On some complex explicit formulae connected with the Möbius function. I

by

K. M. Bartz (Poznań)

1. Let $M(x)$ denote the summatory function of the Möbius μ-function,

$$
M(x)=\sum_{n \leqslant x} \mu(n)
$$

Then $M(x)$ is the difference between the number of squarefree positive integers $n \leqslant x$ with an even number of prime factors and of those with an odd number of prime factors.

An explicit formula which expresses $M(x)$ in terms of zeros of the Riemann zeta function under the assumption of the Riemann hypothesis (RH) is well known (see e.g. [4], p. 318). Assuming the RH and the simplicity of complex zeros ϱ of the Riemann zeta function $\zeta(s)$, Titchmarsh showed that there is a sequence $\tau_{n}, n \leqslant \tau_{n} \leqslant n+1$ such that, denoting

$$
M_{0}(x)=(M(x+0)+M(x-0)) / 2,
$$

we have

$$
\begin{equation*}
M_{0}(x)=\lim _{n \rightarrow \infty} \sum_{|\operatorname{lm} \varrho|<\tau_{n}} \frac{x^{\varrho}}{\varrho \zeta^{\prime}(\varrho)}-2-\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 \pi / x)^{2 n}}{(2 n)!n \zeta(2 n+1)} \tag{1.1}
\end{equation*}
$$

Following some ideas of J. Kaczorowski's paper (see [2]) we will investigate expressions similar to the series over Riemann zeta zeros ϱ in (1.1), considering this series as a function of a complex variable x. More precisely, we will describe the analytic character of some functions $m(z)$ and $\mathscr{M}(z)$ defined in the case where there are no multiple zeros ϱ of the Riemann zeta function, for $\operatorname{Im} z>0$ as follows:

$$
\begin{equation*}
m(z)=\lim _{n \rightarrow \infty} \sum_{\substack{\ell \\ 0<\operatorname{Im}^{\ell} \rho<T_{n}}} \frac{e^{\varrho^{z}}}{\zeta^{\prime}(\varrho)} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{M}(z)=\lim _{n \rightarrow \infty} \sum_{0<\lim _{\varrho}^{\varrho}<T_{n}} \frac{e^{\varrho z}}{\varrho \zeta^{\prime}(\varrho)} \tag{1.3}
\end{equation*}
$$

where the summation is over all non-trivial zeros ϱ of $\zeta(s)$. The sequence T_{n} yields a certain grouping of the zeros.

If $\zeta(s)$ has a multiple zero at $s=\varrho$, the corresponding term in (1.1), (1.2) and (1.3) must be replaced by an appropriate residue. In the following we will consider this general case.

First we show that $m(z)$ is a holomorphic function for $\operatorname{Im} z>0$. Next we continue $m(z)$ analytically to a meromorphic function on the whole complex plane, which satisfies a certain functional equation. The functional equation for $m(z)$ connects the values of the function m at the points z and \bar{z}. Hence from the behaviour of $m(z)$ in the half-plane $\operatorname{Im} z>0$ it permits one to deduce its behaviour for $\operatorname{Im} z<0$. Finally, we describe all singularities of $m(z)$.

As an application of analytic properties of the m-function, in the next note we will obtain the classical formula (1.1) without any hypothesis.

In 1985 A. Odlyzko and H. te Riele in their joint paper [3] showed that $\lim \sup _{x \rightarrow \infty}|M(x)| x^{-1 / 2}>1.06$, which yields a disproof of the Mertens conjecture. What is generally expected is that the true value of this limes superior is \propto. The method we use in this paper may be used to improve on the 1.06 constant.
2. For any complex number $z=x+i y$ from the upper half-plane $H=\{z \in C: \operatorname{Im} z>0\}$ let us consider the integral

$$
\int \frac{e^{s z}}{\zeta(s)} d s
$$

taken round the rectangle ($-1 / 2,3 / 2,3 / 2+i T_{n},-1 / 2+i T_{n}$) where the $T_{n}\left(n \leqslant T_{n}\right.$ $\leqslant n+1$) are chosen so that

$$
\begin{equation*}
\left|\frac{1}{\zeta\left(\sigma+i T_{n}\right)}\right|<T_{n}^{c_{1}} \tag{2.1}
\end{equation*}
$$

for $-1 \leqslant \sigma \leqslant 2$ and c_{1} is a numerical constant (see [4], Th. 9.7). Then the integral along the upper side of the contour tends to 0 as $n \rightarrow \infty$, and by Cauchy's theorem of residues

$$
\begin{equation*}
\int_{-1 / 2+i \infty}^{-1 / 2} \frac{e^{s z}}{\zeta(s)} d s+\int_{-1 / 2}^{3 / 2} \frac{e^{s z}}{\zeta(s)} d s+\int_{3 / 2}^{3 / 2+i \infty} \frac{e^{s z}}{\zeta(s)} d s=2 \pi i m(z) \tag{2.2}
\end{equation*}
$$

where for $\operatorname{Im} z>0$

$$
\begin{equation*}
m(z)=\lim _{n \rightarrow \infty} \sum_{\substack{\varrho \\ 0<\operatorname{lm}_{\varrho}<T_{n}}} \frac{1}{\left(k_{e}-1\right)!} \frac{d^{k_{e}-1}}{d s^{k_{e}-1}}\left[(s-\varrho)^{k_{e}} \frac{e^{s z}}{\zeta(s)}\right]_{s=e} \tag{2.3}
\end{equation*}
$$

and $k_{\boldsymbol{Q}}$ denotes the order of multiplicity of the non-trivial zero ϱ of the zeta function. If there are no multiple zeros of the zeta function then

$$
\begin{equation*}
\left.m(z)=\lim _{n \rightarrow \infty} \sum_{\substack{\ell \\ 0<\lim _{\ell}<T_{n}}} \frac{e^{\rho z}}{\zeta^{\prime}(\varrho)} \cdot{ }^{1}\right) \tag{2.4}
\end{equation*}
$$

The analytic character of the m-function is described by the following theorems:

Theorem 1. The function $m(z)$ is holomorphic on the upper half-plane H and for $z \in H$ we have

$$
\begin{equation*}
2 \pi i m(z)=m_{1}(z)+m_{2}(z)-e^{3 z / 2} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3 / 2}(z-\log n)} \tag{2.5}
\end{equation*}
$$

where the last term on the right is a meromorphic function on the whole complex plane with poles at $z=\log n$ if n is a product of different primes or n is equal to 1 ,

$$
\begin{equation*}
m_{1}(z)=\int_{-1 / 2+i \infty}^{-1 / 2} \frac{e^{s z}}{\zeta(s)} d s \tag{2.6}
\end{equation*}
$$

is analytic on H and

$$
\begin{equation*}
m_{2}(z)=\int_{-1 / 2}^{3 / 2} \frac{e^{s z}}{\zeta(s)} d s \tag{2.7}
\end{equation*}
$$

is regular on the whole complex plane.
Theorem 2. The function $m(z)$ can be continued analytically to a meromorphic function on the whole complex plane which satisfies the functional equation

$$
\begin{equation*}
m(z)+\overline{m(\bar{z})}=-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right) \tag{2.8}
\end{equation*}
$$

where the function on the right-hand side has the period πi and is an entire function of order 1 and type 2π as a function of the variable $z_{1}=e^{-z}$.

- More explicitly, we have for $\operatorname{Im} z>0$

$$
m(z)=\frac{1}{2 \pi i} \int_{-1 / 2+i \infty}^{-1 / 2} \frac{e^{s z}}{\zeta(s)} d s+\frac{1}{2 \pi i} \int_{-1 / 2}^{3 / 2} \frac{e^{s z}}{\zeta(s)} d s-\frac{e^{3 z / 2}}{2 \pi i} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3 / 2}(z-\log n)},
$$

for $\operatorname{Im} z<0$

$$
m(z)=-\overline{m(\bar{z})}-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right)
$$

and for $|\operatorname{Im} z|<\pi$

[^0]\[

$$
\begin{aligned}
m(z)= & \frac{1}{2 \pi i} \int_{-1 / 2-i \infty}^{-1 / 2} e^{s(z-\log 2 \pi-i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \\
& -\frac{1}{2 \pi i} \int_{-1 / 2}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi+i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s-\sum_{n=1}^{\infty} \frac{\mu(n)}{n} e^{e^{-z(-2 \pi i) / n}} \\
& +\frac{1}{2 \pi i} \int_{-1 / 2}^{3 / 2} \frac{e^{s z}}{\zeta(s)} d s-\frac{e^{3 z / 2}}{2 \pi i} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3 / 2}(z-\log n)}
\end{aligned}
$$
\]

THEOREM 3. The only singularities of $m(z)$ meromorphic on C are simple poles at the points $z=\log n$ on the real axis, where n is a product of different primes or n is equal to 1 with residue

$$
\begin{equation*}
\underset{z=\log n}{\operatorname{res}} m(z)=-\mu(n) / 2 \pi i \tag{2.9}
\end{equation*}
$$

3. Proof of Theorem 1. We have by (2.2) for $z \in H$

$$
2 \pi i m(z)=m_{1}(z)+m_{2}(z)+m_{3}(z)
$$

where the last integral

$$
m_{3}(z)=\int_{3 / 2}^{3 / 2+i \infty} \frac{e^{s z}}{\zeta(s)} d s
$$

since $\operatorname{Re} s=3 / 2>1$ and $1 / \zeta(s)=\sum_{n=1}^{\infty} \mu(n) / n^{s}$, is equal to

$$
m_{3}(z)=\sum_{n=1}^{\infty} \mu(n) \int_{3 / 2}^{3 / 2+i \infty} e^{s z-s \log n} d s=-e^{3 z / 2} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3 / 2}(z-\log n)} .
$$

The inversion of the order of integration and summation is justified for $z \in H$ by the uniform convergence of the integral and the series.

Since $|\Gamma(-1 / 2+i t)| \ll \exp (-\pi t / 2)$, the functional equation for $\zeta(s)$ implies

$$
\begin{aligned}
\left|\frac{1}{\zeta(-1 / 2+i t)}\right| & =\frac{2 \sqrt{2 \pi}|\sin (3 / 2-i t)(\pi / 2)||\Gamma(-1 / 2+i t)|}{|\zeta(3 / 2-i t)|} \\
& \ll\left|e^{i(3 / 2-i t) \pi / 2}-e^{-i(3 / 2-i t) \pi / 2}\right||\Gamma(-1 / 2+i t)| \ll 1 .
\end{aligned}
$$

Thus we have

$$
\left|m_{1}(z)\right|=\left|\int_{-1 / 2+\infty}^{-1 / 2} \frac{e^{s z}}{\zeta(s)} d s\right| \ll e^{-x / 2} \int_{0}^{\infty} e^{-t y} d t=\frac{e^{-x / 2}}{y}
$$

and $m_{1}(z)$ is absolutely convergent for $y=\operatorname{Im} z>0$.
4. We shall first prove that the function $m(z)$ analytic for $y>0$ can be continued to a meromorphic function for $y>-\pi$.

Let us consider the integral

$$
m_{1}(z)=-\int_{-1 / 2}^{-1 / 2+i \infty} \frac{e^{s z}}{\zeta(s)} d s
$$

convergent for $y>0$. By the functional equation for $\zeta(s)$ we get

$$
\begin{align*}
m_{1}(z)= & -\int_{-1 / 2}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi-i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \tag{4.1}\\
& -\int_{-1 / 2}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi+i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \\
= & m_{11}(z)+m_{12}(z) .
\end{align*}
$$

Since $|\Gamma(-1 / 2+i t) / \zeta(3 / 2-i t)| \ll e^{-\pi t / 2}, m_{11}(z)$ is regular for $y>0$ and $m_{12}(z)$ for $y>-\pi$.

We have

$$
\begin{align*}
m_{11}(z)= & -\int_{-1 / 2-i \infty}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi-i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \tag{4.2}\\
& +\int_{-1 / 2-i \infty}^{1 / 2} e^{s(z-\log 2 \pi-i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \\
= & I_{1}(z)+I_{2}(z) .
\end{align*}
$$

It is easy to verify that the integral $I_{2}(z)$ is convergent for $y<\pi$. Since $m_{11}(z)$ is regular for $y>0$, the integral $I_{1}(z)$ is convergent for $0<y<\pi$. Thus we can reduce $I_{1}(z)$ to a case of Mellin's inversion formula as follows. We have formally

$$
\begin{equation*}
I_{1}(z)=-\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \int_{-1 / 2-i \infty}^{-1 / 2+i \infty} e^{s(2-\log 2 \pi-i \pi / 2+\log n)} \Gamma(s) d s . \tag{4.3}
\end{equation*}
$$

To justify the inversion of the order of summation and integration for $0 \leqslant y<\pi$ we will see that the integral and the series converge uniformly. First, by Cauchy's theorem of residues

$$
\begin{align*}
& -\int_{-1 / 2-i \infty}^{-1 / 2+i \infty} e^{s(2-\log 2 \pi-i \pi / 2+\log n)} \Gamma(s) d s \tag{4.4}\\
= & -\int_{1-i \infty}^{-1+i \infty} e^{s(z-\log 2 \pi-i \pi / 2+\log n)} \Gamma(s) d s+2 \pi i \text { res } e^{s(z-\log 2 \pi-i \pi / 2+\log n)} \Gamma(s) \\
= & -\int_{1-i \infty}^{1+i \infty} e^{s(z-\log 2 \pi-i \pi / 2+\log n)} \Gamma(s) d s+2 \pi i .
\end{align*}
$$

Since $\operatorname{Re} e^{-(z-\log 2 \pi-i \pi / 2+\log n)}=\left(2 \pi / n e^{x}\right) \sin y>0$ for $0<y<\pi$, using Mellin's
inversion formula we get

$$
\begin{equation*}
\int_{1-i \infty}^{1+i \infty} e^{s(z-\log 2 \pi-i \pi / 2+\log n)} \Gamma(s) d s=2 \pi i e^{-e^{-32 \pi i / n}} \tag{4.5}
\end{equation*}
$$

and by (4.3), (4.4) and (4.5)

$$
\begin{equation*}
I_{1}(z)=-2 \pi i \sum_{n=1}^{\infty} \frac{\mu(n)}{n} e^{-e^{-z} 2 \pi i / n} \tag{4.6}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} \mu(n) / n=0$, we have

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} \frac{\mu(n)}{n} e^{-2 \pi i / n e^{x}}\right| & =\left|\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\left(e^{-2 \pi i / n e^{x}}-1\right)\right| \\
& \leqslant \sum_{n=1}^{\infty} \frac{1}{n}\left(e^{1-2 \pi i / n e^{x} \mid}-1\right)=\sum_{n=1}^{\infty} \frac{1}{n}\left(e^{2 \pi / n e^{x}}-1\right) \\
& \leqslant e^{2 \pi / e^{x}} \sum_{n \leqslant\left[2 \pi / e^{x}\right]} \frac{1}{n}+\frac{2 \pi(e-1)}{e^{x}} \sum_{n \geqslant\left[2 \pi / e^{x}\right]+1} \frac{1}{n^{2}} \ll c_{2}(x)
\end{aligned}
$$

and the series on the right of (4.6) is absolutely convergent for all y.
Finally, by (4.1), (4.2) and (4.6), we obtain the following analytic continuation of $m_{1}(z)$ to $y>-\pi$. For $|y|<\pi$

$$
\begin{align*}
m_{1}(z)=-2 \pi i \sum_{n=1}^{\infty} \frac{\mu(n)}{n} e^{-e^{-z} 2 \pi i / n} & +\int_{-1 / 2-i \infty}^{-1 / 2} e^{s(z-\log 2 \pi-i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \tag{4.7}\\
& -\int_{-1 / 2}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi+i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s
\end{align*}
$$

where the first term is holomorphic for all y, the second for $y<\pi$ and the third for $y>-\pi$.

In accordance with Theorem 1, (4.7) completes the continuation of $m(z)$ to the region $y>-\pi$.
5. Let us consider the function

$$
\begin{equation*}
m^{-}(z)=\lim _{n \rightarrow \infty} \sum_{-T_{n}<l_{\mathrm{I} \mathrm{~m}_{\ell}<0}} \frac{1}{\left(k_{e}-1\right)!} \frac{d^{k_{e}-1}}{d s^{k_{e}-1}}\left[(s-\varrho)^{k_{e}} \frac{e^{s z}}{\zeta(s)}\right]_{s=e} \tag{5.1}
\end{equation*}
$$

where k_{e} denotes the order of multiplicity of the non-trivial zero ϱ of $\zeta(s)$, defined for z belonging to

$$
\begin{equation*}
H^{-}=\{z \in C: \operatorname{Im} z<0\} . \tag{5.2}
\end{equation*}
$$

Since $\zeta(\vec{s})=\overline{\zeta(s)}$ we have $|\zeta(\vec{s})|=|\zeta(s)|$ and by (2.1) we choose $T_{n}\left(n \leqslant T_{n}\right.$ $\leqslant n+1$) such that

$$
\begin{equation*}
\left|\frac{1}{\zeta\left(\sigma-i T_{n}\right)}\right|<T_{n}^{c_{1}} \quad \text { for }-1 \leqslant \sigma \leqslant 2 . \tag{5.3}
\end{equation*}
$$

If $\zeta(s)$ has only simple zeros, then

$$
\begin{equation*}
m^{-}(z)=\lim _{n \rightarrow \infty} \sum_{-T_{n}<\lim \ell<0} \frac{e^{z Q}}{\zeta^{\prime}(\varrho)} . \tag{5.4}
\end{equation*}
$$

Now taking the integral

$$
\int \frac{e^{s z}}{\zeta(s)} d s
$$

round the rectangle ($-1 / 2,3 / 2,3 / 2-i T_{n},-1 / 2-i T_{n}$) with $n \rightarrow \infty$, we have by Cauchy's residue theorem

$$
\begin{equation*}
2 \pi i m^{-}(z)=m_{1}^{-}(z)+m_{2}^{-}(z)+m_{3}^{-}(z) \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{1}^{-}(z)=-\int_{-1 / 2-i \infty}^{-1 / 2} \frac{e^{s z}}{\zeta(s)} d s \tag{5.6}
\end{equation*}
$$

is regular for $y<0$ (the proof similar to that for $m_{1}(z)$),

$$
\begin{equation*}
m_{2}^{-}(z)=\int_{3 / 2}^{-1 / 2} \frac{e^{s z}}{\zeta(s)} d s \tag{5.7}
\end{equation*}
$$

is analytic on the whole complex plane and

$$
\begin{align*}
m_{3}^{-}(z) & =\int_{3 / 2-i \infty}^{3 / 2} \frac{e^{s z}}{\zeta(s)} d s=\sum_{n=1}^{\infty} \mu(n) \int_{3 / 2-i \infty}^{3 / 2} e^{s(z-\log n)} d s \tag{5.8}\\
& =e^{3 z / 2} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{3 / 2}(z-\log n)} .
\end{align*}
$$

Thus $m_{3}^{-}(z)$ is meromorphic on the whole complex plane. The inversion of the order of integration and summation is justified for $z \in H^{-}$by the uniform convergence of the integral and the series.

Now $m_{1}^{-}(z)$ analytic for $y<0$ we have to continue to $y<\pi$ just as $m_{1}(z)$ in Section 4. We have by the functional equation for $\zeta(s)$

$$
\begin{equation*}
m_{1}^{-}(z)=m_{11}^{-}(z)+m_{12}^{-}(z) \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{11}^{-}(z)=-\int_{-1 / 2-i \infty}^{-1 / 2} e^{s(z-\log 2 \pi-i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \tag{5.10}
\end{equation*}
$$

is absolutely convergent for $y<\pi$ and

$$
\begin{equation*}
m_{12}^{-}(z)=-\int_{-1 / 2-i \infty}^{-1 / 2} e^{s(z-\log 2 \pi+i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \tag{5.11}
\end{equation*}
$$

is absolutely convergent for $y<0$.
Next we get

$$
\begin{align*}
m_{12}^{-}(z)= & -\int_{-1 / 2-i \infty}^{-1 / 2+i \infty} e^{s(2-\log 2 \pi+i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \tag{5.12}\\
& +\int_{-1 / 2}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi+i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \\
= & I_{1}^{-}(z)+I_{2}^{-}(z) .
\end{align*}
$$

It is easy to verify that the integral $I_{2}^{-}(z)$ is convergent for $y>-\pi$. Since $m_{12}^{-}(z)$ is regular for $y<0$, the integral $I_{1}^{-}(z)$ is convergent for $-\pi<y<0$ and we can apply Mellin's inversion formula.

We have formally

$$
I_{1}^{-}(z)=-\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \int_{-1 / 2-i \infty}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi+i \pi / 2+\log n)} \Gamma(s) d s
$$

and by Cauchy's theorem of residues

$$
\begin{equation*}
I_{1}^{-}(z)=-\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \int_{1-i \infty}^{1+i \infty} e^{s(2-\log 2 \pi+i \pi / 2+\log n)} \Gamma(s) d s \tag{5.13}
\end{equation*}
$$

To justify the inversion of the order of summation and integration for $-\pi<y<0$, we will see that the integral and the series converge uniformly. Since

$$
\operatorname{Re} e^{-(z-\log 2 \pi+i \pi / 2+\log n)}=-\frac{2 \pi}{n e^{x}} \sin y>0
$$

for $-\pi<y<0$, using Mellin's inversion formula we get

$$
\begin{equation*}
\int_{1-i \infty}^{1+i \infty} e^{s(z-\log 2 \pi+i \pi / 2+\log n)} \Gamma(s) d s=2 \pi i e^{e^{-z} 2 \pi i / n} \tag{5.14}
\end{equation*}
$$

and by (5.13)

$$
\begin{equation*}
I_{1}^{-}(z)=-2 \pi i \sum_{n=1}^{\infty} \frac{\mu(n)}{n} e^{e^{-z} 2 \pi i / n} \tag{5.15}
\end{equation*}
$$

where the series on the right is absolutely convergent for all y.
Finally, by (5.9), (5.10), (5.12) and (5.15)

$$
\begin{equation*}
m_{1}^{-}(z)=-2 \pi i \sum_{n=1}^{\infty} \frac{\mu(n)}{n} e^{e^{-z 2 \pi i / n}}-\int_{-1 / 2-i \infty}^{-1 / 2} e^{s(z-\log 2 \pi-i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s \tag{5.16}
\end{equation*}
$$

$$
+\int_{-1 / 2}^{-1 / 2+i \infty} e^{s(z-\log 2 \pi+i \pi / 2)} \frac{\Gamma(s)}{\zeta(1-s)} d s
$$

which completes the continuation of $m^{-}(z)$ analytic for $y<0$ to the half-plane $y<\pi$.
6. Proof of Theorem 2. By (4.7) and (5.16) for $|y|<\pi$

$$
\begin{equation*}
m_{1}(z)+m_{1}^{-}(z)=-4 \pi i \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right) . \tag{6.1}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
m_{2}(z)+m_{2}^{-}(z)=\int_{-1 / 2}^{3 / 2} \frac{e^{s z}}{\zeta(s)} d s+\int_{3 / 2}^{-1 / 2} \frac{e^{s z}}{\zeta(s)} d s=0 \tag{6.2}
\end{equation*}
$$

and by (5.8) and Theorem 1

$$
\begin{equation*}
m_{3}(z)+m_{3}^{-}(z)=0 . \tag{6.3}
\end{equation*}
$$

Thus for $|y|<\pi$ we have

$$
m(z)+m^{-}(z)=-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right) .
$$

Hence according to Theorem 1 for all $y<\pi$

$$
m(z)=-m^{-}(z)-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right)
$$

by the principle of analytic continuation and for $y>-\pi$

$$
m^{-}(z)=-m(z)-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right) .
$$

This implies that $m(z)$ and $m^{-}(z)$ can be continued analytically over the whole plane as a meromorphic function. And for all z

$$
\begin{equation*}
m(z)+m^{-}(z)=-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right) . \tag{6.4}
\end{equation*}
$$

To prove the functional equation (2.8) observe that if ϱ is a non-trivial zero of $\zeta(s)$ then so is $\bar{\varrho}$. For $z \in H$ we have

$$
m(z)=\lim _{n \rightarrow \infty} \sum_{\sum_{0<\operatorname{lm}^{e}<T_{n}} \frac{1}{\left(k_{\rho}-1\right)!} \overline{\frac{d^{k_{e}-1}}{d s^{k_{e}-1}}\left[(s-\varrho)^{k_{e}} \frac{e^{s z}}{\zeta(s)}\right]_{s=e}}}
$$

and further setting $s=\sigma+i \tau$

$$
m(z)=\lim _{n \rightarrow \infty} \sum_{\substack{\ell \\ 0<\operatorname{lm}_{\varrho}<T_{n}}} \frac{1}{\left(k_{Q}-1\right)!} \frac{\delta^{k_{e}-1}}{\delta \sigma^{k_{Q}-1}}\left[(s-\varrho)^{k_{e}} \frac{e^{s z}}{\zeta(s)}\right]_{s=e} .
$$

Now since $\zeta(\bar{s})=\overline{\zeta(s)}$ we get

$$
m(z)=\lim _{n \rightarrow \infty} \sum_{\substack{e \\ 0<\operatorname{Im}_{e}<T_{n}}} \frac{1}{\left(k_{e}-1\right)!} \frac{\delta^{k_{e}-1}}{\delta \sigma^{k_{e}-1}}\left[(\bar{s}-\bar{\varrho})^{k_{e}} \frac{e^{\overline{\bar{z}}}}{\zeta(\bar{s}}\right]_{s=e}
$$

and finally
(6.5) $\left.m(z)=\lim _{n \rightarrow \infty} \sum_{\substack{T_{n}<\lim \ell<0}} \frac{1}{\left(k_{Q}-1\right)!} \frac{d^{k_{Q}-1}}{d s^{k_{e}-1}}\left[(s-\varrho)^{k_{Q}} \frac{e^{s_{\bar{z}}}}{\zeta(s)}\right]_{s=e}\right) \overline{m^{-}(\bar{z})}$.

Next using (6.4) we have for $z \in H$

$$
\begin{aligned}
m(z) & =\overline{m^{-}(\bar{z})}=-\overline{m(\bar{z})}-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-\bar{z}}\right) \\
& =-\overline{m(\bar{z})}-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right)
\end{aligned}
$$

and by complex conjugation for $z \in H^{-}$and by the principle of analytic continuation for z with $\operatorname{Im} z=0$. This proves (2.8).

Set

$$
A(z)=-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} e^{-z}\right) .
$$

Let $z_{1}=e^{-z}$. Then

$$
A\left(z_{1}\right)=-2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos \left(\frac{2 \pi}{n} z_{1}\right)
$$

and since $\sum_{n=1}^{\infty} \mu(n) / n=0$, we get

$$
\begin{aligned}
A\left(z_{1}\right) & =-\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\left(e^{i \frac{2 \pi}{n \cdot z_{1}}}+e^{-i \frac{2 \pi}{n} z_{1}}-2\right) \\
& =-\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\left(\sum_{k=1}^{\infty} \frac{\left(i \frac{2 \pi}{n} z_{1}\right)^{k}}{k!}+\sum_{k=1}^{\infty} \frac{\left(-i \frac{2 \pi}{n} z_{1}\right)^{k}}{k!}\right) \\
& =2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2 \pi z_{1}\right)^{2 k}}{(2 k)!\zeta(2 k+1)}
\end{aligned}
$$

and if $\left|z_{1}\right|=r$, then

$$
\begin{equation*}
\left|A\left(z_{1}\right)\right| \leqslant 3 \sum_{k=1}^{\infty} \frac{(2 \pi r)^{2 k}}{(2 k)!}=\frac{3}{2}\left(e^{2 \pi r}+e^{-2 \pi r}-2\right)<2 e^{2 \pi r} \tag{6.6}
\end{equation*}
$$

Moreover, we have

$$
A(i r)=2 \sum_{k=1}^{\infty} \frac{(2 \pi r)^{2 k}}{(2 k)!\zeta(2 k+1)}
$$

and

$$
\begin{equation*}
|A(i r)| \geqslant \frac{4}{3} \sum_{k=1}^{\infty} \frac{(2 \pi r)^{2 k}}{(2 k)!}=\frac{2}{3}\left(e^{2 \pi r}+e^{-2 \pi r}\right)-\frac{4}{3} \geqslant \frac{1}{3} e^{2 \pi r} \tag{6.7}
\end{equation*}
$$

for r sufficiently large. By (6.6) and (6.7) the order of $A\left(z_{1}\right)$ is essentially 1 and the type is 2π.

Theorem 3 is a simple corollary of Theorem 2.

References

[1] A. E. Ingham, The Distribution of Prime Numbers, Cambridge 1932.
[2] J. Kaczorowski, The k-functions in multiplicative number theory, I. On complex explicit formulae, Acta Arith. 56 (1990), 195-211.
[3] A. M. Odlyzko and H. I. I. te Riele, Disproof of the Mertens conjecture, J. Reine Angew. Math. 357 (1985), 138-160.
[4] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Oxford 1951.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY
Matejiki 48/49, 60-769 Poznań, Poland

[^0]: ${ }^{(1)}$) Let us remark that this definition does not depend on the particular form of the sequence (T_{n}) satisfying (2.1). (We make use of this comment in part II.)

