Локальные оценки в проблеме Лемера

Ф. Ф. Желудевич (Минск)

Памяти профессора В. Г. Спринджука

1. Введенне. В недавние годы в связи с многочисленными приложениями получила широкую известность проблема оценки снизу мультипликативной высоты $M(\alpha)$ целого алгебраического α

$$
M(\alpha)=\prod_{i=1}^{n} \max \left(1,\left|\alpha_{i}\right|\right),
$$

где α_{i} - сопряженные с α комплексные числа ($i=1,2, \ldots, n$).
На основе анализа множества численных примеров Лемер [9] постабил вопрос, разве если $M(\alpha) \neq 1$, то $\ln M(\alpha) \geqslant C>0$, где $C-$ абсолютная постоянная. Классическая теорема Кронекера [6] утверждает, что $\ln M(\alpha)>0$, если $M(\alpha) \neq 1$. Этот результат уточняется оценками вида $\ln M(\alpha) \geqslant c(n)$, где $c(n)$ обозначает явную функцию >0. В частности принципиальное улучшение получил Добровольский, который доказал [4], что при условии $M(\alpha) \neq 1$ можно взять $c(n)=(1-\varepsilon)(\ln \ln n / \ln n)^{3}$, где $n \geqslant n_{0}(\varepsilon), \varepsilon>0$ - произвольное. Наиболее точные значения величины $c(n)$ были получены в работах [3], [10], [12].

Известны также оценки вида $\ln M(\alpha) \geqslant c(k)$, зависящие от числа k ненулевых коэффициентов определяющего α полинома $g(x)$. Например, в работе [5] при условии $M(\alpha) \neq 1$ установлено, что можно взять $c(k)=(\ln (2 e) / 2 e) \cdot(k+1)^{-k}$.

Нодобного рода результаты находят применение в таких, например, вопросах, как мультипликативная зависимость в числовых полях [11], оценка числа неизоморфных алгебраических полей фиксированной степени и ограниченного регулятора [13] и ряде других.

Наша работа касается вопроса получения оценок вида $\ln M(\alpha)$ $\geqslant c(p, n)$ в зависимости от́ характера разложения в кольце целых Z_{k} поля $\boldsymbol{K}=\boldsymbol{Q}(\alpha)$ простого рационального числа p. При этом мы будем стремиться получать наиболее точную зависимость от p значений $c(p, n)$. Такого рода оценки, на наш взгляд, могут найти применение в задаче о погружении любого поля алгебраических чисел в поле с малым

регулятором [13, стр. 237], если дополнительно привлечь результаты по эффективизации теоремы плотности Артина-Чеботарева [7].

Заметим, что первые значения константы $c(p, n)$ получены уже в работе [2]:

если простое $p \nmid \Delta_{\mathbf{K}}, \Delta_{\mathbf{K}}$ - дискриминант поля K и для простых идеалов $\mathfrak{p} \mid p$ из кольца Z_{K} с нормой $N(\mathfrak{p})=p^{f \mathfrak{p}}$ число $f=\operatorname{HOK}\left\{f_{\mathrm{p}}\right\}$, то $M(\alpha) \neq 1$ влечет, что $c(p, n)=n \ln (p / 2) /\left(p^{f}-1\right)$.

Наш подход базируется на p-адическом методе арифметико-аналитического продолжения Гельфонда-Шнейдера.

В этой работе доказана
Теорема. Если простое $p \nmid \Delta_{к}$ и число идеалов \mathfrak{p} из кольча $\boldsymbol{Z}_{\boldsymbol{K}}$

$$
\left|\left\{\mathfrak{p} \mid p: f_{\mathfrak{p}}=1\right\}\right|=r=c \cdot n, \quad 0<c \leqslant 1, \text { с не зависит от } n \text {, }
$$

то $M(\alpha) \neq 1$ влечет, что

$$
c(p, n)=p^{-2(1+\varepsilon)}\left(\ln n \cdot(\ln \ln n)^{\varepsilon}\right)^{-1}
$$

иными словами имеет место оченка

$$
\begin{equation*}
\ln M(\alpha) \geqslant p^{-2(1+\varepsilon)}\left(\ln n \cdot(\ln \ln n)^{\varepsilon}\right)^{-1} \tag{1}
\end{equation*}
$$

при $n \geqslant n_{1}(\varepsilon), \varepsilon>0$ - произвольное.
Заметим, что по теореме плотности Артина-Чеботарева существует бесконечное число простых p, удовлетворяющих условию теоремы. При этом известны оценки [7] для наименьшего такого p через $\Delta_{\mathbf{L}}$ - дискриминант поля \boldsymbol{L}, где \boldsymbol{L} - расширение Галуа поля \boldsymbol{K}.

Существенный момент доказательства теоремы состоит в том, что можно, как и в [8], построить систему вспомогательных сопряженных и одновременно маленьких функций.
2. Доказательство теоремы. Пусть Ω_{p} - пополнение по норме $\left|\left.\right|_{p}\right.$ алгебраического замыкания поля p-адических чисел \boldsymbol{Q}_{p}, где p - простое натуральное число, удовлетворяющее условию теоремы.

Пусть также $\varepsilon>0$ - произвольное, $\delta=\varepsilon / 5, S=\left[(\ln \ln n)^{\delta}\right], m=[\ln n]$, $N=6 n m S^{2}$.

Используя „принцип ящиков" Дирихле, можно построить регулярную функцию $f: \Omega_{p} \rightarrow \Omega_{p}$ вида

$$
\begin{equation*}
0 \not \equiv f(z)=\sum_{k=1}^{N} a_{k}\left(\alpha^{p-1}\right)^{k z}, \tag{2}
\end{equation*}
$$

имеющую целые рациональные коэффициенты a_{k} с условием $\left|a_{k}\right| \leqslant N$ ($k=1,2, \ldots, N$) и удовлетворяющую системе сравнений

$$
\begin{equation*}
(\ln \alpha)^{-s} f^{(s)}(j p) \equiv 0\left(\bmod q^{9}\right) \quad(j=0,1, \ldots, m-1 ; s=0,1, \ldots, S) \tag{3}
\end{equation*}
$$

где q - простой идеал кольца Z_{K}, причем

$$
\begin{equation*}
N\left(\mathfrak{q}^{g}\right)^{m(\mathbf{S}+1)}<(N+1)^{N} \leqslant N\left(\mathfrak{q}^{g+1}\right)^{m(S+1)}, \quad \ln N(\mathfrak{q}) \leqslant n, \tag{4}
\end{equation*}
$$

$N(\mathfrak{q})$ - число классов вычетов по модулю \mathfrak{q}, g - натуральное число.
Если среди чисел ряда (3) есть хотя бы одно, скажем; $\theta_{j}^{(s)}$ $=(\ln \alpha)^{-s} \cdot f^{(s)}(j p)$, отличное от нуля, то заметим, что $\theta_{j}^{(s)} \in \boldsymbol{Z}_{\boldsymbol{K}}$ а по формуле произведения [1, стр. 311] из (3) следует

$$
\begin{equation*}
\left|N m_{\mathbf{K} / \mathbf{Q}} \theta_{j}^{(s)}\right| \cdot N\left(\boldsymbol{q}^{q}\right)^{-1} \geqslant 1 . \tag{5}
\end{equation*}
$$

С учетом (4) из (5) получаем, что

$$
\begin{equation*}
\ln M(\alpha) \geqslant \frac{N-4 n m S^{2}}{2 N p^{2} m^{2} S} \ln N-\frac{n}{N p^{2} m}>\left(8 p^{2} m S\right)^{-1} . \tag{6}
\end{equation*}
$$

А из (6), в силу наших обозначений, следует требуемая оценка (1). Пусть теперь

$$
\begin{equation*}
f^{(s)}(j p)=0 \quad(j=0,1, \ldots, m-1 ; s=0,1, \ldots, S) . \tag{7}
\end{equation*}
$$

По теореме Куммера [14, стр. 83] сравнение $g(x) \equiv 0(\bmod p)$ имеет r решений и, используя вариант леммы Гензеля [1, стр. 305] получаем, что полином $g(x)$ имеет r целых радических нулей, скажем, $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{r}$. Тогда, в силу малой теоремы Ферма

$$
\begin{equation*}
\alpha_{i}^{p-1} \equiv 1(\bmod p) \quad(i=1,2, \ldots, r) . \tag{8}
\end{equation*}
$$

Теперь, с учетом сопряжений по α, из (7) получаем

$$
\begin{equation*}
f_{i}^{(s)}(j p)=0 \quad(i=1,2, \ldots, r ; j=0,1, \ldots, m-1 ; s=0,1, \ldots, S) \tag{9}
\end{equation*}
$$

где

$$
f_{i}(z)=\sum_{k=1}^{N} a_{k}\left(\alpha_{i}^{p-1}\right)^{k z}, \quad\left(\alpha_{i}^{p-1}\right)^{k z}=\exp \left(k z \ln \left(\alpha_{i}^{p-1}\right)\right) .
$$

Заметим, что функция $f_{i}(z), 1 \leqslant i \leqslant r$, как линейная комбинация функций $\alpha_{i}^{k z}(k=1,2, \ldots, N)$ регулярна в круге $|z|_{p} \leqslant R_{i}$, где $R_{i}>1$. Действительно, функции $\alpha_{i}^{k z}=\exp \left(k z \ln \alpha_{i}\right)$ регулярны в круге

$$
|z|_{p} \leqslant p^{-1 /(p-1)}\left|\ln \alpha_{i}\right|_{p}^{-1}=p^{-1 /(p-1)}\left|\alpha_{i}-1\right|_{p}^{-1}=R_{i}>1,
$$

что следует из (8) и очевидного неравенства $|k|_{p} \leqslant 1$.
Далее мы воспользуемся одним вспомогательным утверждением, доказанным в книге [13, стр. 46].

Лемма 1. Пусть $z_{1}, \ldots, z_{m-1}, T, R \in \Omega_{p}, T \neq 0, R \neq 0, \varrho>0$ - вещественное число, $|T|_{p}<\left|z_{i}\right|_{p}<|R|_{p}<\varrho,\left|z_{i}-z_{j}\right|_{p}>|T|_{p}(i \neq j ; i, j=1,2, \ldots, m-1)$, $f(z)$-регулярная в круге $|z|_{p}<\varrho$ функция, $S \geqslant 0$-целое,

$$
F(z)=\left[z\left(z-z_{1}\right) \ldots\left(z-z_{m-1}\right)\right]^{S+1} .
$$

Тогда для любого $z \in \Omega_{p}$ с условием

$$
\left|z-z_{i}\right|_{p}>|T|_{p} \quad(i=1,2, \ldots, m-1)
$$

имеем ($z_{0}=0$)

$$
f(z)=\int_{0, R} \frac{F(z)}{F(\theta)} \cdot \frac{f(\theta) \theta}{\theta-z} d \theta-\sum_{k=0}^{s} \sum_{l=0}^{m-1} \frac{f^{(k)}\left(z_{i}\right)}{k!} \int_{z, T} \frac{F(z)}{F(\theta)} \cdot \frac{\left(\theta-z_{1}\right)^{k+1}}{\theta-z} d \theta .
$$

В правой части последнего равенства интегрирование ведется по Шнирельману.

В условиях леммы 1 положим

$$
F(z)=[z(z-p)(z-2 p) \ldots(z-(m-1) p)]^{S+1}, \quad R=1
$$

и возьмем $T \in \Omega_{p}$ с условием

$$
\left(2 p m_{1}\right)^{-1}<|T|_{p}<\left(p m_{1}\right)^{-1},
$$

где $m_{1}=\left(p^{2} \ln \ln n\right)^{\delta} \cdot \ln p \cdot \ln n$. Тогда для $z=j p\left(m \leqslant j<m_{1}\right)$, с учетом (9), получаем

$$
f_{i}(z)=\int_{0,1} \frac{F(z)}{F(\theta)} \cdot \frac{f_{i}(\theta) \theta}{\theta-z} d \theta \quad(i=1,2, \ldots, r)
$$

Очевидно, в силу (8), что $\left|f_{i}(\theta)\right|_{p} \leqslant 1$ для $|\theta|_{p} \leqslant 1(i=1,2, \ldots, r)$. По принципу максимума модуля

$$
\begin{align*}
\left|f_{i}(j p)\right|_{p} & =\left|\int_{0,1} \frac{F(j p)}{F(\theta)} \cdot \frac{f_{i}(\theta) \theta}{\theta-j p} d \theta\right|_{p} \leqslant \max \frac{|F(j p)|_{p}}{|F(\theta)|_{p}} \cdot \frac{\left|f_{i}(\theta)\right|_{p}|\theta|_{p}}{|\theta-j p|_{p}} \tag{10}\\
& \leqslant|F(j p)|_{p} \leqslant p^{-(S+1) m} \quad(i=1,2, \ldots, r),
\end{align*}
$$

если учесть, что из $|\theta|_{p}=1$ следует, что $|\theta-j p|_{p}=1,|F(\theta)|_{p}=1$.
Предположим теперь, что $f(j p) \neq 0$ для какого-то j в интервале $m \leqslant j<m_{1}$. Тогда, учитивая (10) получаем

$$
\begin{aligned}
1 & \leqslant\left|N m_{K / \mathbf{Q}} f(j p)\right|\left|N m_{K / \mathbf{Q}} f(j p)\right|_{p}=\prod_{i=1}^{n}\left|f_{i}(j p)\right| \cdot\left|f_{i}(j p)\right|_{p} \\
& \leqslant \exp \left(N m_{1} p^{2} \ln M(\alpha)-S m r \ln p\right) .
\end{aligned}
$$

Отсюда следует, что

$$
\begin{equation*}
\ln M(\alpha) \geqslant \frac{S m r \ln p}{N m_{1} p^{2}}, \tag{11}
\end{equation*}
$$

что дает, в силу обозначений, неравенство (1).
Предположим теперь противное: пусть $f(j p)=0$ для всех $j: m \leqslant j$ $<m_{1}$. Тогда, вместе с (7), это дает систему равенств

$$
\begin{equation*}
f(0)=f(p)=f(2 p)=\ldots=f\left(\left[m_{1}\right] p\right)=0 . \tag{12}
\end{equation*}
$$

Полагая далее

$$
m=\left[\left(p^{2} \ln \ln n\right)^{\delta} \cdot \ln p \cdot \ln n\right], \quad m_{1}=\left(p^{2} \ln \ln n\right)^{2 \delta} \cdot \ln p \cdot \ln n,
$$

мы, как и выше, получим (1) или (12). Пусть $\delta=1 / \Delta$, где $\Delta-$ большое натуральное число, тогда за $\Delta+4$ шага мы получим (1) или сиятему уравнений

$$
\begin{equation*}
f(j p)=\sum_{k=1}^{N} a_{k}\left(\alpha^{p(p-1)}\right)^{i k}=0 \quad(j=0,1, \ldots, m-1), \tag{13}
\end{equation*}
$$

где уже $m=\left[\left(p^{2} \ln \ln n\right)^{1+4 \delta} \cdot \ln p \cdot \ln n\right]$.
Воспользуемся, наконец, двумя утверждениями, доказанными в статье Добровольского [4].

Лемма 2. Пусть $\alpha-$ алгебраическое число, $\operatorname{deg} \alpha=n$. Тогда множество

$$
P=\left\{q-\text { npocmoe }, \operatorname{deg}\left(\alpha^{q}\right)<n\right\}
$$

имеет мощность

$$
|P| \leqslant \ln n / \ln 2 .
$$

Лемма 3. Если для чисел α_{1} и α_{2}, сопряженных с α, выполняется равенство $\alpha_{1}^{k}=\alpha_{2}^{l}$ с целыми $k \neq l$, то α - корень из единицы: $M(\alpha)=1$.

Введем обозначения: $\beta=\alpha^{p(p-1)}, \operatorname{deg} \beta=n_{p}, \beta_{i}\left(i=1,2, \ldots, n_{p}\right)-$ сопряженные с $\beta=\beta_{1}$ числа.

По лемме 2 число простых чисел $j=q$, для которых $\operatorname{deg}\left(\beta^{q}\right)<n_{p}$, не превосходит $\ln n_{p} / \ln 2 \leqslant \ln n / \ln 2$, так как $n / p^{2}<n_{p} \leqslant n$. По неравенству Чебышева $\pi(x) \gg x / \ln x$ при $x \geqslant x_{0}$, поэтому от системы уравнений (13) мы можем перейти, с учетом сопряжений по β, к системе

$$
\begin{equation*}
\sum_{k=1}^{N} a_{k}\left(\beta_{i}^{q}\right)^{k}=0 \quad\left(i=1,2, \ldots, n_{p} ; q \in Q_{1}=Q \backslash P,\left|Q_{1}\right|=N / n_{p}\right), \tag{14}
\end{equation*}
$$

где P - множество из леммы 2.
Система (14) - это система с определителем Вандермонда, который, согласно леммам 2 и 3 , отличен от нуля. Отсюда следует, что $a_{1}=a_{2}=\ldots=a_{N}=0$. Мы получили противоречие, тем самым теорема доказана.

В заключение заметим, что для больших значений p, а именно при $p>2^{n / r}$, по формуле произведения для целого $\prod_{i=1}^{n}\left(\alpha_{i}^{p-1}-1\right) \neq 0$ в силу (8), получаем оценку $\ln M(\alpha)>(r \ln p-n \ln 2) /(p-1)$, что сильнее, чем (1).

Лғтература

[1] 3. И. Боревич, И. Р. Шафаревич, Теория чисел, Наука, Москва 1985.
[2] Th. Callachan, W. Newman and M. Sheingorn, Fields with large Kronecker constants, J. Number Theory 9 (1977), 182-186.
[3] D. Cantor and E. G. Straus, On a question of D. H. Lehmer, Acta Arith. 42 (1982), 97-100; Correction, ibid. 325.
[4] E. Dobrowolski, On a question of D. H. Lehmer and the number of irreducible factors of a polynomial, ibid. 34 (1979), 391-401.
[5] - On a question of Lehmer, Mém. Soc. Math. France 2 (1980), 35-39.
[6] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857), 173-175.
[7] J. C. Lagarias, H. L. Montgomery, A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296.
[8] M. Laurent, Sur la mesure de Mahler de certaines d'entiers algébriques, C.r.a. Journées de St. Et., 1983, exp. 33.
[9] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. Math. (2) 34 (1933), 461-479.
[10] R. Louboutin, Sur la mesure de Mahler d'un nombre algébrique, CR Acad. Sci. Paris, Sér. I, 296 (1983), 707-708.
[11] J. H. Loxton and A. J. van der Poorten, Multiplicative dependence in number fields, Acta Arith. 42 (1982), 291-302.
[12] U. Rausch, On a theorem of Dobrowolski about the product of conjugate numbers, Colloq. Math. 50 (1985), 137-142.
[13] В. Г. Спринджук, Классические диофантовы уравнения от двух неизвестных, Наука, Москва 1982.
[14] Г. Вейль, Алгебраическая теория чисел, ГИИЛ, Москва 1947.

Поступило 6.1.1989

Editorial note: The paper was intended to Sprindžuk's memorial volume and it was delayed due to the fault of the editors.

