Factorization of natural numbers in algebraic number fields

by

A. Geroldinger (Graz)

1. Let R be the ring of integers of an algebraic number field K with ideal class group G and class number h. If for some $a \in R \backslash\left(R^{\times} \cup\{0\}\right) a=u_{1} \ldots u_{k}$ is a factorization into irreducibles, then k is called length of the factorization. Let $g(a)$ denote the number of distinct lengths of possible factorizations of a. In the case $h \geqslant 3$ the function

$$
G_{m}^{\prime}(x)=\#\{n \in N \mid n \leqslant x, g(n) \leqslant m\}
$$

was studied for every $m \geqslant 1$ (see [8]-[12], [14]-[16], [1], [23]) and it was proved that

$$
G_{m}^{\prime}(x)=(C+o(1)) x(\log x)^{-\eta^{\prime}(K, m)}(\log \log x)^{\psi^{\prime}(K, m)}
$$

with non-negative constants $\eta^{\prime}(K, m)$ and $\psi^{\prime}(K, m)([22])$.
In this paper we determine these constants and especially we show $\eta^{\prime}(K, m)=\eta^{\prime}(K)$. Thus the exponents in the asymptotic formulae for all four functions which were introduced by W. Narkiewicz in 1964 ([8]) are known: concerning

$$
\begin{aligned}
& G_{m}^{\prime}(x) \text { see Theorem } 1, \\
& G_{m}(x)=\#\{(a) \mid N(a) \leqslant x, g(a) \leqslant m\} \text { see }[4] \\
& F_{m}(x)=\#\{(a) \mid N(a) \leqslant x, f(a) \leqslant m\} \text { see }[13] \\
& F_{m}^{\prime}(x)=\#\{n \in N \mid n \leqslant x, f(n) \leqslant m\} \text { see }[18],[21] .
\end{aligned}
$$

Here $f(a)$ denotes the number of distinct factorizations of some $a \in R \backslash\left(R^{\times} \cup\{0\}\right)$.
In [7] the remainder terms of the asymptotic formulae of these functions are studied. In Section 4 we use these results to obtain an asymptotic formula for $\bar{F}_{m}(x)=\#\{(a) \mid N(a) \leqslant x, f(a)=m\}$.
2. Let $h \geqslant 3$. For a non-empty subset $G_{0} \subset G$ let $\mathscr{F}\left(G_{0}\right)$ denote the free abelian semigroup generated by G_{0}. An element $B \in \mathscr{F}\left(G_{0}\right)$ has the form $B=\prod_{g \in G_{0}} g^{v_{g}(B)}$ with $v_{g}(B) \in N . B$ is called a block if $\sum_{g \in G_{0}} v_{g}(B) g=0$. The set of all blocks $\mathscr{B}\left(G_{0}\right) \subset \mathscr{F}\left(G_{0}\right)$ is a subsemigroup. Thus it is commutative,
regular and we have the usual notions of divisibility. For $B \in \mathscr{B}\left(G_{0}\right)$ let $L(B)=\{k \mid B$ has a factorization into k irreducible blocks $\}$. Further let $\Delta(L(B))=\{s-r \mid r, s \in L(B), r<s$ and $t \notin L(B)$ for $r<t<s\}$ and $\Delta\left(G_{0}\right)$ $=\bigcup_{B \in \mathscr{P}\left(G_{0}\right)} \Delta(L(B))$. If for some $a \in R \backslash\left(R^{\times} \cup\{0\}\right) a R=p_{1} \ldots p_{r}$ is its prime ideal decomposition then $B(a)=\prod_{g \in G} g^{*}\left(p_{i} \mid p_{i \in G}, 1 \leqslant i \leqslant r\right)=\left\langle\left[p_{1}\right], \ldots,\left[p_{r}\right]\right\rangle$ denotes the corresponding block (see [3]). Obviously $\mathscr{B}(P)=\{B(p) \mid p \in P\}$ is finite. Let $\mathscr{B}(P)=\left\{B_{1}, \ldots, B_{o}\right\}$.

When studying $G_{m}^{\prime}(x)$ invariant subsets $G_{0} \subset G$ with $\Delta\left(G_{0}\right)=\varnothing$ are of decisive importance; here, a subset $G_{0} \subset G$ is called invariant if $G_{0}=G_{I}=\bigcup_{i \in I}\left\{g \mid v_{g}\left(B_{i}\right)>0\right\}$ for some $I \subset\{1, \ldots, \varrho\}$.

Remarks. 1. Let $G_{0} \subset G$; then by definition $\Delta\left(G_{0}\right)=\varnothing$ if and only if $\mathscr{B}\left(G_{0}\right)$ is half-factorial. In connection with the problem of describing halffactorial Dedekind domains L. Skula proves ([20], Theorem 3.1): $\Delta\left(G_{0}\right)=\varnothing$ if and only if $\sum_{g \epsilon G} v_{g}(B) /$ ord $(g)=1$ for every irreducible block $B \in \mathscr{B}\left(G_{0}\right)$. If G is cyclic of prime power order he derives an explicit characterization of subsets $G_{0} \subset G$ with $\Delta\left(G_{0}\right)=\varnothing$ ([20], Proposition 3.4). These subsets also play a central part in the investigation of $G_{m}(x)$ ([4]).
2. If K / Q is Galois then $G_{0} \subset G$ is invariant if and only if G_{0} is invariant under the action of the Galois group.

For a block $B \in \mathscr{B}(G)$ let $P(B)=\{p \in P \mid B(p)=B\}$ and for a subset $M \subset P$ let $q(M)$ denote the Dirichlet density of M, if it exists.

Lemma 1. $P(B)$ is either finite or it is a regular set with positive Dirichlet density. If p is unramified then $P(B(p))$ has positive Dirichlet density.

Proof. See Lemma 11 in [22] and Section 2 in [19].
Remark. Lemma 1 and Proposition 7.9 in [15] imply: if there is an unramified prime $p \in P$ remaining irreducible in R, then

$$
\#\{n \leqslant x \mid n \text { is irreducible in } R\}=C x(\log x)^{-1}+o\left(x(\log x)^{-1}\right) .
$$

For $i \in\{1, \ldots, \varrho\}$ let $q_{i}=q\left(P\left(B_{i}\right)\right)$ (if $P\left(B_{i}\right)$ is finite then $\left.q_{i}=0\right)$. Therefore $\sum_{i=1}^{e} q_{i}=1$. For $I \subset\{1, \ldots, \varrho\}$ let $q_{I}=\sum_{i \in I} q_{i}$ and for an invariant subset $\bar{G}_{0} \subset G$ let

$$
q\left(K, G_{0}\right)=\sum_{\substack{1 \leqslant i \leqslant \ell \\ B_{i} \in \mathscr{F}\left(G_{0}\right)}} q_{i} .
$$

Further let

$$
q(K)=\max \left\{q\left(K, G_{0}\right) \mid G_{0} \subset G \text { invariant, } \Delta\left(G_{0}\right)=\varnothing\right\} .
$$

Lemma 2. $0<q(K)<1$.
Proof. (i) Let p be a prime which splits completely in the Hilbert class field of K. Then $B(p)=\langle 0, \ldots, 0\rangle$. Thus $\{0\}$ is an invariant subset and $q(K)>0$.
(ii) Let $G_{0} \subset G$ be invariant with $\Delta\left(G_{0}\right)=\varnothing$. Since $h \geqslant 3$ there is a $g \in G \backslash G_{0}$. Let $p \in P$ be unramified having a prime ideal divisor $p \in g$. Then $q(B(p))>0, B(p) \notin \mathscr{B}\left(G_{0}\right)$ and so $q\left(K, G_{0}\right)<1$.
$\mathscr{G}=\left\{G_{0} \subset G \mid G_{0}\right.$ invariant and $\left.\Delta\left(G_{0}\right)=\varnothing\right\}$ is partially ordered with respect to the set-theoretical inclusion. Let $G_{1}, G_{2} \in \mathscr{G}$. Then $G_{1} \subset G_{2}$ implies $q\left(K, G_{1}\right) \leqslant q\left(K, G_{2}\right)$. If $q\left(K, G_{1}\right)=q(K)$ then there is a maximal subset $G_{0} \in \mathscr{G}$ with $G_{1} \subset G_{0}$ and $q\left(K, G_{1}\right)=q\left(K, G_{0}\right)=q(K)$. If K / Q is Galois then $G_{1} \subset G_{2}, G_{1} \neq G_{2}$ implies $q\left(K, G_{1}\right)<q\left(K, G_{2}\right)$ and the subsets $G_{0} \in \mathscr{G}$ with $q\left(K, G_{0}\right)=q(K)$ are maximal in \mathscr{G}.

For $n=\prod_{p \in P} p^{v_{P}(n)} \in N$ let $v_{i}(n)=\sum_{\substack{p \in \mathcal{E}(p)=B_{i}}} v_{p}(n)$ for every $i \in\{1, \ldots, \varrho\}$. For $s=\left(s_{i}\right)_{i \in I^{c}} \in N^{I^{c}}$ with $I \subset\{1, \ldots, \varrho\}$ and $I^{c}=\{1, \ldots, \varrho\} \backslash I$ let $\psi^{\prime}(s)$ $=\sum_{\substack{i \in I C \\ q_{1}>0}} s_{i}$.

Let $I \in \mathscr{I}=\left\{I \mid I \subset\{1, \ldots, \varrho\}, q_{I}=q(K)\right.$ and $\left.\Delta\left(G_{I}\right)=\varnothing\right\}$. For every $m \geqslant 1$ let $S(I, m)$ be the set of all $s \in N^{c}$ with

$$
\left\{n \mid v_{i}(n)=s_{i} \text { for every } i \in I^{c}\right\} \subset\{n \mid g(n) \leqslant m\} .
$$

Lemma 3. If for some $j \in I^{c},\left\{s_{j} \mid s \in S(I, m)\right\}$ is infinite, then $q_{j}=0$.
Proof. Let $j \in I^{c}$ and suppose $\left\{s_{j} \mid s \in S(I, m)\right\}$ is infinite. Then $\Delta\left(G_{I^{\prime}}\right)=\varnothing$ with $I^{\prime}=I \cup\{j\}$. Since $q(K) \geqslant q_{r^{\prime}}=q_{I}+q_{j}=q(K)+q_{j}$ it follows that $q_{j}=0$.

Thus the following definitions make sense:

$$
\begin{aligned}
\psi^{\prime}(K, I, m) & =\max \left\{\psi^{\prime}(s) \mid s \in S(I, m)\right\}, \\
\psi^{\prime}(K, m) & =\max \left\{\psi^{\prime}(K, I, m) \mid I \in \mathscr{I}\right\} .
\end{aligned}
$$

The constants $q(K)\left(\psi^{\prime}(K, m)\right.$ respectively) just depend on the orbit structure of G (and on m respectively) which we define as the sequence of blocks $B_{1}, \ldots, B_{Q} \in \mathscr{B}(G)$ and the corresponding sequence of densities $q_{1}, \ldots, q_{e} \in[0,1)$ with $\sum_{i=1}^{e} q_{i}=1$.

The following lemma provides the analytic tool for Theorem 1.
Lemma 4. Let $I \subset\{1, \ldots, \varrho\}$ with $q_{1}>0$ and let $s \in N^{I^{c}}$. Then $\#\left\{n \leqslant x \mid v_{i}(n)=s_{i}\right.$ for every $\left.i \in I^{c}\right\}=(C+o(1)) x(\log x)^{-1+q_{I}}(\log \log x)^{\psi^{\prime}(s)}$.

Proof. See Lemma 12 in [22] and Lemma 7 in [11].
Theorem 1. For $m \geqslant 1$

$$
G_{m}^{\prime}(x)=(C+o(1)) x(\log x)^{-1+q(K)}(\log \log x)^{\psi^{(K, m)}} .
$$

Proof. 1. Let $I \subset\{1, \ldots, \varrho\}$ with $\Delta\left(G_{I}\right) \neq \emptyset$. There is an $n^{I} \in N$ with $B\left(n^{I}\right) \in \mathscr{B}\left(G_{I}\right)$ and $g\left(n^{I}\right)>m$. Then for every $n \in N, g\left(n n^{I}\right)>m$.

For every $i \in\{1, \ldots, \varrho\}$ let $w_{i}=\max \left\{v_{i}\left(n^{I}\right) \mid I \subset\{1, \ldots, \varrho\}\right.$ with $\left.\Delta\left(G_{I}\right) \neq \varnothing\right\}$. These constants have the following property: if for $n \in N$, $\Delta\left(\bigcup_{\substack{1 \leqslant i \leqslant 0 \\ v_{1}(n) \geqslant w_{i}}}\left\{g \mid \cdot v_{g}\left(B_{i}\right)>0\right\}\right) \neq \emptyset$, then $g(n)>m$.
2. For $I \in \mathscr{I}$ let $T(I, m)=N^{I c} \backslash S(I, m) ; T(I, m)$ is the set of all $t \in N^{I^{c}}$ such that

$$
\{n \mid g(n)>m\} \cap\left\{n \mid v_{i}(n)=t_{i} \text { for every } i \in I^{c}\right\} \neq \varnothing .
$$

According to Theorem 9.18 in [2] there are only finitely many minimal elements in $T(I, m): t_{1}^{I}, \ldots, t_{\lambda_{\lambda}}^{I}$. For $j \in\left\{1, \ldots, \lambda_{I}\right\}$ let $n_{j}^{I} \in N$ with $g\left(n_{j}^{I}\right)>m$ and $v_{i}\left(n_{j}^{I}\right)=t_{j, i}^{I}$ for every $i \in I^{c}$.

For every $i \in\{1, \ldots, \varrho\}$ let $u_{i}=\max \left\{v_{i}\left(n_{j}^{I}\right) \mid 1 \leqslant j \leqslant \lambda_{I}, I \in \mathscr{I}\right\}$. Then for every $I \in \mathscr{I}$ and for every $t \in T(I, m)$

$$
\left\{n \mid v_{i}(n) \geqslant u_{i} \text { for } i \in I, v_{i}(n)=t_{i} \text { for } i \in I^{c}\right\} \cap\{n \mid g(n) \leqslant m\}=\varnothing .
$$

3. For every $i \in\{1, \ldots, \varrho\}$ let $z_{i}=\max \left\{u_{i}, w_{i}\right\}$. Then '

$$
\begin{aligned}
& =\bigcup_{I}\left\{n \leqslant x \mid g(n) \leqslant m, v_{i}(n) \geqslant z_{i} \text { for } i \in I, v_{i}(n)<z_{i} \text { for } i \in I^{c}\right\} \\
& \stackrel{(1)}{=} \bigcup_{I, 4\left(G_{I}\right)=\varnothing}\left\{n \leqslant x \mid g(n) \leqslant m, v_{i}(n) \geqslant z_{i} \text { for } i \in I, v_{i}(n)<z_{i} \text { for } i \in I^{c}\right\} \\
& =\bigcup_{\substack{1, q_{q}<q(K) \\
\mathcal{A}\left(G_{I}\right)=\varnothing}}\{\ldots\} \cup \bigcup_{J \in \xi}\{\ldots\}
\end{aligned}
$$

Now Lemma 4 implies the assertion.
3. In this section $q(K)$ will be further investigated. Due to J. Sliwa ([21])

$$
F_{m}^{\prime}(x)=(C+o(1)) x(\log x)^{-1+q_{0}(K)}(\log \log x)^{\varphi^{\prime}(K, m)}
$$

with $q_{0}(K)$ being the density of primes which have only principal ideals in their prime ideal decomposition. The following proposition deals with $q_{0}(K)$ and $q(K)$.

Proposition 1. 1. $q_{0}(K)=q(K,\{0\}) \leqslant q(K)$.
2. Let $\{B(p) \mid p$ is unramified and has a non-principal prime ideal divisor $\}$ $=\left\{B_{1}, \ldots, B_{e^{\prime}}\right\}$. Then the following conditions are equivalent:
(a) $q_{0}(K)=q(K)$.
(b) $\Delta\left(\left\{g \mid v_{g}\left(B_{i}\right)>0\right\}\right) \neq \varnothing$ for every $i \in\left\{1, \ldots, \varrho^{\prime}\right\}$.
(c) $\sum_{g \in G} v_{g}(A) / \operatorname{ord}(g)=1$ for every irreducible $A \in\left(\mathscr{B}\left\{g \mid v_{g}\left(B_{i}\right)>0\right\}\right)$ for every $i \in\left\{1, \ldots, \varrho^{\prime}\right\}$.
3. If $p \nmid h$ for every prime $p \leqslant[K: Q]$, then $q_{0}(K)=q(K)$.

Proof. 2(a) and (b) are equivalent by definition; (b) and (c) are equivalent by [20], Theorem 3.1.
3. Let $\langle 0\rangle^{k} B=\langle 0\rangle^{k}\left\langle g_{1}, \ldots, g_{r}\right\rangle \in\left\{B_{1}, \ldots, B_{e^{\prime}}\right\}$ with $k \in N$ and g_{1}, \ldots, $g_{r} \in G \backslash\{0\}$. Then $B^{s}=\prod_{i=1}^{r}\left\langle g_{1}, \ldots, g_{i}\right\rangle^{s / \operatorname{cord}\left(g_{i}\right)}$ with $s=1 \mathrm{~cm}\left\{\operatorname{ord}\left(g_{i}\right) \mid 1 \leqslant i\right.$ $\leqslant r\}$. Since $[K: Q]<\operatorname{ord}\left(g_{i}\right)$ it follows

$$
s \sum_{i=1}^{r} \frac{1}{\operatorname{ord}\left(g_{i}\right)}<s r \frac{1}{[K: Q]} \leqslant s .
$$

Thus $\Delta\left(\left\{g \mid v_{g}(B)>0\right\}\right) \neq \varnothing$, and so $2(b)$ implies the assertion.
From now on till the end of this section all number fields K are Galois and Γ denotes the Galois group of K over \boldsymbol{Q}.

Proposition 2. If for every $g \in G \backslash G^{\Gamma}$ there exists a $\gamma \in \Gamma$ with $g \neq g^{\gamma}$ such that g and g^{γ} are in the same cyclic subgroup of G, then

$$
q(K)=\max \left\{q\left(K, G_{0}\right) \mid G_{0} \subset G^{r}, \Delta\left(G_{0}\right)=\varnothing\right\} .
$$

Proof. It suffices to show: if $G_{0} \subset G$ is invariant and $G_{0} \nsubseteq G^{\Gamma}$ then $\Delta\left(G_{0}\right) \neq \emptyset$. Let $g \in G_{0} \backslash G^{I}, \gamma \in \Gamma$ with $g \neq g^{\nu}$ and $g=a+n \boldsymbol{Z}, g^{\nu}=b+n \boldsymbol{Z}$ $\in Z / n Z<G$. We have

$$
\frac{n}{\operatorname{gcd}(a, n)}=\operatorname{ord}(a+n Z)=\operatorname{ord}(b+n Z)=\frac{n}{\operatorname{gcd}(b, n)}
$$

and so

$$
\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=k
$$

According to Proposition 5 in [5] $\Delta(\{a+n Z, b+n Z\})=\varnothing$ if and only if

$$
\frac{a}{k} \equiv \frac{b}{k} \bmod \left(\frac{n}{k}\right) \quad \text { or } \quad \frac{n}{k} \leqslant 2 .
$$

Since neither of the two conditions holds $\varnothing \neq \Delta(\{a+n \mathbf{Z}, b+n \boldsymbol{Z}\}) \subset \Delta\left(G_{0}\right)$.
For $d \in N_{+}$let $G[d]=\{g \in G \mid d g=0\}$.
Proposition 3. Let $k \subset K$ with k / Q Galois, Hilbert class field $H(k) \subset K$ and $[K: k]=d$. Then

$$
q(K)=\max \left\{q\left(K, G_{0}\right) \mid G_{0} \subset G[d], G_{0} \text { invariant, } \Delta\left(G_{0}\right)=\varnothing\right\} .
$$

Proof. Let $\Gamma^{\prime}=\operatorname{Gal}(K / k) \subset \operatorname{Gal}(K / Q)=\Gamma, \# \Gamma=n, G_{0} \subset G$ invariant, $\Delta\left(G_{0}\right)=\varnothing$ and $0 \neq g \in G_{0}$. Let $p \in g$ be a prime ideal of first degree and let $p \cap Z=p Z$. Then p splits completely in K and since $H(k) \subset K, p$ splits into principal prime ideals in k. Therefore $B(p)=\left\langle g^{\eta} \mid \gamma \in \Gamma\right\rangle=\prod_{i=1}^{n / d} B_{i}$ with $B_{i}=\left\langle g^{\text {y, }}{ }^{\prime} \mid \gamma^{\prime} \in \Gamma^{\prime}\right\rangle$ and $\Gamma=\bigcup_{i=1}^{n / d} \gamma_{i} \Gamma^{\prime}$. Because of $\Gamma^{\prime} \triangleleft \Gamma$

$$
B_{1}^{\gamma_{1}^{-1} y_{i}}=\left\langle g^{\gamma_{1} y^{\prime}} \mid \gamma^{\prime} \in \Gamma^{\prime}\right\rangle^{\gamma_{1}^{-1} y_{i}}=\left\langle g^{\gamma_{1} y^{\prime} y_{1}^{-1} \gamma_{i}} \mid \gamma^{\prime} \in \Gamma^{\prime}\right\rangle=B_{i}
$$

for every $1 \leqslant i \leqslant n$. Therefore, if B_{1} has a factorization into e irreducible blocks, then so has B_{i} for every $1 \leqslant i \leqslant n$. Thus $B(p)$ is a product of $(n / d) e$ irreducible blocks. On the other hand $B(p)^{\text {ord }(g)}=\prod_{y \in \Gamma}\left\langle g^{y}, \ldots, g^{\nu}\right\rangle$. Since $\Delta\left(G_{0}\right)=\varnothing$ it follows that $(n / d) e \cdot \operatorname{ord}(g)=n$, i.e. ord $(g) \mid d$.

Corollary 1. If \# $\Gamma=n$ then

$$
q(K)=\max \left\{q\left(K, G_{0}\right) \mid G_{0} \subset G[n], G_{0} \text { invariant, } \Delta\left(G_{0}\right)=\varnothing\right\} .
$$

Proof. Choose $k=\boldsymbol{Q}$.
In the sequel we write $q(B)$ instead of $q(P(B))$ for a block B.
Lemma 5. Let K / \boldsymbol{Q} be cyclic with prime degree l.

1. If $p \in P$ is unramified in K then $B(p)=\langle 0\rangle$ or $B(p)=\langle g, \ldots, g\rangle$ with $g \in G^{r}$ or $B(p)=\left\langle g, g^{\gamma}, \ldots, g^{v^{I-1}}\right\rangle$ with $g \in G \backslash G^{r}$ and $\gamma \in \Gamma$.
2. (a) $q(\langle 0\rangle)=(l-1) / l$.
(b) $q\left(\left\langle g^{\gamma} \mid \gamma \in \Gamma\right\rangle\right)=1 / h$ for every $g \in G \backslash G^{\Gamma}$.
(c) $q(\langle g, \ldots, g\rangle)=1 /(l h)$ for every $g \in G^{\Gamma}$.
3. $q_{0}(K)=(l-1) / l+1 /(l h)$.
4. $q\left(K, G_{0}\right)=(l-1) / l+\# G_{0} /(l h)$ for every invariant $G_{0} \subset G$ with $0 \in G_{0}$.

Proof. 1. Obvious.
2. (a) Since $\{\boldsymbol{p} \in \boldsymbol{P} \mid B(p)=\langle 0\rangle\}=\{\boldsymbol{p} \in \boldsymbol{P} \mid p$ does not split $\}$ the assertion follows by Corollary 5, p. 324 in [15].
(b), (c). Let $H(K)$ be the Hilbert class field of K and let $\varphi: G \rightarrow \mathrm{Gal}(H(K) / K)$ be the Artin isomorphism. Then $\Gamma=\operatorname{Gal}(K / Q)=\operatorname{Gal}(H(K) / Q) / \mathrm{Gal}(H(K) / K)$ and $\varphi\left(g^{\nu}\right)=\gamma \varphi(g) \gamma^{-1}$ for every $g \in G$ and every $\gamma \in \Gamma$. For an unramified $p \in \boldsymbol{P}$ let $F(p) \subset \operatorname{Gal}(H(K) / Q)$ denote the conjugate class of Frobenius automorphisms associated with prime divisors p of p in $H(K)$. Then, by Chebotarev's density theorem we obtain (see, for example Theorem 7.10 in [15]):
(i) for every $g \in G \backslash G^{r}$

$$
\begin{aligned}
q\left(\left\langle g^{\nu} \mid \gamma \in \Gamma\right\rangle\right) & =q\left(\left\{p \in P \mid F(p)=\left\{\gamma \varphi(g) \gamma^{-1} \mid \gamma \in \Gamma\right\}\right\}\right) \\
& =\frac{\#\left\{\gamma \varphi(g) \gamma^{-1} \mid \gamma \in \Gamma\right\}}{l h}=\frac{1}{h} .
\end{aligned}
$$

(ii) for every $g \in G^{\Gamma}$

$$
q(\langle g, \ldots, g\rangle)=q(\{p \in P \mid F(p)=\{\varphi(g)\}\})=1 /(l h) .
$$

3. $q_{0}(K)=q(\langle 0\rangle)+q(\langle 0, \ldots, 0\rangle)$.
4. Let $G_{0} \subset G$ be invariant and $0 \in G_{0}$. Since

$$
\mathscr{B}\left(G_{0}\right) \cap \mathscr{B}(P)=\{\langle 0\rangle\} \cup\left\{\langle g, \ldots, g\rangle \mid g \in G_{0}^{\Gamma}\right\} \cup\left\{\left\langle g^{\nu} \mid \gamma \in \Gamma\right\rangle \mid g \in G_{0} \backslash G_{0}^{\Gamma}\right\}
$$

the assertion follows by 2.
For a finite group Γ and a finite Γ-module G let

$$
\mu_{\Gamma}(G)=\max \left\{\# G_{0} \mid G_{0} \subset G \Gamma \text {-invariant, } \Delta\left(G_{0}\right)=\varnothing\right\}
$$

If Γ acts trivially on G then $\mu_{\Gamma}(G)=\mu(G)=\max \left\{\# G_{0} \mid \Delta\left(G_{0}\right)=\varnothing\right\}$. Obviously $1 \leqslant \mu\left(G^{\Gamma}\right) \leqslant \mu_{\Gamma}(G) \leqslant \mu(G)$. Furthermore, if the condition in Proposi-
tion 2 holds (especially, if G is cyclic), then $\mu_{\Gamma}(G)=\mu\left(G^{\Gamma}\right)$. For $p \in P$, $\mu\left(C_{p^{n}}\right)=n+1$ ([20], Proposition 3.4) and if G is an elementary 2-group then $\mu(G)=\mathrm{rk}(G)+1$ ([23], Section 5). For further results on $\mu(G)$ see [22], Lemma 1, and [17], Section 2.

Lemma 6. Let Γ be cyclic with prime degree l and let G be an elementary l group. If $\operatorname{rk}(G)-\operatorname{rk}\left(C^{\Gamma}\right) \leqslant l-1$, then $\mu_{\Gamma}(G)=\mu\left(G^{\Gamma}\right)$.

Proof. Let $G_{0} \subset G$ be invariant with $\Delta\left(G_{0}\right)=\emptyset$. It suffices to show $G_{0} \subset G^{r}$. Assume to the contrary, there is an element $g_{1} \in G_{0} \backslash G^{r}$. Then g_{1}, g_{2} $=g_{1}^{\gamma}, \ldots, g_{t}=g_{1}^{r^{1-1}}$ are pairwise distinct for $\gamma \in \Gamma$. Let $G=G^{r} \times G_{1}$. Since

$$
l\left(\operatorname{rk}(G)-\operatorname{rk}\left(G^{I}\right)\right)=\# G_{1} \geqslant \# \bigcup_{i=1}^{l}\left\{g_{i}, 2 g_{i}, \ldots,(l-1) g_{i}\right\}+1
$$

it follows that

$$
\# \bigcup_{i=1}^{l}\left\{g_{i}, \ldots,(l-1) g_{i}\right\}<l(l-1) .
$$

Therefore there are g_{i}, g_{j} with $g_{i} \neq g_{j}$ and $m_{i}, m_{j} \in\{1, \ldots, l-1\}$ with $m_{i} g_{i}+m_{j} g_{j}=0$. Let $m_{i}^{\prime} \in\{1, \ldots, l-1\}$ with $m_{i} m_{i}^{\prime} \equiv 1 \bmod l$ and let m_{j}^{\prime} $\in\{1, \ldots, l-1\}$ with $m_{j}^{\prime} \equiv m_{j} m_{i}^{\prime} \bmod l$. Then $g_{i}+m_{j}^{\prime} g_{j}=0$ and $B=\left\langle g_{i}, g_{j}, \ldots, g_{j}\right\rangle$ is irreducible. $B^{l}=\left\langle g_{i}, \ldots, g_{i}\right\rangle\left\langle g_{j}, \ldots, g_{j}\right\rangle^{m_{j}^{\prime}}$ implies $m_{j}^{\prime}=l-1$. Thus $g_{i}=g_{j}$, a contradiction.

Proposition 4. If K / Q is cyclic with prime degree l, then

$$
\left.q(K)=\frac{l-1}{l}+\frac{1}{l h} \mu_{\Gamma}(G[\rceil]\right) .
$$

Proof. The proof follows immediately by Corollary 1 and Lemma 5. e The final corollary is due to W. Narkiewicz ([11], Theorem 4).

Corollary 2. If K is a quadratic number field, then

$$
q(K)=\frac{1}{2}+\frac{1}{2 h}\left(\mathrm{rk}_{2}(G)+1\right) .
$$

Proof. Since Γ acts trivially on $G[2]$

$$
\mu_{\Gamma}(G[2])=\mu(G[2])=\mathrm{rk}_{2}(G)+1
$$

4. Let $h \geqslant 2$ and $m \geqslant 1$. In order to get an asymptotic formula for $\bar{F}_{m}(x)=\#\{(a) \mid N(a) \leqslant x, f(a)=m\}$ we improve the asymptotic formula for $F_{m}(x)$ given in [13] with the methods of [7].

Theorem 2.

1. $F_{m}(x)=x(\log x)^{-1+1 / h} W_{m}(\log \log x)+O\left(x(\log x)^{-2+1 / h}(\log \log x)^{c_{m}}\right)$ with $0 \neq W_{m} \in C[X]$ and $c_{m} \geqslant 0$.

$$
\text { 2. } \begin{aligned}
\bar{F}_{m}(x)= & x(\log x)^{-1+1 / h} \bar{W}_{m}(\log \log x)+O\left(x(\log x)^{-2+1 / h}(\log \log x)^{\bar{c}_{m}}\right) \\
& \text { with } 0 \neq \bar{W}_{m} \in C[X] \text { and } \bar{c}_{m} \geqslant 0 .
\end{aligned}
$$

Proof. 1. If we apply in Section 5 of [13] the so-called Main Lemma of [7] (Case II with $q=0$) we get the above formula. (Proposition 1 in [7] and the formulae appearing in the proofs of the corollaries in [13] guarantee that the assumptions of the Main Lemma are satisfied.)
2. Let $m \geqslant 2$. First we show that there exists an $a_{0} \in R$ with $f\left(a_{0}\right)=m$. Let $g \in G$ with $\operatorname{ord}(g)=n \geqslant 2$, let $p_{1} \in g, p_{2} \in-g$ be distinct prime ideals, $\boldsymbol{p}_{1}^{n}=a_{1} R, p_{2}^{n}=a_{2} R$ and $p_{1} p_{2}=b R$. Since $a_{0}=a_{1}^{m-1} a_{2}^{m-1}=a_{1}^{m-1-i} a_{2}^{m-1-i} b^{n i}$ for every $i \in\{0, \ldots, m-1\}$ and since there are no more factorizations of a_{0}, it follows that $f\left(a_{0}\right)=m$.

Let $M=\{a \in R \mid(a)$ is a product of principal prime ideals $\}$. Then $\#\{(a) \mid a \in M, N(a) \leqslant x\} \geqslant C_{1} x(\log x)^{-1+1 / h}$ ([7], Lemma 2). Since for every $a \in M, f\left(a a_{0}\right)=m$ we obtain $\bar{F}_{m}(x) \geqslant C_{2} x(\log x)^{-1+1 / h}$. But $\bar{F}_{m}(x)=$ $F_{m}(x)-F_{m-1}(x) \geqslant C_{2} x(\log x)^{-1+1 / h}$ implies $W_{m}-W_{m-1} \neq 0$, and thus 2 holds with $\bar{W}_{m}=W_{m}-W_{m-1}$.

Remark. It is possible to proceed with $F_{m}^{\prime}(x)$ and $\bar{F}_{m}^{\prime}(x)=\#\{n \leqslant x \mid$ $f(n)=m\}$ in the same way as above, to obtain an asymptotic formula for $\bar{F}_{m}^{\prime}(x)$ (from [18] it follows that the assumptions of the Main Lemma in [7] are satisfied; further use [21], resp. [13] 3.b).
5. Finally we consider those natural numbers which have simple sets of lengths: for $n \in N$ let $L(n)$ denote the set of lengths of possible factorizations of n, i.e. $L(n)=\{k \mid n$ has a factorization of length $k\} . L(n)$ is called simple if there are $y, k \in N$ such that $L(n)=\{y, y+1, \ldots, y+k\}$. Lemma 4 and Lemma 7 in [3] imply that

$$
\#\{n \leqslant x \mid L(n) \text { is simple }\}=(1+o(1)) x .
$$

There are algebraic number fields with class number $h>3$ such that $L(n)$ is simple for every $n \in N$ ([6]).

Acknowledgement. I would like to thank Professor F. Halter-Koch for valuable discussions on $q(K)$.

References

[1] S. Allen, On the factorisations of natural numbers in an algebraic number field, J. London Math. Soc. (2) 11 (1975), 294-300.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. II, Providence, Rhode Island 1967.
[3] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529.
[4] -, Ein quantitatives Resultat über Faktorisierungen verschiedener Länge in algebraischen Zahlkörpern, ibid. 205 (1990), 159-162.
[5] -, On non-unique factorizations into irreducible elements II, in Number Theory, Vol. II, Coll. Math. Soc. J. Bolyai 51, Budapest 1987, 723-757.
[6] -, Factorizations of algebraic integers, in Number Theory, Ulm 1987, Springer Lecture Notes 1380, 63-74.
[7] J. Kaczorowski, Some remarks on factorization in algebraic number fields, Acta Arith. 43 (1983), 53-68.
[8] W. Narkiew icz, On algebraic number fields with non-unique factorization, Colloq. Math. 12 (1964), 59-68.
[9] -, On algebraic number fields with non-unique factorization II, ibid. 15 (1966), 49-58.
[10] -, On natural numbers having unique factorization in a quadratic number field, Bull. Acad. Polon. Sci. 14 (1966), 17-18.
[11] -, On natural numbers having unique factorization in a quadratic number field, Acta Arith. 12 (1966), 1-22.
[12] -, On natural numbers having unique factorization in a quadratic number field II, ibid. 13 (1967), 123-129.
[13] -, Numbers with unique factorization in an algebraic number field, ibid. 21 (1972), 313-322.
[14] -, A note on numbers with good factorization properties, Colloq. Math. 27 (1973), 275-276.
[15] -, Elementary and Analytic Theory of Algebraic Numbers, PWN, Warszawa 1974.
[16] -, Numbers with all factorizations of the same length in a quadratic number field, Colloq. Math. 45 (1981), 71-74.
[17] -, Finite abelian groups and factorization problems, ibid. 42 (1979), 319-330.
[18] R. W. K. Odoni, On a problem of Narkiewicz, J. Reine Angew. Math. 288 (1976), 160-167.
[19] J. Rosiński and J. Sliwa, The number of factorizations in an algebraic number field, Bull. Acad. Polon. Sci. 24 (1976), 821-826.
[20] L. Skula, On c-semigroups, Acta Arith. 31 (1976), 247-257.
[21] J. Sliwa, A note on factorizations in algebraic number fields, Bull. Acad. Polon. Sci. 24 (1976), 313-314.
[22] -, Factorizations of distinct lengths in algebraic number fields, Acta Arith. 31 (1976), 399-417.
[23] -, Remarks on factorizations in algebraic number fields, Colloq. Math. 46 (1982), 123-130.

INSTITUT FÜR MATHEMATIK

KARL-FRANZENS-UNIVERSITÄT
Halbärthgasse 1/I
A-8010 Graz, Ósterreich

Received on 6.6.1989
and in revised form on 21.2.1990

