Polynomials whose powers are sparse

by

DON COPPERSMITH (Yorktown Heights, NY) and JAMES DAVENPORT (Bath)

Erdős [Erd] defines \(Q(N) \) as the least possible number of nonzero coefficients ("the number of terms") in the square of a polynomial \(f(x) \) with exactly \(N \) nonzero real coefficients. Erdős proves the existence of positive constants \(C_1, C_2 \) such that

\[Q(N) < C_1 N^{1 - C_1}. \]

Verdenius [Ver] extends this result in two directions. He works with complete polynomials \(f \), that is,

\[f(x) = \sum_{i=0}^{N-1} d_i x^i, \quad d_i \neq 0, \quad 0 \leq i \leq N-1. \]

He also establishes a similar inequality for cubes. Letting \(Q_k(N) \) denote the least possible number of terms in the \(k \)th power of a complete real polynomial of degree \(N-1 \), Verdenius gives positive constants \(C_{1,2}, C_{1,3} \) such that for any integer \(N \geq 1 \),

\[Q_2(N) < C_{1,2} N^{0.81071...}, \quad Q_3(N) < C_{1,3} N^{0.99934...}. \]

In the present note we extend this result to \(k \)th powers for each integer \(k \geq 2 \). Our main theorem is:

Theorem 1. Given an integer \(k \geq 2 \), there are positive constants \(C_{1,k}, C_{2,k} \) such that for any integer \(N \geq 1 \),

\[Q_k(N) < C_{1,k} N^{1 - C_{2,k}}. \]

Remark. Schinzel [Sch] has studied a similar problem for fields of prime characteristic \(p \). For any integer \(k \) not a power of \(p \), he obtains polynomials with arbitrarily many terms, whose \(k \)th power has at most \(2k \) terms. He also obtains lower bounds.

Two consequences of Theorem 1:

Theorem 2. Given an integer \(k \geq 2 \), there are positive constants \(C_{1,k}, C_{2,k} \), \(2 \leq j \leq k \), such that for any integer \(N \geq 1 \) there is a complete polynomial \(f(x) \in \mathbb{R}[x] \) of degree \(N - 1 \) such that the number of terms in each power \(f^j(x) \), \(2 \leq j \leq k \), is bounded by \(C_{1,k} N^{1 - C_{2,k}} \).
THEOREM 3. Given $F \in \mathbb{C}[y]$, $\deg(F) \geq 2$, there are positive constants C_1, F, C_2, F such that for any integer $N \geq 1$ there is a complete polynomial $f \in \mathbb{C}[x]$ of degree $N - 1$, such that the number of terms in the composition $F(f(x))$ is bounded by $C_1 F(N^{1 - C_2, F})$.

We need some preliminary lemmas.

LEMMA 4. [Rén] $Q_k(tu) \leq Q_k(t)Q_k(u)$.

Proof. Let $f(x)$ be a polynomial exhibiting $Q_k(t)$ and $g(x)$ be a polynomial exhibiting $Q_k(u)$. Then $f(x)g(x)$ is a complete polynomial of degree $tu - 1$ whose kth power has at most $Q_k(t)Q_k(u)$ terms. ■

LEMMA 5 (see [Ver]). If $c \geq 2$ and $(c - 1)t < u \leq ct$ then $Q_k(u) \leq (k + 1)kcQ_k(t)$. ■

Proof. Let $f(x)$ be a polynomial exhibiting $Q_k(t)$. Select $\alpha \in R$ such that

$$g(x) = f(x)h(x) = f(x)(\sum_{i=0}^{c-2} x^i + x^{c-1})$$

is complete; we need only avoid finitely many selections of α. Each term of $h^k(x)$ has index $jt + l(u - t)$ where $0 \leq j < kc$ and $0 \leq l \leq k$, so that $h^k(x)$ has at most $(k + 1)kc$ terms. Then $g(x)$ is a complete polynomial of degree $u - 1$ whose kth power has at most $(k + 1)kcQ_k(t)$ terms. ■

The following technical lemmas form the basis of the proof for our main theorems. Their proofs will be delayed until the end of this section.

LEMMA 6. Given an integer $k \geq 2$, there is an integer $n = n_k > k + 1$ and a complete polynomial $R(x) \in \mathbb{R}[x]$ of degree $n - 1$, such that

$$R(x)^k = \sum_{i=0}^{n-k-1} a_i x^{i} \quad a_{j+1} = 0, \quad 0 \leq j \leq k - 1, \quad 2 \leq i \leq k + 1.$$

LEMMA 7. Given n, k, and $R(x)$ as in Lemma 6, and an integer $L \geq 1$, set

$$f(x) = \prod_{q=0}^{L-1} R(x^q)$$

and let b_m be the coefficients of $f(x)^k$:

$$f(x)^k = \sum_{m=0}^{k^L-k} b_m x^m.$$

Then whenever the n-ary expansion of m contains the digit $k + 1$, then $b_m = 0$.

Proof of Theorem 1. Set

$$C_{1,k} = (k+1)^{kn} \quad \text{and} \quad C_{2,k} = 1 - \log(n-1)/\log n,$$

where $n = n_k$ is obtained from Lemma 6. Given N, set $L = \ceil{\log N/\log n} - 1$, set

$$f(x) = \prod_{q=0}^{L-1} R(x^q)$$

as in Lemma 7, and let b_m be the coefficients of $f(x)^k$. Evidently

$$\deg(f) = (n - 1) \sum_{q=0}^{L-1} n^q = n^L - 1,$$

and f is complete. By Lemma 7, whenever the n-ary expansion of m contains the digit $k + 1$, then $b_m = 0$. So the number of nonzero b_m is less than

$$k(n - 1)^L = k(n - 1)^{\log(n-1)/\log n} < kn^{\log(n-1)/\log n} = kN^{1 - C_{2,k}}.$$

In other words,

$$Q_k(n^L) < kN^{1 - C_{2,k}}.$$

Also $1 < N/n^L \leq n$. Apply Lemma 5 with $c = \ceil{\log n^L}$ to obtain

$$Q_k(N) \leq (k+1)kcQ_k(n^L) < (k+1)kn^{1 - C_{2,k}} = C_{1,k}N^{1 - C_{2,k}}. ■$$

Remark. This part of the proof, and the proof of Lemma 7, are straightforward generalizations of the proofs in Verdenius [Ver]. Our theorem applies to all $k \geq 2$ because we have a stronger version of Lemma 6.

Proof of Lemma 6. It remains to construct the polynomial $R(x)$. We can solve the appropriate equations numerically, and find the following solutions for $k = 2, 3, 4$:

$$R_2(x) = 1 + 2x - 2x^2 + 4x^3 - 10x^4 + 50x^5 + 125x^6,$$

$$R_3(x) = 3 + 3x - 3x^2 + 5x^3 - 10x^4 - 239898713950134x^5 + 72842511443039x^6 + 5647801144270x^7 + 1378316906326019x^8 - 1.254037331018921x^9 + 4.22081543095043x^{10},$$

$$R_4(x) = 8 + 8x - 12x^2 + 28x^3 - 77x^4 + 231x^5 + 35.48749734170991x^6 + 3.90632136299001x^7 + 21.5035118849295x^8 + 81.9875727932204x^9 + 246.475594501046x^{10} + 117.61786628854x^{11} + 47.6016499619076x^{12} - 287.8978425147213x^{13} - 154.094066749553x^{14} + 75.7951862126009x^{15} + 335.797392244107x^{16} - 115.88929668943x^{17} + 192.78173536351x^{18}. ■$$

Remark. Verdenius [Ver] gives different polynomials for R_3 and R_4. Our polynomial R_3 gives $1 - C_{2,3} = \log_3 10 = 0.96025 ..., improving his result; also $1 - C_{2,4} = \log_4 18 = 0.98163 ..., while our value of $C_{2,4}$ is inferior to his.

In the general case, we produce the following explicit construction, which however is quite inefficient, in that the resulting degree n is quite high, e.g. 11973 instead of 10 for R_3, or 31858 instead of 18 for R_4.

6. *Acta Arithmetica* LVIII.
Select integers
\[a > k^2 + k, \]
\[b > (2k+1)a, \]
\[c > (k^2 + k)b, \]
\[n > (k^2 + k + 1)c. \]

Construct the disjoint sets
\[D = \{ b - c, c - a \} \cup \{ jn + l - (j-1)(n-b) - (j-k)c : 1 \leq j \leq k, 1 \leq l \leq k+1 \}, \]
\[E = \{ jn + l - (j-1)(n-b) - (j-k)c : 1 \leq j \leq k-1, 1 \leq l \leq k+1 \}, \]
\[F = \{ jn + l | 1 \leq j \leq k-1, 2 \leq l \leq k+1 \}. \]

Consider a polynomial \(S(x) = \sum_{i=0}^{n} s_i x^i \) such that
\[s_i = \begin{cases} 1 & \text{if } i \in D, \\ 0 & \text{if } i \notin D \cup E; \end{cases} \]
the values of \(s_i, i \in E, \) will be determined later. Set
\[T(x) = S(x)^k = \sum_{i=0}^{n} t_i x^i. \]

Consider the values of \(t_h, h \in F \) as functions of \(s_i, i \in E. \) There is a one-one correspondence from \(F \) to \(E, \) mapping \(h = jn + l \in F \) to \(i_h = jn + l + a - (j-1)(n-b) - (j-k)c \in E, \) and there are positive integers \(y_h, z_h \) such that \(t_h = y_h + z_h s_h. \) This is because the size restrictions on \(a, b, c, n \) imply that there are only two ways to express \(h \) as the sum of exactly \(k \) elements of \(D \cup E, \) namely
\[h = jn + l \]
\[= 1 \cdot (jn + l - (j-1)(n-b) - (j-k)c + (j-1)(n-b) + (j-k)c) \]
(where all elements are from \(D \)) and
\[h = jn + l + a - (j-1)(n-b) - (j-k)c + (j-1)(n-b) + (j-k)c + 1 \cdot (c - a) \]
(one element, \(i_h, \) is from \(E, \) and the rest are all from \(D \)). Thus nonzero values can be assigned to all \(s_i, i \in E, \) to satisfy \(t_h = 0, \) all \(h \in F. \) (Specifically, \(y_h = k \cdot (k-1), \) \(z_h = k \cdot (k-2), \) and \(s_h = -y_h/z_h = -1/(k-j). \)

Further, the Jacobian matrix relating \(\{ s_i, i \in E \} \) (as independent variables) with \(\{ i_h, h \in F \} \) (as dependent variables) is nonsingular; it is a permutation of a nonzero diagonal matrix, with exactly one nonzero entry in each row and each column.

Now continuously perturb the values of \(s_i, i \notin D \cup E, \) in such a way that \(s_i, 0 \leq i \leq k + 1, \) are the first terms of the Taylor expansion of \(\delta \cdot (1 + x)^{k+1} \) (all of which are nonzero reals), and the other values of \(s_i \) are also nonzero reals; here \(\delta \) is a small real which is being perturbed from 0. Choose the values of \(s_i, i \in E, \) so that \(t_h = 0, h \in F, \) remains satisfied; this is possible by the nonsingularity of the Jacobian, as long as the perturbations are small enough. Also, the values of \(s_i, i \in E, \) remain nonzero if the perturbations are small enough. Let \(R \) be the perturbed value of \(S, \) and \(r_i \) its coefficients. By construction, \(R \) is complete, and \(R^k \) has zeros in positions \(jn + l, 1 \leq j \leq k-1, 2 \leq l \leq k+1. \) By selection of the initial values \(r_0, r_1, \ldots, r_{k+1}, \) we find that \(R^k \) also has zeros in positions \(0n + l, 2 \leq l \leq k+1. \) This establishes the lemma. \(\square \)

Proof of Lemma 7. We have
\[\sum_{m} b_m x^m = \prod_{q=0}^{l-1} \left(\sum_{i=0}^{m(n-1)} a_q x^{i q^r} \right). \]

Suppose the digit \(k+1 \) occurs in the \(n \)-ary expansion of \(m. \) Then \(b_m \) is the sum of products of
\[a_{l q}, \quad i_q = jn + l q, \quad 0 \leq l q \leq n - 1, \]
where
\[\sum_{q} i_q n^q = m. \]

Let the \(n \)-ary expansion of \(m \) be
\[m = \sum_{q} r_q n^q, \quad 0 \leq r_q \leq n - 1, \quad r_{k+1} = 1. \]

Looking at these equations modulo \(p^{k+1}, \) we find either
\[(k+1)n^q + \sum_{q=0}^{k-1} r_q n^q = l_0 n^q + \sum_{q=0}^{k-1} i_q n^q \leq l_0 n^q + kn^q - k \]
or
\[(n+k+1)n^q + \sum_{q=0}^{k-1} r_q n^q = l_0 n^q + \sum_{q=0}^{k-1} i_q n^q \leq l_0 n^q + kn^q - k. \]

The latter case is clearly impossible. The former case implies that
\[2 \leq l_0 \leq k + 1, \]
whence \(a_{l_0} = 0 \) by our construction of \(R. \) Thus each summand contributing to \(b_m \) has a zero among its factors, so each summand is zero, and \(b_m = 0. \) \(\square \)

Simultaneous sparseness of several powers. For each \(k \geq 2, \) we have found a polynomial whose \(k \)th power is sparse. In fact we can find a single polynomial of whose \(j \)th powers, \(2 \leq j \leq k, \) are sparse simultaneously.

Theorem 2. Given an integer \(k \geq 2, \) there are positive constants \(C_{1, k}, C_{2, j, k}, 2 \leq j \leq k, \) such that for any integer \(N \geq 1 \) there is a complete polynomial \(f(x) \in R[x] \) of degree \(N-1 \) such that the number of terms in each power \(f_j(x), 2 \leq j \leq k, \) is bounded by \(C_{1, k} N^{1-c_{1, k}}. \)
Proof. Define

\[C_{1,j,k} = j^2(j+1)C_{1,j}, \quad C_{2,j,k} = C_{2,j}/(k-1), \]

where \(C_{1,j}, C_{2,j} \) are defined in Theorem 1.

Assume given \(N \geq 1 \). Set

\[M = \lfloor N^{1/(k-1)} \rfloor. \]

For each \(j, 2 \leq j \leq k \), use Theorem 1 to construct a complete polynomial \(f_j \) of degree \(M-1 \), whose \(j \)th power has at most \(C_{1,j}M^{1-C_{2,j}} \) nonzeros. As in the proof of Lemma 4, construct

\[f_j(x) = f_2(x)f_3(x^M)f_4(x^{M^2}) \ldots f_k(x^{M^{k-2}}). \]

For each \(j, 2 \leq j \leq k \), we can bound the number of terms in the \(j \)th power of \(f_j \), as follows. We write \(f_j \) as

\[f_j(x) = L_j(x)f_j(x^{M^{j-2}})R_j(x^{M^{j-1}}), \]

where

\[L_j(x) = \prod_{i=2}^{j-1} f_i(x^{M^{i-2}}), \quad R_j(y) = \prod_{i=j}^{k} f_i(y^{M^{j-1}}). \]

The degree of \(L_j \) is given by

\[(M-1)+(M-1)M+(M-1)M^2 + \ldots + (M-1)M^{j-2} = M^{j-2} - 1, \]

so the number of terms in its \(j \)th power is at most

\[1+j(M^{j-2} - 1) < jM^{j-2}. \]

Similarly, the degree of \(R_j(y) \) is

\[M^{j-1} - 1. \]

The number of terms in \(R_j(y) \), and hence the number of terms in \(R_j(x^{M^{j-1}}) \), is bounded by

\[1+j(M^{j-2} - 1) < jM^{j-1}. \]

The number of terms in the \(j \)th power of \(f_j(x^{M^{j-2}}) \) is less than

\[C_{1,j}M^{1-C_{2,j}}. \]

So the number of terms in the \(j \)th power of \(f_j(x) \) is less than

\[(jM^{j-2} - 1)(jM^{j-2} - 1)(C_{1,j}M^{1-C_{2,j}}) = (C_{1,j}j^2)M^{1-C_{2,j}} < C_{1,j}j^2M^{1-C_{2,j}}. \]

Further, for \(N \) sufficiently large, \(M^k - 1 \leq N \leq 2M^k - 1 \), so that setting

\[f(x) = (1 + 2x^{N-M^k})f(x) \]

as in the proof of Lemma 5, we find the required \(f(x) \). \(\square \)

From this it is easy to prove:

Theorem 3. Given \(F \in \mathbb{C}[y], \deg(F) \geq 2 \), there are positive constants \(C_{1,F}, C_{2,F} \) such that for any integer \(N \geq 1 \) there is a complete polynomial \(f \in \mathbb{C}[x] \) of degree \(N-1 \), such that the number of terms in the composition \(F(f(x)) \) is bounded by \(C_{1,F}N^{1-C_{2,F}} \).

Proof. Let \(\deg(F) = k \geq 2 \). Use Theorem 2 to compute a complete polynomial \(f \) of degree \(N-1 \), whose \(j \)th powers, \(2 \leq j \leq k \), are all sparse. Unfortunately, \(f(x) \) is not only a linear combination of these \(j \)th powers; rather, it is a linear combination of these \(j \)th powers, along with itself (if \(F \) has a nonzero linear term), and an innocuous constant. So we must arrange to cancel the linear term in \(F \).

Since \(k \geq 2 \), the derivative \(F'(y) \) is a polynomial of degree at least 1. It has a root \(A \in \mathbb{C} \):

\[F'(A) = 0. \]

Then set

\[f(x) = A + \lambda f(x), \]

where \(\lambda \) is a nonzero complex number such that \(f(x) \) has a nonzero constant term. The Taylor expansion of \(F \) around the point \(A \) gives

\[F(f(x)) = F(A + \lambda f(x)) = \sum_{j=0}^{k} F^{(j)}(A) \frac{(\lambda f(x))^j}{j!}, \]

where, by choice of \(A \), we have

\[F^{(j)}(A) = F(0) = 0. \]

Then \(F(f(x)) \) is a linear combination, over \(C \), of \(j \)th powers of \(f(x) \), \(2 \leq j \leq k \), and 1. Thus the number of terms is bounded by the sum of the numbers of terms in the \(j \)th powers of \(f(x) \), plus 1 for the constant term \(j = 0 \). Selecting \(f(x) \) as prescribed by Theorem 2, we find that \(f(x) \) satisfies the conclusion of the present theorem. \(\square \)

Extensions and open question. We have seen (Theorem 2) that we can find a polynomial \(f \) with several powers sparse simultaneously, and (Theorem 3) that we can find a polynomial \(f \) such that \(F(f(x)) \) is sparse, if \(F \) is a given polynomial of degree at least 2. By the same techniques, if we have several polynomials \(F_j(y) \) without linear terms, we can find \(f(x) \) such that all the compositions \(F_j(f(x)) \) are simultaneously sparse. But we cannot achieve this for arbitrary \(F_j(y) \). For example, if \(F_1(y) = y^2 \) and \(F_2(y) = y^2 + y \), then we cannot choose a complete \(f(x) \) making \(F_1(f(x)) \) and \(F_2(f(x)) \) simultaneously sparse, since the linear combination \(F_2(f(x)) - F_1(f(x)) \) gives \(f(x) \), which is complete.
Smaller yet? The existence of smaller examples can be determined by a finite algebraic computation. For each degree $d < 12$, and each possible pattern of $d+1$ zeros among the $2d+1$ coefficients of $P(x)^2$, we can write down the $d+1$ equations that must be satisfied by the coefficients of $P(x)$. Then a Groebner basis constructor can be invoked to decide whether these equations have a solution with P complete. In this way we have discovered that no example of degree $d \in \{6, 7\}$ exists. Smaller degree examples are easily ruled out. The cases $8, 9, 10$, and 11 remain open.

Acknowledgment. It is a pleasure to acknowledge Prof. Andrzej Schinzel for encouragement and several helpful pointers to the literature.

References

