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Polynomials whose powers are sparse
by
Don CoppersmiTH (Yorktown Heights, NY) and James DAVENPORT (Bath)

Erd6s [Erd] defines Q(N) as the least possible number of nonzero
Coefficients (“the number of terms”) in the square of a polynomial f (x) with
€xactly N nonzero real coefficients. Erdds proves the existence of positive
Constants C,, C, such that

Q(N)<C,\N'™C.
Verdenius [Ver] extends this result in two directions. He works with
Complete polynomials f, that is,

N-1
fxy= Y dx', d,#0, O0<i<N-L
i=0

He also establishes a similar inequality for cubes. Letting Q,(N) denote the
leagt possible number of terms in the kth power of a complete real polynomial

of degree N —1, Verdenius gives positive constants C, 5, C; 3 such that for any
nteger N > 1,

0, (M) 2y, NORWH e, O (N)sz Cy g 2%,

In the present note we extend this result to kth powers for each integer
2 2. Our main theorem is:

THEOREM 1. Given an integer k = 2, there are positive constants Cy,
Cyx such that for any integer N =1,

Qk(N) < Cl_kNl _Cz'k.

Remark. Schinzel [Sch] has studied a similar problem for fields of prime
Characteristic p. For any integer k not a power of p, he obtains polynomials
With arbitrarily many terms, whose kth power has at most 2k terms. He also
Obtains lower bounds.

Two consequences of Theorem 1:

THEOREM 2. Given an integer k = 2, there are positive constants Cjy i,

Cotnr2 < j < k, such that for any integer N > 1 there,is a complete polynomial

(X)eR[x] of degree N—1 such that the number of terms in each power
F(x),2 <j <k, is bounded by C, ;N Cuik,



80 D. Coppersmith and J. Davenport

THEOREM 3. Given FeC[y], deg(F) = 2, there are positive constants C, ,
C,.r such that for any integer N > 1 there is a complete polynomial feC [x] of
degree N—1, such that the number of terms in the composition F(f(x)) is
bounded by C, yN'~€r,

We need some preliminary lemmas.

LemMMmaA 4. [Rén] Q, (tu) < 0, (1)Q, (u).

Proof Let f(x) be a polynomial exhibiting Q, () and g(x) be a polyno-
mial exhibiting Q, (). Then f(x)g(x') is a complete polynomial of degree tu— 1!
whose kth power has at most Q,(t)Q,(u) terms. m

LEMMA 5 (see [Ver]). If ¢=22 and (c—1)t<u<ct then Q,(u)
< (k+ 1)kcQ, (2).

Proof. Let f(x) be a polynomial exhibiting Q, (1). Select «€ R such that
c—2
g(x)=f(x)h(x)=f(x)( Y x"+ax""")
i=0

is complete; we need only avoid finitely many selections of a. Each term of
h*(x) has index jt+I(u—t) where 0 <j < kc and 0 < I < k, so that h*(x) has at
most (k+ 1)ke terms. Then g (x) is a complete polynomial of degree u — 1 whose
kth power has at most (k4 1)kcQ, (t) terms. m

The following technical lemmas form the basis of the proof for our main
"theorems. Their proofs will be delayed until the end of this section.

LEMMA 6. Given an integer k > 2, there is an integer n =n, > k+1 and
a complete polynomial R(x)eR[x] of degree n—1, such that

kin—1)
R(x)": z aixi’ ajn+l=0= 0<j<k-1,2<I<k+1.
i=0

LEMMA 7. Given n, k, and R (x) as in Lemma 6, and an integer L > 1, set
L=1
fx) =[] RGx™)
q=0
and let b,, be the coefficients of f (x)*:

knL—k

SO =Y bx"

m=0
Then whenever the n-ary expansion of m contains the digit k+ 1, then b,, = 0.
Proof of Theorem 1. Set
Cix=(k+1)k*n and C,;=1-log(n—1)logn,
where n = n, is obtained from Lemma 6. Given N, set L = [ logN/logn] —1,
set .

L-1
Sx) =[] R(x™)
q=0
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& in Lemma 7, and let b, be the coefficients of f(x)*. Evidently

L-1

deg(f) =(n—1) ) n?=nt-1,

q=0
;‘l':ié"i ifs complete. By Le:nma 7, whenever the n-ary expansior_: of m contains
git k+1, then b, =0. So the number of nonzero b, is less than
f({ﬂ-— ”L - knLIngtn—lmnsn < kNIogtn— I)/logn _ f(N] _rl,k.
In other words,
Q,(nt) < kN~ Cax,

Also 1 < N/nt < n. Apply Lemma 5 with ¢ = [N/n*7] to obtain

Qi (N) < (k+ D)keQ, (n") < (k+ 1)knkN' ~C2% = C, \N€*_ u

5 Pfemark. This part of the proof, and the proof of Lemma 7, are
) Stl‘fallgl'ztfor\as.'ard generalization of the proofs in Verdenius [Ver]. Our theorem
Pplies to all k > 2 because we have a stronger version of Lemma 6.

Proof of Lemma 6. It remains to construct the polynomial R(x). We

‘an solve the appropriate equations numerically, and find the following
Solutions for k = 2,3.4:

R, (x) = 142x—2x%+4x>— 10x* + 50x5 + 125x8,

Ry(x) ~ 34 3x—3x% 4 5x> — 10x* —2.398981739501343x°
+2.784251144343039x° + 5.64780114474305x7
+1.378316906326019x® — 1.254037331018921x°
+4.220815430395043x1°,

Ry(x) > 84 8x—12x2 4 28x3 — T7x* + 231x° + 35.48749734170991 x°
+3.906321336259001x7 +21.50353118849295x°
—81.98757276932204x° — 246.4175594501046x1°
—117.6178681286485x" ! +47.60164949619076x" 2
—287.8978425147213x '3 — 154.0940676494553x ¢
+75.79518623126009x " * + 335.7973392244107x1°
—115.8892966893413x'7 +192.7918735396351x'®.

Oy Remark.l Verdenius [Ver] gives different polynomials for R, and R,.
T polynomial R, gives 1—C, 3 = log;;10 = 0.96025..., improving his
ll']l_‘; also 1 —C, 4 = log,,18 = 0.98163...; while our value of C, , is inferior

is,

o In th_e gen.eral case, we produce the following explicit construction, which

ll;‘_’f\'e.r is quite inefficient, in that the resulting degree n is quite high, e.g.

3 instead of 10 for Ry, or 31858 instead of 18 for R,.

T Acta Arithmetica LVIILI
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Select integers
a>k*+k,
b> (2k+1)a,
¢ > (k*+1)b,
n> (k*+k+1)c.
Construct the disjoint sets
D = {n—b,c,c—a}u {jn+I—-(j—D)m—b)—(k—jcl1 <j<k—1,2<I<k+1},
E={jn+l+a—(j—1)(n—b)—(k—j)c| 1 <j<k—1,2<I<k+1},
F={jn+l| 1<j<k—12<I<k+1}.
Consider a polynomial S(x) = Yj<os;x' such that

S_l if ieD,
i7)10 ifi¢DUE;

the values of s;, ie E, will be determined later. Set
TX)=8Sx)= Y "
iz0
Consider the values of t,, he F as functions of s;,i€ E. There is a one-one onto
correspondence from F to E, mapping h = jn+I€F to i, = jn+l+a—(j—1)(#
—b)—(k—j)ce E, and there are positive integers y,, z, such that t, = y, +2,5;,-

This is because the size restrictions on a, b, ¢, n imply that there are only two
ways to express h as the sum of exactly k elements of DU E, namely

h=jn+1
= 1-(jn+1—(j—1)(n—b)—(k—j)c)+(j—1) (n—b)+(k—j)"(c)
(where all elements are from D) and
h=jn+l
= 1-(jn+l+a—(j=D)m—b)—(k—j))+(j—1)(n—b)+(k—j—1)-(c)+1:(c—a)
(one element, i, is from E, and the rest are all from D). Thus nonzero values

can be assigned to all s;, ieE, to satisfy t, =0, all heF. (Specifically:
k—1 k— .
po= k(7)) s ke 7]). and s, = —yz = ~1/Gk=)

f=

Further, the Jacobian matrix relating {s,, i€ E} (as independent variables)
with {t,,he F} (as dependent variables) is nonsingular; it is a permutation of
a nonzero diagonal matrix, with exactly one nonzero in each row and each
column.

Now continuously perturb the values of s;,i¢ D U E, in such a way that
5,0 < i < k+1, are the first terms of the Taylor expansion of 4-(1 +x)"* (all of
which are nonzero reals), and the other values of s; are also nonzero reals; her¢

Polynomials whose powers are sparse 83

5015 a small real which is being perturbed from 0. Choose the values of s,,ic E,
that b = 0,heF, remains satisfied; this is possible by the nonsingularity of
N e_Jacoblan, as long as the perturbatiops are small enough. Also, the values of
[;:GE , remain nonzero if the perturbations are small enough. Let R be the
km-lrbed value of S, and r, its coefficients. By construction, R is complete, and
in“:las zeroes in positions jn+1,1 <j < k—1,2 <1< k+1. By selection of the
al values ry,r,,..., 74y, we find that R* also has zeroes in positions
"+1,2 <1< k+1. This establishes the lemma. »

Proof of Lemma 7. We have

L-1 kin—1)
Ybhxm=TI( Y ax™)
m q=0 i=0

§ g ;
ouPPOSe the digit k+ 1 occurs in the n-ary expansion of m. Then b,, is the sum
Products of

@, Gp=jn+l, 0<l <n-1,

ig q

Where
Yini=m.
q

Let e n-ary expansion of m be

m=3 rn, 0<r,<n—1, ro=k+l.
q

LOOking at these equations modulo n2*!, we find either

% Q-1 Q-1
(k+1)n%+ ZD ran® =1one+ Y in? < lpn@+kn®—k
or q= q=0

0-1 Q-1
(n+k+1)n%+ ZO rgn? = 1gn®+ 3 in? < ln@+kn?—k.
q= q=0

h . . .
€ latter case is clearly impossible. The former case implies that
2l <k+1,

Whe, - .
b e q;, = 0 by our construction of R. Thus each summand contributing to
™ 18s a zero among its factors, so each summand is zero, and b,=0.m

DOISimnlt.aneous sparseness of several powers. For each k > 2, we have found
all oil_’ﬂomlal whose kth power is sparse. In fact we can find a single polynomial
Whose jth powers, 2 <j <k, are sparse simultaneously.

; THEOREM 2. Given an integer k > 2, there are positive constants C, j;,
! ks 2 < j < k, such that for any integer N > 1 there is a complete polynomial

Jq[{x)ER[x] of degree N—1 such that the number of terms in each power

{x},2 SJj <k, is bounded by Cy ;, N' 2tk
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Proof. Define
Crju=7G+DCry  Coju=Caj/tk—1),
where C, ;, C,; are defined in Theorem 1.
Assume given N > 1. Set
M= | N1

For each j, 2 < j < k, use Theorem 1 to construct a complete polynomial f; of
degree M —1, whose jth power has at most C, ;M"~ > nonzeroes. As in the
proof of Lemma 4, construct

J6) =006 ML 0. (M)

For each j,2 < j < k, we can bound the number of terms in the jth power off
as follows. We wntefas

Jlxy = Ly(x) f; (™ )R, (™)
where
i1 i-2 X i-j=1
Lix)= 1 GM™7),  Ryym= [] AOMT77).
i=2 i=j+1
The degree of L; is given by
M-D+M-DM+M-1)M>+ ... +(M-1)MI "3 =M/"2—
so the number of terms in its jth power is at most
L+j(MIm2—1) < jMI™2,
Similarly, the degree of R;(y) is
M-I,

The number of terms in R}(y), and hence the number of terms in R}(x*’ "), i§
bounded by

1+j(M*T=1) < jM*,
The number of terms in the jth power of f;(x™ %) is less than
€, M6,
So the number of terms in the jth power of f(x) is less than
(JMI™2)(JM* ) (Cy M~ C20) = (C, Py ME ™D 0= Co) < (C )N~ Coultk= 1,
Further, for N sufficiently large, M*~' < N < 2M*"!, so that setting
S (x) = (1+axM M) f(x)

as in the proof of Lemma 5, we find the required f(x). =
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From this it is easy to prove:

THEOREM 3. Given FeC [y], deg(F) = 2, there are positive constants C, g,
Cyr such that Jor any integer N = 1 there is a complete polynomial € C[x] of
degree N—1, such that the number of terms in the composition F(f(x)) is
bounded by C, ;N2

Proof. Let deg(F)=k > 2. Use Theorem 2 to compute a complete
Polynomial f of degree N—1, whose jth powers, 2 <j <k, are all sparse.
Unfortunalely, F(f(x)) is not only a linear combination of these jth powers;
Tather, it is a linear combination of these jth powers, along with fitself (if F has
4 nonzero linear term), and an innocuous constant. So we must arrange to
Cancel the linear term in F.

Since k > 2, the derivative F’(y) is a polynomial of degree at least 1. It has
2 root AeC:

F'(4)=
Then set

f(x)=d+4if (%),
Where 1 is a nonzero complex number such that f(x) has a nonzero constant
term, The Taylor expansion of F around the point 4 gives

F(f(x) = F(A+Aif(x) = Z me}(ff(\)

Where, by choice of 4, we have
F'Y(A) = F'(4) =

Then F(f(x)) is a linear combination, over C, of jth powers of fix), 2 <j<k,
and [, Thus the number of terms is bounded by the sum of the numbers of
®rms in the jth powers of f(x), plus 1 for the constant term j = 0. Selecting f(x)
% prescribed by Theorem 2, we find that f(x) satisfies the conclusion of the
Present theorem. w

Extensions and open question. We have seen (Theorem 2) that we can find
2 polynomial f with several powers sparse simultaneously, and (Theorem 3)
at we can find a polynomial f such that F(f(x)) is sparse, if F is a given
Polynomial of degree at least 2. By the same techniques, if we have several
IJO1}'n0rrnals F;(y) without linear terms, we can find f(x) such that all the
Compositions F ;(f(x)) are simultaneously 5parsc But we cannot achieve this
OF arbitrary F, ;(y). For example, if F,(y) = y* and F,(y)= y*+y, then we
%nnot choose a complete f(x) makmg F (j(x]) .md F (f{x)) simultaneously
SParse, since the linear combination F N f (x)—F( (x}) gives f(x), which is
“omplete,
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Is this the only obstacle? If y cannot be expressed as a linear combinatiof
of F;(y) and 1, can we find f(x) such that all F;(f(x)) are sparse? In particula’
can we find a family of complete polynomials f(x) such that both f(x)? an
(/(x)+1)? are sparse? The techniques of this paper seem to be insufficient ¢
answer this question, and we leave it open.

Rényi’s polynomial. Our investigation began when we saw the followinf
beautiful example of Rényi [Rén], and some of our techniques came fro®
reverse engineering his example:

P(x) = (14+2x—2x% +4x3 +4x*)(1 +2x* — 2x® + 4x'2 — 10x*6 + 28x2° — 84x3*)

P(x) has degree 28; all its 29 coeflicients are nonzero integers. Its square h#’
only 28 nonzero coefficients. Indeed, the second factor is the first seven terms if
the Taylor expansion of (1 +4x%)!/?, and if we take instead the first n terms, th*
resulting P will have degree 4n, with 4n+ 1 nonzero integer coefficients, whilt
P? has only 3n+7 nonzero coefficients. As soon as n>7, we ha¥
dn+1>3n+7.

Professor Schinzel has kindly made us aware of two polynomials with
eighteen terms each, whose squares are also sparse. One construction 0
a polynomial with 18 terms whose square has only 17 terms-is due to R. Freut
[Fre]. An unpublished example by Mr. Ajai Choudhry [Cho]:

F(x) = (2 42x—2) (x5 +4x"> — 8x° + 32x° — 160x> + 896),

gives the same polynomial as [Fre], up to reflection, but derived independent!)
and by different methods.

A smaller example for squares. One product of our investigation w#
a smaller example for squares. Define

Pia(x) = (142x—2x2+4x> —10x* 4+ 50x3 + 125x°) (1 — 110x°)

and remark that P;, is a smaller polynomial with the same properlics:;
complete, degree 12, thus 13 nonzero coefficients, and its square has only 1%
nonzero coefficients. Notice that the first factor,

(1 +2x—2x2 +4x3 — 10x* 4 50x° + 125x°),

when squared, yields a polynomial of degree twelve, with zeroes in positions?”
3,4, 8,9, 10, and nonzeroes in positions 0, 1, 5, 6, 7, 11, 12. The second facto”
could be chosen as (1+ax®) for arbitrary «, and the resulting square woul
have at most 13 nonzeroes, at positions 0, 1, 5, 6,7, 11, 12, 13, 17, 18, 19, 23, 2
By our choice « = — 110, we arrange to cancel one of the coefficients (nl:nrnb‘sl
13), bringing the count down to twelve. As in Rényi's example, if we selected lh‘{
second factor to be some polynomial in x® whose square had a lot ':
consecutive zeroes (e.g. the first several terms of the expansion of (1 +ox®)* )
we would have about (0.5N + constant) nonzero coefficients in the square J
a complete polynomial of degree N.
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Smaller yet? The existence of smaller examples can be determined by
2 finite algebraic computation. For each degree d < 12, and each possible
Pattern of d+1 zeroes among the 2d+ 1 coefficients of P(x)?, we can write
down the d + 1 equations that must be satisfied by the coefficients of P(x). Then
a Groebner basis constructor can be invoked to decide whether these equations
have a solution with P complete. In this way we have discovered that no
example of degree d € {6, 7} exists. Smaller degree examples are easily ruled out.
The cases 8, 9, 10 and 11 remain open.

Acknowledgment. It is a pleasure to acknowledge Prof. Andrzej Schinzel
for encouragement and several helpful pointers to the literature.
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