The equation $x y z=x+y+z=1$ in integers of a quartic field
by
Andrew Bremner (Tempe, Az.)

1. Cassels [2] and Sansone and Cassels [4] showed that there are no rational solutions of the Diophantine equation

$$
\begin{equation*}
x y z=x+y+z=1 \tag{1}
\end{equation*}
$$

Small [5] studies the equation over finite fields, and Mollin et al. [3] investigate the equation over quadratic number fields, finding the finitely many such fields K in which there does exist a solution for integer units u_{1}, u_{2}, u_{3} of K of the equation

$$
u_{1} u_{2} u_{3}=u_{1}+u_{2}+u_{3} .
$$

Bremner [1] has determined all cubic fields whose ring of integers contains a solution to (1).

Here, we resolve completely the question of finding all quartic number fields whose ring of integers contains a solution to (1). There are two infinite families of such fields. The result is as follows.

Theorem 1. Let K be a quartic number field with ring of integers $\mathfrak{D}_{\boldsymbol{K}}$. Then the equation

$$
x y z=x+y+z=1
$$

is solvable for $x, y, z \in \mathfrak{D}_{K}$ in precisely the following instances:
(i) The infinite family $K=\boldsymbol{Q}(\theta)$,

$$
\theta^{4}+\left(u^{2}-u+2\right) \theta^{3}+2 u \theta^{2}+(u+1) \theta+1=0, \quad u \in Z, u \neq 1,
$$

with solution up to permutation

$$
\begin{gathered}
x=-\theta^{3}-\left(u^{2}-u+2\right) \theta^{2}-2 u \theta-(u+1), \\
(u-1) y=-\theta^{3}-\left(u^{2}-u+1\right) \theta^{2}+\left(u^{2}-3 u+1\right) \theta+(u-2), \\
(u-1) z=u \theta^{3}+\left(u^{3}-u^{2}+2 u-1\right) \theta^{2}+\left(u^{2}+u-1\right) \theta+u^{2} .
\end{gathered}
$$

(ii) The infinite family $K=\boldsymbol{Q}(\phi)$,

$$
\phi^{4}+\left(u^{2}-u-2\right) \phi^{3}+2 \phi^{2}-(u+1) \phi+1=0, \quad u \in \boldsymbol{Z}, u \neq \pm 1,3
$$

with solution up to permutation

$$
\begin{gathered}
x=-\phi^{3}-\left(u^{2}-u-2\right) \phi^{2}-2 \phi+(u+1), \\
(u-1) y=-\phi^{3}-\left(u^{2}-u-1\right) \phi^{2}-\left(u^{2}-u+1\right) \phi+u \\
(u-1) z=u \phi^{3}+\left(u^{3}-u^{2}-2 u+1\right) \phi^{2}+\left(u^{2}+u-1\right) \phi-u^{2}
\end{gathered}
$$

2. Let K be a number field with ring of integers \mathfrak{O}_{K}; suppose that x, y, z are units of \mathfrak{O}_{K} satisfying (1). Since

$$
\operatorname{Norm}_{K / \mathbf{Q}}(x) \operatorname{Norm}_{K / \mathbf{Q}}(y) \operatorname{Norm}_{K / \mathbf{Q}}(z)=1
$$

we may suppose, without loss of generality, that

$$
\begin{equation*}
\operatorname{Norm}_{K / \mathbf{Q}}(x)=1 \tag{2}
\end{equation*}
$$

Now

$$
x+y+1 / x y=1
$$

so that

$$
y^{2}(x)+y\left(x^{2}-x\right)+1=0
$$

and

$$
\begin{equation*}
2 y=-x+1+x \sqrt{1-\frac{2}{x}+\frac{1}{x^{2}}-\frac{4}{x^{3}}} . \tag{3}
\end{equation*}
$$

Put

$$
\begin{equation*}
1 / x=X \tag{4}
\end{equation*}
$$

where X is also a unit of \mathfrak{D}_{K}, with, from (2),

$$
\begin{equation*}
\operatorname{Norm}_{K / Q}(X)=1 \tag{5}
\end{equation*}
$$

It follows from (3) that

$$
1-2 X+X^{2}-4 X^{3}=W^{2}, \quad W \in \mathfrak{D}_{K}
$$

so that $P=(X, W)$ is a point defined over \mathfrak{D}_{K} on the elliptic curve

$$
\begin{equation*}
E: 1-2 x+x^{2}-4 x^{3}=y^{2} . \tag{6}
\end{equation*}
$$

Conversely, it is clear that a point $P=(X, W)$, defined over \mathfrak{D}_{K}, on the curve (6), with X a unit of \mathfrak{D}_{K}, gives rise via the transformations (3), (4) to a unit solution x, y, z of the original equation (1).

Now the result of Cassels [2] and Sansone and Cassels [4] is equivalent to the rational rank of (6) being equal to 0 . Further, a simple calculation shows that the rational torsion group on (6) is cyclic of order 3 , with generator $(0,1)$.
3. We first describe points on E, given by equation (6), that are defined over a quadratic number field.

It is easy to see that if a point P on E has coordinates in a quadratic number field k, then k is of type $Q\left(\sqrt{1-2 \alpha+\alpha^{2}-4 \alpha^{3}}\right)$, for some (non-zero) $\alpha \in \boldsymbol{Q}$. For denoting the conjugate point under quadratic conjugation by \bar{P}, then $P^{*}=P-\bar{P}$ is reversed under conjugation, and so is of type $P^{*}=(\alpha, \beta \sqrt{d})$, with $k=\boldsymbol{Q}(\sqrt{d}), \alpha, \beta \in \boldsymbol{Q}$. But then $d \beta^{2}=1-2 \alpha+\alpha^{2}-4 \alpha^{3}$, as required. More precisely, we have the following.

Lemma 1. Let $P \in E$ with coordinates of $P=\left(x_{P}, y_{P}\right)$ in a quadratic number field.

Then either

$$
\begin{equation*}
x_{P}=t \in Q-\{0\}, \quad y_{P}=\sqrt{1-2 t+t^{2}-4 t^{3}} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{P}^{2}+t(t-1) x_{P}+t=0 \quad \text { for some } t \in Q-\{0\} \tag{8}
\end{equation*}
$$

with $\pm y_{P}=(2 t-1) x_{P}+1$.
Proof. Take the straight line l (defined over Q) through P and \bar{P}. Then l meets E in a third rational point Q.

If $Q=0$, the point at infinity, then l is of type $x-x_{P}=0$, and (7) follows immediately.

Otherwise, the only possibilities for Q are $(0, \pm 1)$, and by replacing P by $-P$ if necessary, we may suppose that $Q=(0,1)$. Then l is of the form $y=m x+1, m \in Q$, whence the points of intersection are given by

$$
1-2 x+x^{2}-4 x^{3}=m^{2} x^{2}+2 m x+1
$$

so that x_{P} is a root of

$$
4 x^{2}+\left(m^{2}-1\right) x+2(m+1)=0
$$

Putting $m=2 t-1$ gives

$$
x_{P}^{2}+t(t-1) x_{P}+t=0, \quad y_{P}=(2 t-1) x_{P}+1
$$

as required.
Corollary. If x is a unit of its quadratic field, then either (i) $\pm P=(1,2 i)$, $(-1,2 \sqrt{2})$ or (ii) $\pm P=(i, 1+i),(-i, 1-i),(-1+\sqrt{2},-4+3 \sqrt{2}),(-1-\sqrt{2}$, $-4-3 \sqrt{2}$).

Proof. If x is a unit of Z, then $x= \pm 1$ and (i) follows from (7).
If x is a unit of a quadratic field, then $\operatorname{Norm}(x)= \pm 1$, so necessarily in (8), $t= \pm 1$ and the result follows.

We now give a similar argument which deals with the cubic case, leading to the result of Bremner [1] in a neater manner.

For suppose that $P \in E$, with the coordinates of $P=\left(x_{P}, y_{P}\right)$ lying in a cubic number field.

Take a parabola through P and its two \boldsymbol{Q}-conjugates, with equation

$$
d y=p x^{2}+q x+r, \quad d, p, q, r \in Z, d \neq 0,(d, p, q, r)=1 .
$$

This parabola meets E in six points, two of which occur at \mathfrak{o}, and three of which form a conjugate set over \boldsymbol{Q}. The remaining point Q of intersection is thus rational.

If $Q=\mathrm{o}$, then $p=0$ so that x_{P} satisfies

$$
d^{2}\left(1-2 x_{P}+x_{P}^{2}-4 x_{P}^{3}\right)=\left(q x_{P}+r\right)^{2},
$$

i.e.

$$
\begin{equation*}
4 d^{2} x_{P}^{3}+\left(q^{2}-d^{2}\right) x_{P}^{2}+\left(2 q r+2 d^{2}\right) x_{P}+\left(r^{2}-d^{2}\right)=0 . \tag{9}
\end{equation*}
$$

If $Q \neq 0$, then as before, we may suppose that $Q=(0,1)$. Then $r=d$, and x_{P} satisfies

$$
d^{2}\left(1-2 x+x^{2}-4 x^{3}\right)=\left(p x^{2}+q x+d\right)^{2} .
$$

Removing the root at $0, x_{P}$ thus satisfies the residual cubic equation

$$
\begin{equation*}
p^{2} x_{P}^{3}+\left(2 p q+4 d^{2}\right) x_{P}^{2}+\left(q^{2}+2 p d-d^{2}\right) x_{P}+\left(2 q d+2 d^{2}\right)=0 . \tag{10}
\end{equation*}
$$

If now x_{p} is to be a unit of the cubic number field, then in the first instance, at (9) above, it follows that $r^{2}-d^{2}= \pm 4 d^{2}$, which is impossible. So the second instance must hold, and from (10),

$$
\begin{gather*}
\pm p^{2}=2 q d+2 d^{2}, \tag{11a}\\
p^{2} \mid 2 p q+4 d^{2}, \tag{11b}\\
p^{2} \mid q^{2}+2 p d-d^{2} . \tag{11c}
\end{gather*}
$$

Now (d, p) $=1$, otherwise (c) leads to a contradiction of $(d, p, q, r)=1$. Then (a) forces $d=1$ and $2 \mid p$; and (b) forces $p \mid 4$ and $4 \nmid p$. Consequently $p= \pm 2$, and (a) gives $q=1,-3$. Hence the only solutions are $(p, q, r, d)=(\pm 2,1,1,1)$, ($\pm 2,-3,1,1$). The former pair returns $X=x_{P}$ of norm -1 , contrary to (5). And the latter pair returns the cubic fields given in Bremner [1].
4. Suppose now that $P \in E$ with coordinates of $P=\left(x_{P}, y_{P}\right)$ lying in a quartic number field; further, we assume x_{P} is a unit of the field. Take the cubic curve Γ through P and its three \boldsymbol{Q}-conjugates, with equation

$$
\begin{equation*}
d y=p x^{3}+q x^{2}+r x+s, \quad d, p, q, r, s \in Z, d \neq 0,(d, p, q, r, s)=1 . \tag{12}
\end{equation*}
$$

Then Γ meets E in nine points. Three of these occur at o, and four form a \boldsymbol{Q}-rational set. The remaining two points of intersection are thus defined (as a pair) over \boldsymbol{Q}.
(i) Suppose that one of these points is o . Then $p=0$, and there is a further zero at o . The quartic satisfied by x_{p} is

$$
d^{2}\left(1-2 x_{P}+x_{P}^{2}-4 x_{P}^{3}\right)=\left(q x_{P}^{2}+r x_{P}+s\right)^{2},
$$

i.e.

$$
q^{2} x_{P}^{4}+\left(2 q r+4 d^{2}\right) x_{P}^{3}+\left(r^{2}+2 q s-d^{2}\right) x_{P}^{2}+\left(2 r s+2 d^{2}\right) x_{P}+\left(s^{2}-d^{2}\right)=0 .
$$

The requirement that x_{P} be a unit, with $\operatorname{Norm}\left(x_{P}\right)=1$, implies

$$
\begin{gather*}
q^{2}=s^{2}-d^{2}, \tag{13a}\\
q^{2} \mid 2 q r+4 d^{2}, \tag{13b}\\
q^{2} \mid r^{2}+2 q s-d^{2}, \tag{13c}\\
q^{2} \mid 2 r s+2 d^{2} . \tag{13d}
\end{gather*}
$$

Now $(q, d)=1$, otherwise (a), (c) contradict $(d, q, r, s)=1$. Then (b) forces $q \mid 4$; and since $d \neq 0$, (a) gives $q=4,(s, d)=(\pm 5, \pm 3)$. But now (b) cannot hold. Consequently no unit solutions x_{P} arise in this instance.
(ii) Suppose the residual pair is individually rational. It cannot be the pair $\{(0,1),(0,-1)\}$ for then $d=s, d=-s$, forcing $d=0$. In virtue of (i), we can thus assume it is a double root at one of the points $(0, \pm 1)$. In any event, $d^{2}=s^{2}$ and $-2 d^{2}=2 r s$, so that $d= \pm s, r=-s$.

The quartic satisfied by x_{p} is

$$
s^{2}\left(1-2 x+x^{2}-4 x^{3}\right)=\left(p x^{3}+q x^{2}-s x+s\right)^{2},
$$

i.e.

$$
p^{2} x^{4}+2 p q x^{3}+\left(q^{2}-2 p s\right) x^{2}+\left(2 p s-2 q s+4 s^{2}\right) x+2 q s=0 .
$$

The requirement that x_{P} be a unit of norm 1 gives

$$
\begin{gather*}
p^{2}=2 q s, \tag{14a}\\
p^{2} \mid 2 p q, \\
p^{2} \mid q^{2}-2 p s, \\
p^{2} \mid 2 p s-2 q s+4 s^{2} .
\end{gather*}
$$

Now $(p, s)=1$ otherwise (c) gives $(p, q, s) \neq 1$ where $(d, p, q, r, s) \neq 1$. So (a) gives $s=1, p^{2}=2 q$. Now (d) gives $p \mid 4,4 \nmid p$, and since $2 \mid p$, then $p=2 \varepsilon$ $(\varepsilon= \pm 1), q=2$. Thus x_{p} satisfies the quartic

$$
\begin{equation*}
x^{4}+2 \varepsilon x^{3}+(1-\varepsilon) x^{2}+\varepsilon x+1=0 . \tag{15}
\end{equation*}
$$

Denoting a root of (15) by Θ, we recover the following unit solution of (1):

$$
\begin{align*}
& x=-\Theta^{3}-2 \varepsilon \Theta^{2}+(\varepsilon-1) \Theta-\varepsilon, \\
& y=\varepsilon \Theta^{2}+\Theta, \tag{16}\\
& z=\Theta^{3}+\varepsilon \Theta^{2}-\varepsilon \Theta+(1+\varepsilon) .
\end{align*}
$$

(iii) If neither (i) nor (ii) happens, then necessarily the residual pair is not individually defined over \boldsymbol{Q}.

By Lemma 1, the intersection therefore contains either a double point at $x=t, t \in \boldsymbol{Q}-\{0\}$, or contains the pair of points corresponding to the roots of $x^{2}+t(t-1) x+t=0, t \in \boldsymbol{Q}-\{0\}$. In particular, the sextic polynomial representing the intersection of the curves (6) and (12) either contains a repeated root at $x=t$, or contains the quadratic factor $x^{2}+t(t-1) x+t$. Note now that $p \neq 0$.

The intersection is given by

$$
\begin{equation*}
d^{2}\left(1-2 x+x^{2}-4 x^{3}\right)=\left(p x^{3}+q x^{2}+r x+s\right)^{2} . \tag{17}
\end{equation*}
$$

A rational root $x=t$ implies $1-2 t+t^{2}-4 t^{3}$ is square, so that perforce $t=0$, a contradiction.

Consequently, on writing (17) as a sextic equation for x, then it possesses $x^{2}+t(t-1) x+t, t \in \boldsymbol{Q}-\{0\}$, as a quadratic factor. Since we are assuming x_{P} is a unit of norm 1 , the residual quartic is of type $x^{4}+a x^{3}+b x^{2}+c x+1$, $a, b, c \in \boldsymbol{Z}$. It follows that

$$
\begin{gather*}
p^{2} x^{6}+2 p q x^{5}+\left(q^{2}+2 p r\right) x^{4}+\left(2 q r+2 p s+4 d^{2}\right) x^{3}+\left(r^{2}+2 q s-d^{2}\right) x^{2} \tag{18}\\
+\left(2 r s+2 d^{2}\right) x+\left(s^{2}-d^{2}\right) \\
=p^{2}\left[x^{2}+t(t-1) x+t\right]\left[x^{4}+a x^{3}+b x^{2}+c x+1\right] .
\end{gather*}
$$

By Gauss' Lemma, $p^{2}\left[x^{2}+t(t-1) x+t\right]$ has integer coefficients, so that

$$
\begin{equation*}
t=u / p, \quad u \in Z, \quad u \neq 0, \quad(u, p)=1 . \tag{19}
\end{equation*}
$$

The right-hand side at (18) is $\left[p^{2} x^{2}+u(u-p) x+u p\right]\left[x^{4}+a x^{3}+b x^{2}+c x+1\right]$, and equating coefficients of powers of x,

$$
\begin{equation*}
q^{2}+2 p r=p^{2} b+u(u-p) a+u p, \tag{20a}
\end{equation*}
$$

$$
\begin{gather*}
2 q r+2 p s+4 d^{2}=p^{2} c+u(u-p) b+u p a, \tag{20c}\\
r^{2}+2 q s-d^{2}=p^{2}+u(u-p) c+u p b,
\end{gather*}
$$

$$
\begin{equation*}
2 r s+2 d^{2}=u(u-p)+u p c, \tag{20d}
\end{equation*}
$$

$$
\begin{equation*}
s^{2}-d^{2}=u p \tag{20e}
\end{equation*}
$$

If π is an odd prime factor of p, then it follows easily that $p \equiv q \equiv r \equiv s \equiv d \equiv 0$ $\bmod \pi$. Thus $\pm p$ must be a power of 2 . Suppose next $p \equiv 0 \bmod 4$. Then sequentially, (a) implies $u \equiv 0 \bmod 4$, (b) implies $q \equiv 0 \bmod 4$, (c) implies $d \equiv 0$ $\bmod 2$, (d) and (e) imply $r \equiv s \equiv 0 \bmod 2$, contradicting $(p, q, r, s, d) \neq 1$.

Since we can assume without loss of generality that $p>0$, then $p=1$ or 2 . However, (a) implies $p \mid u^{2}$, and from (19) we have $(p, u)=1$. Necessarily therefore $p=1$.

Substitute into equations (20), and use (f) to eliminate d^{2} :

$$
\begin{equation*}
2 q r+2 s=c+u(u-1) b+u a+4 u-4 s^{2}, \tag{21b}
\end{equation*}
$$

$$
\begin{gather*}
r^{2}+2 q s=1+u(u-1) c+u b-u+s^{2}, \tag{21d}\\
2 r s=u(u+1)+u c-2 s^{2} .
\end{gather*}
$$

Use (21a) to eliminate q, and, after multiplying (b), (c), (d) by s, s, s^{2}, respectively, use (21e) to eliminate r :
(22a) $4 s b=s a^{2}-2 u(u-1) s a+4 u c+4 u(u+1)+\left(u^{4}-2 u^{3}+u^{2}-4 u\right) s-8 s^{2}$,
(22b) $\left(u(u+1)-2 u s-2 s^{2}\right) a+u a c+\left(u^{2}(u-1)-2 s\right) c-2 u(u-1) s b$

$$
+u^{2}\left(u^{2}-1\right)-8 u s+\left(-2 u^{2}+2 u+4\right) s^{2}+8 s^{3}=0,
$$

$$
\begin{align*}
u^{2} c^{2}+2 u^{2}\left(u+1-2 s^{2}\right) & c-4 u s^{2} b+4 s^{3} a \tag{22c}\\
& +u^{2}(u+1)^{2}-4\left(u^{2}+1\right) s^{2}+4 u(u-1) s^{3}=0 .
\end{align*}
$$

Use (22a) to eliminate b : there results

$$
\begin{gather*}
-(u-1) s A^{2}+2 u \cdot A C+4(3 u-1) s\left(s^{2}-u\right)=0, \tag{23a}\\
-s^{2} A^{2}+u^{3} C^{2}-4 s^{2}\left(u^{3}-1\right)\left(s^{2}-u\right)=0 \tag{23b}
\end{gather*}
$$

where

$$
\begin{align*}
& A=u a-\left(u^{2}(u-1)+2 s\right), \tag{24}\\
& C=c+\left(u+1-2 s-2 s^{2}\right) . \tag{25}
\end{align*}
$$

Multiply (23b) by A^{2}, and use (a) to eliminate C (recall from (20f) that $d^{2}=s^{2}-u$):

$$
\begin{equation*}
s^{2}\left(A^{2}-4 d^{2}\right)\left(\left(-u^{3}+2 u^{2}-u+4\right) A^{2}+4 u(3 u-1)^{2} d^{2}\right)=0 . \tag{26}
\end{equation*}
$$

If $s^{2}\left(A^{2}-4 d^{2}\right) \neq 0$ then it follows that

$$
\left(u^{3}-2 u^{2}+u-4\right) A^{2}=4 u(3 u-1)^{2} d^{2}
$$

so that

$$
\left(1-\frac{2}{u}+\frac{1}{u^{2}}-\frac{4}{u^{3}}\right) A^{2}=\left(\frac{2(3 u-1) d}{u}\right)^{2},
$$

which in virtue of the remarks of the final paragraph of Section 2, forces $A=0=2(3 u-1) d$, a contradiction. Accordingly, $s^{2}\left(A^{2}-4 d^{2}\right)=0$ and we have either I: $A=2 d \varepsilon(\varepsilon= \pm 1)$, or II: $s=0$.

Case I. If $A=2 d \varepsilon$, then (23) gives $C=-2 s d \varepsilon$. Solving (24) for a,

$$
\begin{equation*}
a=2 /(s-d \varepsilon)+u(u-1) \tag{27}
\end{equation*}
$$

and from (21a),

$$
\begin{equation*}
q=1 /(s-d \varepsilon)+u(u-1) . \tag{28}
\end{equation*}
$$

Thus

$$
\begin{equation*}
s-d \varepsilon=\alpha= \pm 1 \tag{29}
\end{equation*}
$$

so that

$$
\begin{equation*}
s+d \varepsilon=\alpha u \tag{30}
\end{equation*}
$$

whence solving (29), (30) for s, d,

$$
\begin{equation*}
s=\alpha(u+1) / 2, \quad d \varepsilon=\alpha(u-1) / 2 . \tag{31}
\end{equation*}
$$

Solving (25) for c, (21b) for b, and (21e) for r, gives the following parametrization:

$$
\begin{align*}
p & =1 \\
q & =u(u-1)+\alpha, \\
r & =(\alpha / 2+1) u-\alpha / 2 \\
s & =\alpha(u+1) / 2 \\
d \varepsilon & =\alpha(u-1) / 2 \tag{32}\\
a & =u(u-1)+2 \alpha, \\
b & =(\alpha+1) u+(1-\alpha), \\
c & =\alpha(u+1)
\end{align*}
$$

Taking $\alpha=+1, \alpha=-1$, gives the respective triples

$$
\begin{equation*}
(a, b, c)=\left(u^{2}-u+2,2 u, u+1\right), \quad\left(u^{2}-u-2,2,-u-1\right) . \tag{33}
\end{equation*}
$$

An elementary exercise shows that the quartic of which x_{P} is a root, namely $x^{4}+a x^{3}+b x^{2}+c x+1$, is irreducible precisely for $u \neq 1$ in the first instance at (33), and $u \neq \pm 1,3$ in the second instance at (33).

It is now possible to recover a solution of the original equation (1), via the transformations (3), (4).

The first case at (33) leads to the following.

Let $u \in Z, u \neq 0,1$, and define

$$
\begin{equation*}
\theta^{4}+\left(u^{2}-u+2\right) \theta^{3}+2 u \theta^{2}+(u+1) \theta+1=0 \tag{34}
\end{equation*}
$$

Then

$$
\begin{gather*}
x=-\theta^{3}-\left(u^{2}-u+2\right) \theta^{2}-2 u \theta-(u+1) \\
(u-1) y=-\theta^{3}-\left(u^{2}-u+1\right) \theta^{2}+\left(u^{2}-3 u+1\right) \theta+(u-2) \tag{35}\\
(u-1) z=u \theta^{3}+\left(u^{3}-u^{2}+2 u-1\right) \theta^{2}+\left(u^{2}+u-1\right) \theta+u^{2}
\end{gather*}
$$

Notice again that the quadratic equation giving (3) ensures that y (and hence z) is both an algebraic integer and a unit, so that despite the appearance of denominators at (35), there is an automatic guarantee of integrality. (It can in fact be shown that the equation satisfied by y is

$$
y^{4}-(u+3) y^{3}+4 u y^{2}-\left(u^{2}+u-2\right) y-1=0
$$

the equation for z is left as an exercise.)
Similarly, the second case at (33) leads to the following:
Let $u \in Z, u \neq 0, \pm 1,3$; and define

$$
\begin{equation*}
\phi^{4}+\left(u^{2}-u-2\right) \phi^{3}+2 \phi^{2}-(u+1) \phi+1=0 \tag{36}
\end{equation*}
$$

Then

$$
\begin{gather*}
x=-\phi^{3}-\left(u^{2}-u-2\right) \phi^{2}-2 \phi+(u+1) \\
(u-1) y=-\phi^{3}-\left(u^{2}-u-1\right) \phi^{2}-\left(u^{2}-u+1\right) \phi+u \tag{37}\\
(u-1) z=u \phi^{3}+\left(u^{3}-u^{2}-2 u+1\right) \phi^{2}+\left(u^{2}+u-1\right) \phi-u^{2}
\end{gather*}
$$

where, as above, y and z are both integers and units of $\boldsymbol{Q}(\phi)$.
Case II. If $s=0$, then (21e) implies

$$
\begin{equation*}
c=-u-1 \tag{38}
\end{equation*}
$$

The equations (21) become:

$$
\begin{gather*}
2 q=a+u(u-1) \tag{39a}\\
q^{2}+2 r=b+u(u-1) a+u \\
2 q r=u(u-1) b+u a+3 u-1 \\
r^{2}=u b-u^{3}+1
\end{gather*}
$$

with, from (20f),

$$
\begin{equation*}
d^{2}=-u \tag{40}
\end{equation*}
$$

Use (39a) to eliminate q in (39b):

$$
\begin{equation*}
2 r=b-\frac{1}{4} a^{2}+\frac{1}{2} u(u-1) a-\frac{1}{4} u^{2}(u-1)^{2}+u \tag{41}
\end{equation*}
$$

Use (39a), (41) to eliminate q, r in (39c):

$$
\begin{align*}
& b\left(\frac{1}{2} a-\frac{1}{2} u(u-1)\right)=\frac{1}{8} a^{3}-\frac{1}{8} u(u-1) a^{2}+\left(-\frac{1}{8} u^{2}(u-1)^{2}+\frac{1}{2} u\right) a \tag{42}\\
&+\left(\frac{1}{8} u^{3}(u-1)^{3}-\frac{1}{2} u^{2}(u-1)+3 u-1\right) .
\end{align*}
$$

Then, using (41) to eliminate b,

$$
\begin{align*}
& r(a-u(u-1)) \tag{43}\\
= & \frac{1}{4} u(u-1) a^{2}+\left(-\frac{1}{2} u^{2}(u-1)^{2}+u\right) a+\left(\frac{1}{4} u^{3}(u-1)^{3}-u^{2}(u-1)+3 u-1\right) .
\end{align*}
$$

Using (42), (43) in (39d), there results after simplification

$$
\begin{align*}
& {\left[\left(u^{3}-2 u^{2}+u-4\right)\left(a^{2}-2 u(u-1) a\right)\right.} \tag{44}\\
& \left.\quad+\left(u^{3}(u-1)^{4}-4 u^{2}(u-1)^{2}+4(3 u-1)^{2}\right)\right] \\
& \quad \times\left[u a^{2}-2 u^{2}(u-1) a+\left(u^{3}(u-1)^{2}+4\right)\right]=0 .
\end{align*}
$$

If the first factor is to be zero, then

$$
\left(u^{3}-2 u^{2}+u-4\right)(a-u(u-1))^{2}+4(3 u-1)^{2}=0,
$$

so in particular

$$
\begin{equation*}
-u^{3}+2 u^{2}-u+4=v^{2}, \quad v \in Z . \tag{45}
\end{equation*}
$$

The elliptic curve represented by (45) has rank 1 (and there are integer points for $u=0,1,-15$); however, in virtue of (40), we are only interested in the curve of genus 2 represented by

$$
\begin{equation*}
d^{6}+2 d^{4}+d^{2}+4=v^{2} \tag{46}
\end{equation*}
$$

But the only integer points on the curve (46) have $d=0$, for it may be written in the form

$$
\left(d^{3}+d\right)^{2}+4=v^{2}
$$

which clearly forces $d^{3}+d=0$, i.e. $d=0$. Since we assumed $d \neq 0$, only the second factor at (44) may be zero.

In this instance, then

$$
u a^{2}-2 u^{2}(u-1) a+u^{3}(u-1)^{2}+4=0,
$$

that is,

$$
\begin{equation*}
u(a-u(u-1))^{2}+4=0 . \tag{4}
\end{equation*}
$$

Using (40),

$$
d(a-u(u-1))=2 \varepsilon, \quad \varepsilon= \pm 1,
$$

so that

$$
u(a-u(u-1))=2 d \varepsilon
$$

and from (24),

$$
A=2 d \varepsilon
$$

thus this instance has been covered by Case I.
Theorem 1 now follows from the solutions (16), (35) and (37) noting that the solutions at (16) are the particular cases of (35) and (37) at $u=0$.

The discriminant of $\boldsymbol{Q}(\theta)$ at (34) is equal to

$$
-(u-1)^{2}\left(4 u^{7}-5 u^{6}-6 u^{5}+77 u^{4}-304 u^{3}+725 u^{2}-1006 u+643\right) ;
$$

and the discriminant of $\boldsymbol{Q}(\phi)$ at (36) is

$$
(u+1)^{2}\left(4 u^{7}-35 u^{6}+102 u^{5}-69 u^{4}-216 u^{3}+499 u^{2}-402 u+117\right) .
$$

I am grateful to H. M. Edgar for drawing my attention to this problem.

References

[1] A. Bremner, The equation $x y z=x+y+z=1$ in integers of a cubic field, Manuscripta Math. 65 (1989), 479-487.
[2] J. W. S. Cassels, On a diophantine equation, Acta Arith. 6 (1960), 47-52.
[3] R. A. Mollin, C. Small, K. Varadarajan and P. G. Walsh, On unit solutions of the equation $x y z=x+y+z$ in the ring of integers of a quadratic field, ibid. 48 (1987), 341-345.
[4] G. Sansone et J. W. S. Cassels, Sur le problème de M. Werner Mnich, ibid. 7 (1962), 187-200.
[5] C. Small, On the equation $x y z=x+y+z=1$, Amer. Math. Monthly 89 (1982), 736-749.

DEPARTMENT OF MATHEMATICS
ARIZONA STATE UNIVERSITY
Tempe, AZ 85287-1804
USA

