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L Introduction. In this paper { } denotes fractional part, [ ] means
Wtegral part, and p is always a prime. The distribution of {\/E} is, at first sight,
Merely an interesting problem on the borderline of diophantine approximation
and multiplicative number theory. However, a moment’s thought reveals that

€ question is linked with two of the hardest problems in analytic number
A €ory, One of these concerns the difference between consecutive primes. The
Sther one is the conjecture that if £ (x) is an irreducible polynomial over Z, with
Positive leading coefficient, and having no fixed prime divisor, then f(n) is
2 prime infinitely often. If we could prove that

{1.1) {pUZ} < Kp~\2

for some K, then it would be known that there is some quadratic polynomial
Fakil‘ig infinitely many prime values. This would be a major advance, and so it
'8 not surprising that we are far from proving (1.1)! The first approximation to
L1) was obtained by Vinogradov [16]. His method was improved by Kaufman
10]. The best known result to date has been obtained by A. Balog [1] and the
uthor [4]. We proved that, for any & > 0, there are infinitely many solutions to

[1.2) {p1;2} < pite,

The first problem we consider in this paper concerns the still harder
®onjecture that if f(n) is an irreducible quadratic polynomial over Z, with
Positive leading coefficient, and nf (n) has no fixed prime divisor, then f(p) will

5@ prime for infinitely many p. Examples of such polynomials include p* -2,
P°+4. The following result gives an approximation to this question.

THeOREM 1. Let 0 be a real number, and let & > 0 be given. Then there are
"finitely many solutions to

(13) {p'2—0} < p~VB*c,  with [p"*] prime.

Theorem 1 is an immediate corollary of the following more general

theOl‘ern, which is no harder to prove than (1.3) directly. We write A(n) for the
Yon Mangoldt function.
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THEOREM 2. Let of be a set of integers, and suppose that ¢ >0, 0 a redl
N >2, and €[N 1) are given. Then

(1.4) Y Am =2 Y né+O0(Ndexp(—(log N)'%)).
!"”gfg;‘cé nze}ﬁﬂ
[n'/2]eof

It is not surprising that (1.3) is even further from what is believed to be the
truth than is (1.2). On the Riemann hypothesis it is not difficult to show that
the 1/8 in (1.3) can be increased to 1/4. The assumption of the Rieman?
hypothesis does not appear to improve (1.2) though. A weaker result than (1.3
can be deduced from work on the differences between consecutive primes. Fof
example, one can obtain (1.3) with the exponent 3/32 using [3]. This can b€
improved slightly using the methods of [7] and [8], although Heath-Brown's
method does not yield the exponent 1/8 (his method is, of course, more efficient
for the problem he considers).

The second problem in this paper concerns the number of solutions t9

1.5 {p*—0} < N~*@*c  for p< N.
Asymptotic formulae in this situation were derived in [1], [4] and [6]. Fof
A < 1/2 one might hope to establish such a formula with a(4) = (1 —1)/2. Balo§
[2] managed to prove a lower bound of the correct order of magnitude whe?
A > 2/5. An asymptotic formula is given by Theorem 2 of [6] which holds whe?
a(l) < min(4, 1/4). It follows from Huxley's prime number theorem [9] that
the formula holds when a(l) < 5/12— A, which is better than [6] if 4 < 5/24'
We write .
Y(N)= ) An),

n<N

and prove the following stronger result.

THEOREM 3. For 1/5 < A < 3/8, O¢R, and d€(0, 1), we have, for N = 2
(1.6) Y. A(n)=6Y(N)+O(IN'~*45*>N'~ED3(log N)*?),

nsN
(nt—-8)<$

where E(A) = 5/14—22/7, and & = 1/160.
This provides an asymptotic formula for
a(d) < 5/14-24/1.

For smaller A technical problems make it difficult to establish a result of th¢
above form. However, it is possible to prove the following result, whose pro?
we shall sketch briefly at the end of the paper.

THEOREM 4. For 0 < 1< 1/5,6>0,B>0, N> 2,8 < N 5+ e havé
(1.7 Y A(n) = 6y/(N)(1+0((log N)9)),

n=N
{ndj<d
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Where
(1.8) .1 | A—— Sh _ S5h—(2h+4)A
(A) = maxmin{ {52 =4 — 4

Clearly E(4) = 5/12—4/2+0(4*) as A—0. Theorem 4 can be extended to
'nclude the condtion [p*] € .o with the same value of E (4) given by (1.8) for any
A< 1/2 (note that E(1/2) = 1/8).

i 2. Auxiliary results. To prove our results we shall be using the familiar
Ormula of Landau [11]:

Ne 2
@ YN)=N— ¥ ?_'_O(N(logN)T-erog T_HogN)

]
IsT

:‘lere @ = B+iy is a zero of the Riemann zeta-function with 0 < 8 < 1. The

z(:IIOWing lemma contains the information we need on the distribution of these
Tos,

Lemma 1. Write

N@,T)= ¥ 1.

,ﬂgu‘

st
T}'eﬂ, if T is sufficiently large, we have
Q2 N(@, T)=0 for ¢ > 1—(log T)~ 710,
23) N, TY<T* %  for o> 45,
Q4 N(o, T) < TAOlog TV  for 1/2 < o < 4/5,
W[‘[h
2s) Aoy < [20=0VBo=1)  for 34 <o <4,

31-0)2—0) for 12<a <34,

nd
2.6

N(o, T+1)—N(o, T) <logT.
Proof. See Chapters 6 and 9 of [15], in particular the end of chapter
$ where references to the original papers may be found.

Lemma 2. Let 0€[0,1), N, T> 1, a, a sequence of complex numbers, and
PPose that B is a set of distinct points in R? with

Qote

| T, o0y<0<agy,+(log2N)~*,

t=t'|=26 if (o,0)# (o', 1) for (o,1),(c, ')eB.
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Then
. 2N
27 ¥ | Y an+0° <(og2N+6 H)N+T) 3 la,l*n™?".
(o l)e® n=N N=n<2N
Proof From Corollary 2 to Theorem 2 of [13] we obtain
T 2N . 2N
(2.8) [ Y a,(n+6)?dt <(T+N) } la,|*.
=T n=N n=N

The bound (2.7) follows from (2.8) using the argument of Theorems 7.3 and 7
in [12].

LemMa 3. Let a, be a sequence of complex numbers with |a,| < 1. Then, fof
N, T=1, we have

T
(2.9) [l ¥ a,n+6)|*dt <(T+N*)N?(log2N)>.

-T N<n<2N
Proof. Write H(A, N) for the number of solutions to

(2.10) (1, +0)(n, +6)—(ny + O)(ng+0)| < A,  with n;~ N.

Here we have written n ~ N to mean N < n < 2N. By expanding the left half"
side of (2.9) and integrating the resulting fourfold series termwise we obtai®
a bound for the integral which is

@.11) <Y H(4, NJA"'*+TH(1, N),

where A takes the values 1, 2, 4, 8, ... less than 8N2 To produce (2.11) W¢
have made use of the inequalities:

T
| x"dt < min(T, [logx|™*)  for x>0,
0

and
[log(1+y) = Iy//4 for —3/4<y<3.
To bound the number of solutions to (2.10) write
u=n,—n,, U=n3—n,.
The inequality then becomes
(2.12) lu(ny +0)—v(n, +0)| < A.

The number of solutions to (2.12) can be estimated by the method used iff
prove Lemma 7 in [5]. If we suppose that u ~ U and v ~ V, then the number
solutions to (2.12) is

< A(log24)(min(U, V)N (1 + |log|U/V[|)+(U + V)*1)(log 2N).
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From this it quickly follows that
H(A, N) < A(log24)(log2N)N* < AN?*(log 2N)>.
Thus (2.9) follows from (2.11).

) LemMa 4. Suppose the hypotheses of Lemma 2 are given, but with |a,| < 1.
en

[213) Z ‘ Z a"(n+0il—vl4 @(6_1+logN)(IOgZN)s(T+N2)N2_4ao-
(o,t)edd N<n<2N

Proof. This follows from Lemma 3, together with Lemma 1.2 of [12], an

aPSPl‘ication of Hoélder’s inequality, and the argument used to prove Theorem
» 1 [12].

3. Proof of Theorem 2. Clearly we may assume that 0e[0, 1). Write

SX,8)= Y Y Am),

XsSm<2Xnefm
mes

W
th}:m Fm=(m+0)*, (m+0+0)*]. We then note that it suffices to establish

3.1 S(X,8)= Y 26m+0(5X>exp(—(log X)'/%))
Xs=m<2X
mesf
-
Or X-1/a+e o 5«1, By (2.1) with T = X?, we have
B sx,8)= ¥ 26m+0(X(ogx)?)
Xsm<2X
mesf
(m+0+8)%—(m+0)*
-¥ ¥ (O

e X<m<2X [
IYI£X2  meos

T, = X6~ !. We write S, for that portion of the final term in (3.2) with
T, and write S, for the remaining part of the sum. If we prove that

: S; < X*dexp(—(log X)"/4)
O j=1,2, then (3.1) will follow from (3.2). We write
X (s)= Y (m+yr L.

Let

M <
{3,3 }

xs:u;u

Then me.

(3. ']

4) $;=2[ I X,Q0dy.
" mémn

Pug N =(logX) ! and write
S,00= ) 1X,Q0).
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Then it follows from (3.4) that
(3.5) S, < (logX)d sup [S,(o)l.

0ol
[ES"E
For ¢ > 4/5 we use Holder’s inequality to obtain
S,0) < N@, TP*( ¥ IX,2e)%)"

e
17<Ty
o=fisaty

< N(O’, T.]3;4(X2+ TI)IMXZU_ IIZ(IOg X]
by Lemma 4 and (2.6),
& T3U-92(X2 4 T,)M4 X292 (jog X)

by (2.3). Since T, < X**, this expression is an increasing function of o. Hen®
the maximum is

(3.6) < X2(log X)™ 'exp(— (log X)'4)

by (2.2).
For ¢ < 4/5 we apply the Cauchy-Schwarz inequality to obtain

S,0)<N@, T)'*( ¥ X,

[
I¥|<T)
asfisa+tn

< N(U, TI)III(X—l- T‘)l;‘lxza-—lﬂ(logx)
by Lemma 2 and (2.6),

wonsrafousn-3(5-3r%)

using (24) and T, < X%*~¢. Therefore we must demonstrate that

3.7 20—%4—(5—8)(1 +;(“}) <2

for o < 4/5. First we consider ¢ > 3/4, for which (2.5) gives

2
Alo) = 3=~ 1.

; s
Since the second derivative of the left hand side of (3.7) (with respect to o) ’l
then positive, its maximum is obtained at ¢ = 3/4 or =4/5. The value
o =3/4is

(3.8) 2—4¢/5,
while the value at o = 4/5 does not exceed 1.993.
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For 1/2 <o < 3/4 (2.5) gives

3
A{o) =3 .
Itis then clear that the left hand side of (3.7) is an increasing function of ¢ for
%< 3/4. The maximum is therefore attained at o = 3/4, which produces the
saf"le value given by (3.8). For ¢ < 1/2 we take the trivial bound A{¢) =1 and
this completes the proof of (3.3) for j = 1.
To tackle S, we write

69) S@.T)== T IXQo+1).

Thep

(3‘10) S, <(logX)> max S,(o, T).

0=sy=<1
0<a<l
T)=T=<Xx?

A".Sllming that X is sufficiently large, the upper bound obtained for S (s, T)

USing the density results of Lemma 1 is a decreasing function of T for

lhz'i-u <ag<1—uy for any u >0 (say u= 1/100). The maximum over T is
trefore attained for T = T, for o in this range, the value obtained being the

f;me as for §,(0). For ¢ < 1/2+ p or o > 1 — p the required bound to establish
3) is readily obtained. This completes the proof of Theorem 2.

Le 4. Proof of Theorem 3. First we require a more powerful version of
Mmma 4 which can be obtained when a, = 1.

r LEMMA 5. Given the hypotheses of Lemma 2, without the a,, and with
S |t| < 2T, where T > N, we have

{4'1) Y Y (n+0)'|* < (67 +log N)(log T) T N2~ 40,
(o, T)eB n~N

R Proof. We note that if T > N? then (4.1) follows immediately from (2.13).

Y the method used in Lemma 4, (4.1) follows from the inequality

2T
42 f1 Y (n+0y"°|*dt < (log T} TN2"%.
T n~N
Y partial summation it suffices to prove (4.2) for ¢ = 1/2 with the summation
. nge‘altered to N < n< M where M < 2N. From the approximate functional
Wation for the Hurwitz zeta-function, if N* > t, we obtain

Y (0 =g(12—it) Y
NesnsmM tH(2ZreM)<m<t/(2nN)

re e(x) = exp(2nix) (see Lemma 1 of [4], a proof may be found in [14]).
tre [x(1/2—it)| = 1. Thus

e(—rOm~ "~ Y21 0(1)

Wh
H
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T

Il Y (m+0)f12Fa

T NsnsM
aT

<f| ¥

e(—r0)m™*"12|*dt 4+ O(T)
T  1/(2xM)<m<1/(2rN)
N 2 B it
g(—-) ¥y max j(’"—‘"‘z) dtl+O(T)
T TH4RN)<Smy<T/(xN) TS A<B<2T | 4 \M3My
N

2
< (?) Y min(T, [log(m, m,)—log(mym,)|~*)+O(T)
T/(4sN)<m;<T/(nN)

< T(logT)?
after some standard calculations. This establishes (4.2) for ¢ = 1/2 as desired-

Proof of Theorem 3. Without loss of generality we may suppose tha

0e[0, 1). We write K = A~'. We start in a similar fashion to Theorem 2 bY
writing

4.3) SX,8, )= Y Y, A(n).

XEm<2X (m+0)K<ns(m+0+8)K
We must then show that, for § > X ¥,

(44)  SX, 6, 2) = o{(y(2X)) -y (x")
+O (XK1= 4 5213 XK-KEQ)3 (Jog X)40),
Write
T,=X/K, T,=X6"? Ty=X~
An application of (2.1) gives
@45 SX,8,H)= ) ((m+0+8)*—(m+0))+0((logX)?)

XEm<2X
(m+0+8)X—(m+0)¥

= %

M;nxazmczx Q
Now the first term on the right hand side of (4.5) is
(4.6) S((2X)* - XX+ 0(6X*Y).
The sum ovet zeros in the final term of (4.5) with [y| < T, is
4.7 Kﬂga ; X,(Kg)dy.
|#| =Ty

Now, for |Im Kg| < X, by Lemma 4.10 of [15] we have

RX +y) —(X+y)*

(4.8) X,(Ke) = Ko

+O(X*P-Y),
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By Lemma 1
z XK;S— 1 < (]03 X)45 max XA{a)+ Ko—1
Q O0=sax1
I¥lsTy N(a.T1)#0

With A(g) < 12(1—0)/5 for all 0. Since K > 12/5 the above expression is an
Increasing function of o. Hence

z XK1 ¢ xK-1
|1'|2T1

Using (2.2)."[11us, in view of (4.8), the terms (4.6) and (4.7) together contribute
8+4
“9) [ (@X+y —(X+y)")dy+0(EX5Y
(]
8+5 Ke __ Kp
X+ e-(X+9)

-§ s

e
Irl=Ty

a8+4a

| (WX +y%)—d(X +)")+0(X " (log X)*))dy  (by (2.1)
L]

S(W((2X)%) -y (X%))+0(6 X% (log X)?)
sil_lce Y((R+1)¥) = Y(R*)+O(R*™?). Thus (49) gives the main term of (4.4)

Ith an error of a suitable size since ¢ < K™ '.
We now consider the sum over zeros with T, < |y| < T, in (4.5). We write

(4.10) S@= Y [|X,(Ko).

@
Ti<|y|<T:
oSf<a+n

Our present aim is to establish that
t41 1) SJ,(O') < {log X)— I(XK(I—SJ +(]0g X)405- 13 XK(]. —E(J.}H})‘
First we consider ¢ > 4/5. Here we bound S, (o) by

S(@)<N(, T,) max | Y (n+0)FF1+%|
TysisX® X<n<2X
B? applying the results of Chapter 5 in [15] to the above sum (Theorem 5.14
With | = 6 for example) we conclude that, for & = 1/160,

S,(0) < N(o, Tp) XX~ 9(log X)™".

Now, by (2.3),

N(ﬂ', Tz) ‘g T%ll—ﬁ] g XZ‘I +E(A)(1 —Cﬂ_
Since 2(1 4+ E(1)) < K, we conclude that
.12 5,(0) < XX1-9(log X)~",
“hich is a suitable estimate.
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For the range 3/4 < ¢ < 4/5 we apply Holder’s inequality and (4.1) 10
(4.10) to obtain

(4.13) S,(0) < TAsnop X (T X 4E0-238,
For (4.11) to hold we therefore need to demonstrate that
(4.14) Xﬂo"' 1/2 T&l + 3A(a))/4 4 Ti{.’j XK(I = E{(A)N3- 1,!3.

Rearranging (4.14) gives, after taking the 12th power, the equivalent inequality ’
(4.15) ngta]—lxlzxa « XI2K+2—4K£(J.).

The left hand side of (4.15) is an increasing function of T, so it suffices to prové
(4.15) with

- 5K/14 +5(7
T,=X :

Thus the left hand side of (4.15) is X raised to the power
(4.16) (9A4(0)—1)(5K/14+5/7)+ 12Ka.

From (2.5) the second derivative of (4.16) with respect to ¢ is positive, so the
maximum occurs at ¢ = 3/4 or o =4/5. At ¢ = 3/4 (4.16) is

4.17) (74K +22)/7.

A quick calculation reveals that this is the same power of X occurring on the
right hand side of (4.15). The value of (4.16) at ¢ =4/5 is

(4.18) 100/49 +2602K /245,

which is less than (4.17) when K < 45/2, which is certainly the case her®

For the region 1/2 < o < 3/4 it is clear that S,(c) is an increasing functio?
of ¢. The evaluation performed above for o = 3/4 thus provides a suitabl®
bound for the maximum in this region. As expected, the region o < 1/2 poses
no additional difficulties. A combination of all our results then establish®®
(4.11) as desired.

The final step required to complete the proof of Theorem 3 is to obtd
a satisfactory estimate for

in

(4.19) % Y IX,(Ke+1),

e
T<|y|<27T
eEfi<a+n

with T, < T< Ty. It is clear that the estimate obtained for S,(s) holds for the
sum in (4.19) as well. This establishes (4.4) and so completes the proof 0
Theorem 3.

We now indicate briefly how to prove Theorem 4. The proof begin$ @
previously, but we restrict m to [X, X + X (log X)~®) in place of [X, 2X).
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Also replace (m+ 8)X —mX with (m+ dm/X)X —mX. The effect of these changes is
t reduce all the Dirichlet polynomials which arise once (2.1) has been applied
‘P their common form ), m*. We do this because no results appear to be in the
literature for

| Z(m+y)“|2"dt

(= e |

"‘}.len h = 3. To prove Theorem 4 no use is made of Lemma 5 (the reflection
Principle it contains is inefficient for A < 1/5), but instead Holder’s inequality is
Used to give

z , E mif+n|£'gllhlf2h( Z l z mil+a|2h)lf2k'

(o.)ed m<M (0.)eB m<M
Lemma 2 can then be applied since
| 3 mopa] E P
msM m<Mh

for certain a,,. Calculations of a similar nature to those used in Theorems 2 and
; give a satisfactory estimate for the error terms using the value of E(4) stated
In (1.8). The restriction me .o can be added by estimating the error terms for
O > 4/5 using the technique employed in Theorem 2. Since Lemma 5 is not
Used, the method of Theorem 4 works for ¢ < 4/5 with the added restriction.
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O NOJHHOMHAJIBHLIX CPABHEHMSIX

H. E. IINAPAYUHCKHUIA (Mocksa)

M Hns matypansueix n u g uepes M,(g) 0603HAUMM MHONKECTBO BCEX
Horoynenos
f(x)=a,x"+ ... +a,x+ae Z[x]
¢
Yenosuem (a,, ..., g, q) =1, s f(x)eZ[x] u HarypanbHoro P uepe3
s P, g) 0603HaunM KONHYECTBO pELLEHUH CPaBHEHHS

() f(x)=0 (modg), O0<x<P-1.

Monoxum

N,(P,q)= max o(f, P,q); N,g) =N,4,q).
Jedlnlg)
% Benmuuna N,(q) uccnemosanace B pame pabor (cm. [1], [5] u ccbuiku
HuX). B [1] 6ewia moayueHa Heynmywinaemas OUEHKA
Q)

N.(q)<q' "

(‘no‘:Tomume B CHMBOJIE “<” 3/1ech H Jajiee 3aBHCAT TOJILKO OT h H,
MoxHo, & > 0).

B paGore [2], B cBA3M C OLEHKAMN HEKOTOPbIX TPHTOHOMETPHYECKUX
M, ouenmpanacek BenuunHa N, (P, g) ons g paBHOrO CTENEHH MPOCTOro
4. B [4] 6buia noka3aHa OlEHKA

C

K)
) N"(P, q) < Pq— !;n+ql—11n—en+s’
T
% 9, = (n—1)/n(n*—n+1), HerpuBManbHas npn P > q' "1,
JeCh nony4YeHa OlEHKA, HeTpUBHANbHAd MPH BCEX P<gq.
TEOPEMA. ITpu awbom € > 0 cnpasedausa oyenka
N, (P, g) < P*(P} Y= Pg= ") 20¢ 6, = (n—1)/n(n>—n?+1).
o HNokaszaTenscTBo. Bribepem wmuorounen feM,(g), Ans KoTOporo
qf’ P, gq)= NP, q), ¥ IyCTb p; = P, > ... = pp — BCE NPOCThIE JCITUTENH
Cpg Yyetom kpatHocTH. Ilonoxum P, = [P/p,]+1. Torna 4ucino peieHui

BHeHus (1) He MPEBOCXOMMT YWC/A PEIUEHUil CpaBHEHHs

{4
) fz+p;x)=0 (modg), O0<z<p;—1,0<x<P,—1L



	s074.tif
	s075.tif
	s076.tif
	s077.tif
	s078.tif
	s079.tif
	s080.tif

