proof with an xeK and observe that this implies u—veK); thus for real
quadratic fields except Q(ﬁ} one may use an even. larger rectangle with
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() = 1/, /8 ~ 03535534 and T= {0, %1, +2}. This handles the eight fields
¥ith discriminants 5 < D < 32 (m = 2 throughout; compare this to [HW 79,

leorem 248]). The seven euclidean real quadratic fields with larger dis-
“fiminants would need a T< Z. — In the real cubic case, one can have o*(U)
% small as 014343246 (with T= {0, +1, +2} and unrestricted condition (i)).

is works for the fields of discriminants 49, 81, 148, 169, 257, 361, all known
0 be euclidean already, and probably no others. Higher degrees are being
"Wvestigated; the results will appear elsewhere.

As mentioned in the introduction, the arguments leading to our lemma
“?ay be modified to handle non-totally real fields, at least as long as 2s < r, and
Yield valyes 1, for Theorem 3 which are unfortunately not large enough to

Stect any new euclidean fields. Here, too, we expect that other choices of
and/or refined calculations will lead to further improvements.

4. Examples. In this section we present nine totally real number fields in
degrees 4, 5 and 6 which are proved euclidean by Theorem 3. Two of the
Quartic fields have before been shown to be euclidean by different methods

65], the other seven are new. The results are summarized in Table 2.

Table 2. Euclidean number fields from Theorem 3

n D m #@_ /ID| Earlier reference
4 2000 4 3.491

4 2225 4 3.682 [G65]

4 2525 =4 3.923

4 2624 4 3999 [G65]

5 24217 5 4478

5 38569 7 5.651

6 453789 7 6.809

6 485125 9 7.040

6 703493 =9 8.477

We let ¢, denote a primitive nth root of unity, = —{s—{s a generator of
Q(\/§) satisfying 02 —0—1 = 0, and n = {,+{, a generator of the cyclic cubic field
o discriminant 49, satisfying #° +1%—27—1 = 0. In any field containing Q(,/5),
01,9 62} is an exceptional sequence of length 4; similarly, any field containing

() has the exceptional sequence {0, 1, 7, n™%, 3—n% n+1, 1> +n—1} of length 7
(ef. [Le 77, (2.4b), (3.4)] and [LN 87, 3.1]). All fields in our list are characterized
b their signatures and discriminants, and may be found in the tables of [PWZ

2] or [PZ 89].
41. n=4, D = 2000 = 2453 (fifth smallest discriminant). Abelian field

Benerated by {50+ Lzo = +/2+ 0. The subfield Q(,/5) gives m = 4, which is best
ible since 2 is the square of an ideal of norm 4. This is a new euclidean field.
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4.2. n =4, D = 2225 = 5?89 (seventh discriminant). Ray class field ov¢'
Q{\/g) with conductor the prime ideal (9+6) of norm 89 (or its conjugam]'

generated by a root of X2+0X —2. We have m = 4 from the subfield. ¢
[G 65].

4.3.n =4, D = 2525 = 5*101 (ninth discriminant, [G 56]). Ray class field
over Q(ﬁ] with conductor the prime ideal (9+40) of norm 101 (or i*
conjugate), generated by a root of X?+ X —(2+0). Again m > 4 is guarante®
by the subfield; the presence of prime ideals of norm 5 implies m < 5. This ®
a new euclidean field.

44.n =4, D = 2624 = 2541 (tenth discriminant). Class field of conduct?’
(7 +2\/§) of norm 41 over Q{ﬁ}, generated by a root x of X2 +(1+ \/E)X’l
(the ray class field has degree eight). {0, 1, x, x+ 1} is an exceptional sequcl‘l"’g
by [Le 77, (2.4b)] applied to the minimal polynomial X*+2X3—-3X?-2X+ !
of x over Q; hence m =4, which is best possible. See [G 65].

45.n =5, D = 24217 = 61397 (second discriminant [P 75]). The field
generated by a root x of X3 +2X*—4X3—-3X%24+2X +1. [Le 77, (2.4d)] yiﬂ[‘!s
the exceptional sequence {0, I, x+1, x?} and m = 5 (best possible). This *
a new euclidean field, and so are the remaining four.

4.6.n =35, D = 38569 (a prime; fourth discriminant [P 75]). Field genera
ted by a root x of X°— 5x3+4x+1 From [LM 82, (3.2)A] we have th°

exceptional sequence {0, I, x, x+1, x%, x/(x—1), 1)2—x)} of length 7 (beS
possible).

47. n=6, D = 453789 = 3*7° (fourth discriminant). Ray class field ©
conductor (3)-(2—#) over Q(n) (the second factor being the unique prime id caJ
of norm 7), generated by a root of X?+(n*+n—1)X +(n—1). Since - (2"1
ramifies again in the extension, the value m = 7 guaranteed by the subfield *
best possible.

48. n=6, D = 485125 = 533881 (fifth discriminant [BMO 88]). No%

Galois extension of Q(/5), generated by a root of X+ X2 +(0—3) X +(0-2
or by a root x of the polynomial X3—0"2X2—02X—0~' of no!®
X6 —3X5_2X*+8X3+2X2—4X —1 over Q. The sequence [LM 82, (3.3)A%

{0, 1, x x+1, x2, ——, : ; . ¢ =
x—1"2—=x"x2—=x—1"x¥=2x2—x+1

shows m =9 (best possible).

49. n = 6, D = 703493 = 74293 (seventh discriminant). Ray class fietd o
conductor (n?—2n+5) (or a conjugate), a prime ideal of norm 293, gv'sneramd
by a root x of X?*+(1—n)X —1. The bound to be met is =~ 8.477, so th
sequence in the subfield Q(n) is too short; on the other hand, m < 13 from thé
splitting behaviour of small primes. A. Leutbecher and the first author fou®
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the exceptional sequence

1 x x+1
Osls y 1T ’ 3y :2_2 ’l__z
{ x, 1 x,x+1x+1x+2( %) x, ( rrn)X}

of length 9 by explicit calculation. =

There is little hope of Theorem 3 yielding any éuclidean fields in degrees
"> 7 For n=17, the minimal discriminant is 20134393 [P 77], leading to
ibound of ~ 15.815, but all fields of reasonably small discriminants known in
this signature have ideals of norm 7, 9 or 13. The situation in degrees 8 and 9 is
Similar, and beyond this not even candidates for the totally real fields of
Minimal discriminant are known.
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Note added in proof (February 1991): As we have discovered only recently, H. Davenport
[T}‘B product of n homogeneous linear forms, Indag. Math. 8 (1946), 525--531) had already obtained
allShl;ly better values for 7, and t under the same conditions as in our Lemma; indeed his values
“n be shown to be best possible under those conditions. Using the improved 1, 2 1.494, we can
low also prove the sextic field of sixth smallest (prime) discriminant 592661 to be euclidean: One
hag &P _/D| < 6.783 and m = 7 on account of [LM 82, (3.2)A] — the same sequence as in 4.6
Wove — applied to a root of the polynomial X —5X3+5X*+6X°>—8X*—X +1.
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The density of the set of sums
by

IMRE Z. Ruzsa* (Budapest)

g Let 1 < a, <a, <... be a sequence of integers, and let S be the set of all
Ums of the form Ye;a;, where ¢, =0 or 1.

THEOREM. If
(1)

Ay q "“<- 2an
Jor all pyy at most finitely many values of n, then S has an asymptotic density.

h This problem was proposed by U. Zannier at the 1989 September number
s(eory conference in Amalfi. In [1], he proves the same conclusion under the

Tonger assumption that a,,, ~ a,. I heard it from P. Erdés at the DIMACS
Conference in October 1989. He also asked how (1) can be weakened, in
Particylar, whether

® a,<a,+a,+...+a,-;+c
5 3'-l_ﬂicient. My proof makes a heavy use of (1). It is easy to see that if we do
Olimpose any restriction on the sequence (), then S need not have a density.
aking long intervals and large gaps in (a;) one can easily achieve d(S) = 1 and
E(S) = ¢ for an arbitrary prescribed number 0 < c¢ < 1, and I believe even
48) < ¢, d(S) = C is possible with an arbitrary pair of numbers0 < c < C < 1.
(1) or (2) implies that d(S) > 0, evén that S has bounded gaps.
S(x) will denote the number of integers seS, 1 <s < x.

the LemMa 1. If x =a;,+a,+...+a;, where iy >i,>...> i, and y <a,
n
B) . S(x+y) = S(x)+50).
. Indeed, all the numbers x+s, where seS, 1 <s< y, are elements of
between x and x+ »
Write
u=dS), v=4d(Qs).
‘-...._‘_____—__

Seie * Supported by DIMACS Center for Discrete Mathematics and Theoretical Computer
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