Généralisation des suites de Pisot et de Boyd

par

M. J. Bertin (Paris)

Introduction. En 1938, Pisot [4] étudiait certaines suites $E\left(a_{0}, a_{1}\right)$ d'entiers positifs (a_{n}) définies à partir des entiers a_{0} et a_{1} par la condition:

$$
\begin{equation*}
-1 / 2<a_{n+1}-a_{n}^{2} / a_{n-1} \leqslant 1 / 2, \quad n \geqslant 1 . \tag{*}
\end{equation*}
$$

Il montrait directement, pour tout couple (a_{0}, a_{1}) vérifiant $0<a_{0} \leqslant a_{1}$, l'existence de la limite $\theta \geqslant 1$ telle que $\lim _{n \rightarrow+\infty}\left(a_{n+1} / a_{n}\right)=\theta$.

Il déduisait également de théorèmes de convergence, établis dans la première partie de sa thèse, pour tout couple (a_{0}, a_{1}) vérifiant $a_{1}>a_{0}+\frac{3}{2} \sqrt{\frac{3}{2} a_{0}}$, l'existence de $\theta>1$ et $\lambda>0$ tels que

$$
\lim _{n \rightarrow+\infty}\left(a_{n+1} / a_{n}\right)=\theta \quad \text { et } \quad \lim _{n \rightarrow+\infty}\left(a_{n}^{n+1} / a_{n+1}^{n}\right)=\lambda .
$$

L'ensemble des nombres θ ainsi produits est un ensemble dénombrable E contenant l'ensemble S des nombres de Pisot et l'ensemble T des nombres de Salem.

En 1979, Boyd [3] généralisait les E-suites de Pisot en introduisant les F-suites de Boyd $F\left(a_{0}, a_{1}, a_{2}\right)$ d'entiers positifs $\left(a_{n}\right)$ définies à partir des entiers a_{0}, a_{1} et a_{2} par la condition:

$$
-\frac{1}{2}<a_{n+2}+a_{n}-\frac{a_{n+1}}{a_{n}}\left(a_{n+1}+a_{n-1}\right) \leqslant \frac{1}{2}, \quad n \geqslant 1 .
$$

Il montrait directement, sous certaines conditions initiales portant sur a_{0}, a_{1}, a_{2}, l'existence de $\theta>1$ tel que $\lim _{n \rightarrow+\infty}\left(a_{n+1} / a_{n}\right)=\theta$. L'ensemble F de ces nombres θ contient également les ensembles S et T.

Nous proposons ici de généraliser les suites $E\left(a_{0}, a_{1}\right)$ et de définir les $E(2)$-suites $E\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ à partir des entiers positifs $a_{0}, a_{1}, a_{2}, a_{3}$ par une condition généralisant la condition (*).

Nous associerons à certaines de ces suites dites "convergentes" "réelles", un ensemble $E(2)$ de couples de nombres réels supérieurs à 1 et nous montrerons que l'ensemble $E(2)$ contient les couples (α_{1}, α_{2}) d'entiers algébriques réels supérieurs à 1 dont les autres conjugués ont un module inférieur ou égal à 1 . Enfin, après avoir amélioré le théorème de convergence dû à Pisot [4], nous
déduirons des conditions suffisantes de "convergence" "réelle" portant sur les entiers a_{0}, a_{1}, a_{2} et a_{3}.

1. Définition des $E(2)$-suites. Exemples. Si $\left(a_{n}\right)_{n \geqslant 0}$ désigne une suite de nombres réels et k un entier, $k \geqslant 1$, on note $D^{k}\left(a_{n}\right)$ le déterminant de Hankel d'ordre k de la suite

$$
D^{k}\left(a_{n}\right)=D^{k}\left(a_{n}, a_{n+1}, \ldots, a_{n+k-1}\right)=\left|\begin{array}{llll}
a_{n} & a_{n+1} & \ldots & a_{n+k-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+k} \\
\ldots & \ldots & \ldots & \ldots \ldots \\
a_{n+k-1} & a_{n+k} & \ldots & a_{n+2 k-2}
\end{array}\right|
$$

Plus généralement, pour $0 \leqslant i \leqslant k$, on note $D^{k}\left(a_{n}, a_{n+1}, \ldots, \hat{a}_{n+i}, \ldots, a_{n+k}\right)$ le déterminant

$$
\begin{aligned}
& D^{k}\left(a_{n}, a_{n+1}, \ldots, \hat{a}_{n+i}, \ldots, a_{n+k}\right) \\
& \quad=\left|\begin{array}{llllll}
a_{n} & a_{n+1} & \ldots & a_{n+i-1} & a_{n+i+1} & \\
a_{n+1} & a_{n+2} & \ldots & a_{n+i} & a_{n+i+2} & a_{n+k} \\
\ldots & \ldots & \ldots & \ldots \ldots \ldots & a_{n+k+1} \\
a_{n+k-1} & a_{n+k} & \ldots & a_{n+k-1+i-1} & a_{n+k-1+i+1} & \ldots \\
a_{n+2 k-1}
\end{array}\right| .
\end{aligned}
$$

Les résultats de Pisot [4], Boyd [3] et Bertin [1], [2] suggèrent les définitions suivantes.

Définition 1.1. Soit k un entier, $k \geqslant 1$. On appelle $E(k)$-suite une suite d'entiers $\left(a_{n}\right)_{n \geqslant 0}$, notée $E\left(a_{0}, a_{1}, \ldots, a_{2 k-1}\right)$, définie à partir des entiers $a_{0}, \ldots, a_{2 k-1}$, par les inégalités:

$$
-1 / 2<D^{k+1}\left(a_{n}\right) / D^{k}\left(a_{n}\right) \leqslant 1 / 2, \quad n \geqslant 0 .
$$

Définition 1.2. Une $E(k)$-suite est dite convergente si les conditions suivantes sont realisées:
(i) pour tout $0 \leqslant i \leqslant k-1$, on a:

$$
\lim _{n \rightarrow+\infty}\left[D^{k}\left(a_{n}, \ldots, \hat{a}_{n+i}, \ldots, a_{n+k}\right) / D^{k}\left(a_{n}\right)\right]=\lim _{n \rightarrow+\infty} \sigma_{n, k-i}=\sigma_{k-i}
$$

(ii) l'équation $X^{k}-\sigma_{1} X^{k-1}+\sigma_{2} X^{k-2}+\ldots+(-1)^{k} \sigma_{k}=0$ possède toutes ses racines de module supérieur à 1 .

Définition 1.3. Si $k=2$, une $E(2)$-suite convergente est dite réelle si les racines de l'équation $X^{2}-\sigma_{1} X+\sigma_{2}=0$ sont réelles.

Avant de donner des exemples de $E(2)$-suites "convergentes" nous allons établir un théorème préliminaire.

Théorème 1.1. Soit $(\lambda, \alpha, \mu, \beta)$ un quadruplet de nombres réels vérifiant $\lambda \neq 0, \mu \neq 0,|\alpha|>1,|\beta|>1, \lambda \alpha^{n}+\mu \beta^{n}=u_{n}+\varepsilon_{n}, u_{n} \in Z,-1 / 2<\left|\varepsilon_{n}\right| \leqslant 1 / 2$, pour
lequel il existe un rang n_{0} tel que:

$$
\begin{equation*}
\sup _{n \geqslant n_{0}}\left|\varepsilon_{n}\right|<\frac{1}{2(|\alpha|+1)^{2}(|\beta|+1)^{2}} . \tag{1.1}
\end{equation*}
$$

Alors, la suite $\left(u_{n}\right)$ vérifiant pour $n \geqslant n_{1} \geqslant n_{0}$,

$$
\left|\frac{D^{3}\left(u_{n}\right)}{D^{2}\left(u_{n}\right)}\right|<\frac{1}{2},
$$

est une E(2)-suite de Pisot.
Preuve. Soit L l'opérateur différence de polynôme minimal $\cdot(x-\alpha)(x-\beta)$. En l'appliquant successivement à la dernière colonne puis à la dernière ligne du déterminant $D^{3}\left(u_{n}\right)$ et en développant par rapport à la dernière ligne, on obtient:

$$
D^{3}\left(u_{n}\right)=\left(L^{2}\left(u_{n}\right)\right) D^{2}\left(u_{n}\right)+O\left(u_{n}\right)
$$

Or, $D^{2}\left(u_{n}\right)=\lambda \mu(\alpha \beta)^{n}(\alpha-\beta)^{2}+o\left((\alpha \beta)^{n}\right)$; par suite, $u_{n}=o\left(D^{2}\left(u_{n}\right)\right.$ et l'on obtient immédiatement

$$
\lim \sup \left|D^{3}\left(u_{n}\right) / D^{2}\left(u_{n}\right)\right|=\lim \sup \left|L^{2}\left(\varepsilon_{n}\right)\right|,
$$

d'où le résultat grâce à (1.1).
Remarque. En écrivant $D^{3}\left(u_{n}\right) / D^{2}\left(u_{n}\right)$ sous la forme $D^{3}\left(u_{n}\right) / D^{2}\left(u_{n}\right)$ $=u_{n+4}-u_{n+3} \sigma_{n, 1}+u_{n+2} \sigma_{n, 2}$, il résulte du théorème précédent que l'ensemble des quadruplets $(\lambda, \alpha, \mu, \beta)$ vérifiant les hypothèses du théorème 1.1 est dénombrable. On retrouve ainsi un résultat dû à Pisot ([4], p. 227).

Théorème 1.2. (Exemples de $E(2)$-suites "convergentes".) Soit α et β deux nombres réels, uniques racines extérieures au cercle unité d'un polynôme unitaire à coefficients entiers. Alors il existe des nombres réels non nuls λ et μ tels que la suite (u_{n}), où u_{n} désigne lentier le plus proche de $\lambda \alpha^{n}+\mu \beta^{n}$, soit une $E(2)$-suite "convergente" vérifiant

$$
\lim _{n \rightarrow+\infty} \sigma_{n, 1}=\alpha+\beta \quad \text { et } \quad \lim _{n \rightarrow+\infty} \sigma_{n, 2}=\alpha \beta
$$

Preuve. Supposons d'abord α et β conjugués et considérons $K=\boldsymbol{Q}(\alpha)$ le corps de nombres réel de degré s, ayant la base réelle d'entiers $\left(\omega_{j}\right)_{1 \leqslant j \leqslant s}=\left(\omega_{j}^{(1)}\right)_{1 \leqslant j \leqslant s}$, de bases conjuguées $\left(\omega_{j}^{(i)}\right)_{1 \leqslant j \leqslant s}, 1 \leqslant i \leqslant s$. Soient Δ le discriminant de K, C_{1} et δ des constantes positives vérifiant

$$
0<\delta<1, \quad C_{1} \delta^{s-1}>\sqrt{|\Delta|}, \quad(s-2) \delta<\frac{1}{2(|\alpha|+1)^{2}(|\beta|+1)^{2}} .
$$

D'après le théorème de Minkowski sur les formes linéaires, il existe des entiers non tous nuls n_{1}, \ldots, n_{s} tels que l'entier algébrique $\lambda=n_{1} \omega_{1}+\ldots+n_{s} \omega_{s}$
vérifie $\left|\lambda_{1}\right|<C_{1},\left|\lambda_{j}\right|<\delta, 2 \leqslant j \leqslant s$, où $\lambda_{1}=\lambda, \lambda_{2}, \ldots, \lambda_{s}$ désignent les conjugués de λ.

En prenant $\lambda=\lambda_{1}, \mu=\lambda_{2}, u_{n}=\operatorname{Tr}_{K / Q}\left(\lambda \alpha^{n}\right)$ on obtient donc, pour tout $n \geqslant 0$:

$$
\left|\lambda \alpha^{n}+\mu \beta^{n}-u_{n}\right|<(s-2) \delta<\frac{1}{2(|\alpha|+1)^{2}(|\beta|+1)^{2}}
$$

Le théorème 1.1 entraîne alors que pour $n \geqslant n_{1}$, la suite $\left(u_{n}\right)$ soit une $E(2)$-suite. La "convergence" se déduit des égalités:

$$
\lim _{n \rightarrow+\infty} \frac{D^{2}\left(u_{n}, \hat{u}_{n+1}, u_{n+2}\right)}{D^{2}\left(u_{n}\right)}=\lim _{n \rightarrow+\infty} \frac{u_{n+3} u_{n}-u_{n+1} u_{n+2}}{u_{n} u_{n+2}-u_{n+1}^{2}}=\alpha+\beta
$$

et

$$
\lim _{n \rightarrow+\infty} \frac{D^{2}\left(\hat{u}_{n}, u_{n+1}, u_{n+2}\right)}{D^{2}\left(u_{n}\right)}=\lim _{n \rightarrow+\infty} \frac{u_{n+3} u_{n+1}-u_{n+2}^{2}}{u_{n+2} u_{n}-u_{n+1}^{2}}=\alpha \beta .
$$

Si α et β ne sont pas conjugués, on opère comme précédemment en considérant simultanément les deux corps de nombres réels $K_{1}=\boldsymbol{Q}(\alpha)$ et $K_{2}=\boldsymbol{Q}(\beta)$.
2. Un théorème de convergence. A partir d'une suite quelconque d'entiers $\left(a_{n}\right)_{n \geqslant 0}$, on définit la suite $b_{n}=\left(a_{n}, \ldots, a_{n+h}\right)$ de $h+1$-uples d'entiers, h étant un entier strictement positif. La suite $\left(b_{n}\right)_{n \geqslant 0}$ peut être associée à une suite $\left(F_{n}\right)_{n \geqslant 0}$ de difféomorphismes de R^{h+1} ayant les Φ_{n} pour difféomorphismes réciproques. L'espace \boldsymbol{R}^{h+1} est muni de la norme sup. Si $\boldsymbol{x}=\left(x_{0}, \ldots, x_{h}\right)$ est un point de \boldsymbol{R}^{h+1} et $\boldsymbol{c}=\left(c_{0}, \ldots, c_{h}\right)$ un $h+1$-uple de nombres réels positifs éventuellement infinis, on note $B(x, c)(r e s p . ~ \bar{B}(x, c)$) le pavé ouvert (resp. fermé) de centre x de côté $2 c$.

Le théorème suivant établit des conditions suffisantes de convergence de la suite $\Phi_{n}\left(b_{n}\right)$ vers l'élément β de R^{h+1}. Il améliore légèrement un théorème dû à Pisot ([4], pp. 209-214). D'une part, les majorations (2.1.2) sont supposées seulement pour un sous-ensemble propre $J \subset\{1,2, \ldots, n\}$. On obtient alors la limite de certaines composantes du vecteur $\Phi_{n}\left(b_{n}\right)$ sans qu'il soit nécessaire d'obtenir celle des autres composantes. Dans certains cas, cette généralisation est nécessaire, par exemple pour étudier les suites de Boyd mentionnées dans l'introduction, où $a_{n}=\lambda \alpha^{n}+\mu \alpha^{-n}+\varepsilon_{n}$, car le comportement asymptotique de a_{n} ne détermine pas le paramètre μ.

D'autre part, les difféomorphismes F_{n} sont définis sur des ouverts A_{n} vérifiant $A_{n-1} \subset A_{n}$, pour tout $n \geqslant 0$ et non sur le même ouvert A. Ceci permet d'utiliser une suite b_{n}, avec $b_{n} \in F_{n}\left(A_{n}\right)$. Enfin, la convergence a lieu dans la boule \bar{B}_{0} et non dans le fermé $\bar{W} \subset A$. C'est précisément cette situation que nous allons rencontrer dans l'étude des $E(2)$-suites.

Théorème 2.1. Soit $\left(F_{n}\right)_{n \in N}$ une suite de difféomorphismes de A_{n} dans R^{h+1}, où A_{n} désigne un ouvert de R^{h+1}. On suppose que les composantes $F_{n, j}$,
$0 \leqslant j \leqslant h$, du difféomorphisme F_{n} vérifient les relations:

$$
\begin{equation*}
F_{n, j}=F_{n-1, j+1}, \quad 0 \leqslant j \leqslant h-1, n \geqslant 1, \tag{2.1.1}
\end{equation*}
$$

et que l'on a les inclusions $A_{n} \subset A_{n+1}$, pour tout $n \geqslant 0$. On suppose également que les difféomorphismes Φ_{n}, réciproques des F_{n}, vérifient pour $j \in J$, J ensemble d'indices non vide, $J \subset\{0,1, \ldots, h\}$, les inégalités:

$$
\begin{equation*}
\left|D_{h+1} \Phi_{n, j}\left(F_{n}(\alpha)\right)\right| \leqslant \psi_{n, j} \tag{2.1.2}
\end{equation*}
$$

pour tout élément \propto de A_{n}, où $\psi_{n, j}$ désigne un nombre réel positif, tel que la série $\sum_{m=1}^{\infty} \psi_{m, j}$ converge.

On note pour $l \geqslant 0, \Psi_{l, j}$ la somme

$$
\Psi_{l, j}=\sum_{m=l+1}^{+\infty} \psi_{m, j}, \quad \text { et } \quad \Psi_{l}=\left(\Psi_{l, j}\right)_{0 \leqslant j \leqslant h}
$$

l'élément de $\left(\boldsymbol{R}^{+}\right)^{h+1}$, où, par abus de notation, $\Psi_{l, j}$ est infini pour $j \notin J$. S'il existe, pour tout $n \geqslant 0$, un élément b_{n} de $F_{n}\left(A_{n}\right)$, à coordonnées entières, $b_{n}=\left(a_{n}, \ldots, a_{n+h}\right)$ vérifiant, pour tout $n \geqslant 1$:

$$
\begin{align*}
&\left\|b_{n}-F_{n} \circ \Phi_{n-1}\left(b_{n-1}\right)\right\| \leqslant \frac{1}{2} \quad \text { et } \quad\left[b_{n}, \tilde{b}_{n}\right] \subset F_{n}\left(A_{n}\right), \tag{2.1.3}\\
& \tilde{b}_{n}=F_{n} \circ \Phi_{n-1}\left(b_{n-1}\right),
\end{align*}
$$

alors lélément $\Phi_{n}\left(b_{n}\right)$ appartient à $B_{0}=B\left(\Phi_{0}\left(b_{0}\right), \frac{1}{2} \Psi_{0}\right)$. $\left(B_{0, j}=\boldsymbol{R}\right.$ pour $\left.j \notin J.\right)$
En outre, pour tout $j \in J$, la suite de nombres réels $\left(\Phi_{n, j}\left(b_{n}\right)\right)_{n}$ a pour limite β_{j}, élément de $\bar{B}_{0, j}$ vérifiant l'inégalité:

$$
\left|\beta_{j}-\Phi_{0, j}\left(b_{0}\right)\right| \leqslant \frac{1}{2} \Psi_{0, j} .
$$

Preuve. Supposons définis les éléments b_{m} de $F_{m}\left(A_{m}\right), m=0,1, \ldots$ $\ldots, n-1$. Puisque $b_{n-1} \in F_{n-1}\left(A_{n-1}\right)$, alors $\Phi_{n-1}\left(b_{n-1}\right) \in A_{n-1} \subset A_{n}$. L'élément $\tilde{b}_{n}=F_{n} \circ \Phi_{n-1}\left(b_{n-1}\right)$ vérifie alors:

$$
\begin{equation*}
\Phi_{n}\left(\tilde{b}_{n}\right)=\Phi_{n-1}\left(b_{n-1}\right) \tag{2.1.4}
\end{equation*}
$$

Des égalités (2.1.1) et (2.1.4), on déduit:

$$
\begin{aligned}
& \tilde{b}_{n, j}=F_{n, j}\left[\Phi_{n}\left(\tilde{b}_{n}\right)\right]=F_{n, j}\left[\Phi_{n-1}\left(b_{n-1}\right)\right]=F_{n-1, j+1}\left[\Phi_{n-1}\left(b_{n-1}\right)\right]=b_{n-1, j+1}, \\
& 0 \leqslant j \leqslant h-1 .
\end{aligned}
$$

Comme les composantes de $b_{n-1}=\left(a_{n-1}, \ldots, a_{n-1+h}\right)$ sont des entiers, il en est de même des h premières composantes de \tilde{b}_{n}.

Pour réaliser (2.1.3), il suffit alors qu'il existe un entier a_{n+h} tel que $\left|a_{n+h}-\tilde{b}_{n, h}\right| \leqslant 1 / 2$. En effet, en posant $b_{n}=\left(a_{n}, \ldots, a_{n-1+h}, a_{n+h}\right)$, on aura:

$$
\begin{aligned}
\left\|b_{n}-\tilde{b}_{n}\right\| & =\left\|b_{n}-F_{n} \circ \Phi_{n-1}\left(b_{n-1}\right)\right\|=\left|a_{n+h}-F_{n, h}\left[\Phi_{n-1}\left(b_{n-1}\right)\right]\right| \\
& =\left|a_{n+h}-\tilde{b}_{n, h}\right| \leqslant 1 / 2 .
\end{aligned}
$$

Nous allons montrer que l'élément $\Phi_{n-1}\left(b_{n}\right)$ ainsi défini appartient à

$$
B_{0}=B\left(\Phi_{0}\left(b_{0}\right), \frac{1}{2} \Psi_{0}\right) .
$$

Supposons également vérifiées, pour $0<m \leqslant n-1$, les inclusions:

$$
B_{m}=B\left(\Phi_{m}\left(b_{m}\right), \frac{1}{2} \Psi_{m}\right) \subset B_{m-1} \subset \ldots \subset B_{0} .
$$

Puisque les éléments b_{n} et \tilde{b}_{n} de $F_{n}\left(A_{n}\right)$ ne diffèrent que par leur dernière composante, et grâce à l'inclusion $\left[\boldsymbol{b}_{n},\left(\tilde{b_{n}}\right)\right] \subset F_{n}\left(A_{n}\right)$, le théorème des accroissements finis permet d'écrire, pour $j \in J$:

$$
\begin{equation*}
\left|\Phi_{n, j}\left(b_{n}\right)-\Phi_{n, j}\left(\tilde{b}_{n}\right)\right| \leqslant\left\|b_{n}-\tilde{b}_{n}\right\| \sup _{z \in\left[b_{n}, b_{n}\right]}\left|D_{h+1} \Phi_{n, j}(z)\right| \leqslant \frac{1}{2} \psi_{n, j} \tag{2.1.5}
\end{equation*}
$$

d'après (2.1.2) et (2.1.3).
Soit alors $x=\left(x_{0}, \ldots, x_{h}\right) \in B_{n}=B\left(\Phi_{n}\left(b_{n}\right), \frac{1}{2} \Psi_{n}\right)$.
Pour $j \in J$, on a:

$$
\begin{equation*}
\left|x_{j}-\Phi_{n, j}\left(b_{n}\right)\right|<\frac{1}{2} \Psi_{n, j}=\frac{1}{2} \sum_{m=n+1}^{+\infty} \psi_{n, j} . \tag{2.1.6}
\end{equation*}
$$

Les relations (2.1.5) et (2.1.6) entraînent alors:

$$
\left|x_{j}-\Phi_{n-1, j}\left(b_{n-1}\right)\right|=\left|x_{j}-\Phi_{n, j}\left(\tilde{b}_{n-1}\right)\right|<\frac{1}{2} \Psi_{n-1, j}, \quad j \in J .
$$

On en déduit alors l'inclusion:

$$
B_{n}=B\left(\Phi_{n}\left(b_{n}\right), \frac{1}{2} \Psi_{n}\right) \subset B_{n-1}=B\left(\Phi_{n-1, j}\left(b_{n-1}\right), \frac{1}{2} \Psi_{n-1}\right),
$$

puis:

$$
B_{n} \subset B_{n-1} \subset \ldots \subset B_{0} .
$$

Ecrivons maintenant (2.1.5) sous la forme:

$$
\begin{equation*}
\left|\Phi_{n, j}\left(b_{n}\right)-\Phi_{n-1, j}\left(b_{n-1}\right)\right| \leqslant \frac{1}{2} \psi_{n, j} . \tag{2.1.7}
\end{equation*}
$$

Comme les séries $\left(\psi_{n, j}\right)_{n \in N}$ sont convergentes pour $j \in J$, la suite $\left(\Phi_{n, j}\left(b_{n}\right)\right)_{n \in N}$ est une suite de Cauchy de $B_{0, j}$, donc converge vers un nombre réel β_{j} de $\bar{B}_{0, j}$.

On déduit de (2.1.7) l'inégalité:

$$
\left|\beta_{j}-\Phi_{0, j}\left(b_{0}\right)\right| \leqslant \frac{1}{2} \Psi_{0, j}, \quad j \in J .
$$

Ceci achève la démonstration.
3. "Convergence" des $E(2)$-suites. Le théorème 2.1 montre, qu'étant donné une $E(k)$-suite, on assurera sa "convergence", en imposant des conditions initiales, c'est-à-dire des relations entre les $a_{0}, a_{1}, \ldots, a_{2 k-1}$. C'est l'objet du théorème suivant.

Théorème 3.1. Soit $\left(a_{n}\right)_{n \geqslant 0}$ une $E(2)$-suite définie à partir des entiers a_{0}, a_{1}, a_{2}, a_{3} telle que $a_{0}>0, a_{1}>0, \mathscr{A}_{1}=a_{2} a_{0}-a_{1}^{2}>0$ et telle que l'équation
$X^{2}-\sigma_{0,1} X+\sigma_{0,2}=0$ possède deux racines réelles α_{0} et β_{0} supérieures à 1 et distinctes.

On note τ_{0} la racine réelle positive de l'équation

$$
x^{3} \mathscr{A}_{1}-(x+1) a_{0}=0 .
$$

On suppose vérifiées les inégalités:

$$
\begin{align*}
& \alpha_{0}>1+\tau_{0}+\frac{1}{2 c K}, \quad \beta_{0}>1+\tau_{0}+\frac{1}{2 c K} \tag{3.1.1}\\
& 0<c<\mathscr{A}_{1} / a_{0}, \text { très voisin de } \mathscr{A}_{1} / a_{0}, \\
& 2\left(1+\tau_{0}\right) a_{0} \geqslant a_{1}, \tag{3.1.2}
\end{align*}
$$

$$
\begin{equation*}
\left(1+\tau_{0}\right)^{2}-\sigma_{0,1}\left(1+\tau_{0}\right)+\sigma_{0,2}>\frac{a_{0}}{2 \mathscr{A}_{1} K}\left(1+\tau_{0}\right)+\frac{a_{1}}{2 \mathscr{A}_{1} K}, \tag{3.1.3}
\end{equation*}
$$

$$
\begin{align*}
& \frac{a_{1}}{2 \mathscr{A}_{1} K}<1, \tag{3.1.4}\\
& \frac{a_{0} \mathscr{A}_{2}}{a_{1} \mathscr{A}_{1}}>1,
\end{align*}
$$

où $\mathscr{A}_{2}=D^{2}\left(a_{1}\right)=a_{1} a_{3}-a_{2}^{2} \quad$ et $K=\tau_{0}^{2} /\left(1+2 \tau_{0}\right)$. Alors les équations $X^{2}-\sigma_{n, 1} X+\sigma_{n, 2}=0$ possèdent leurs deux racines, réelles, supérieures à $1, \alpha$ et β, distinctes. On a en outre,

$$
\lim _{n \rightarrow+\infty} \alpha_{n}=\alpha>1 \quad \text { et } \quad \lim _{n \rightarrow+\infty} \beta_{n}=\beta>1 .
$$

La $E(2)$-suite $E\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ est donc "convergente" "réelle".
De plus, l'ensemble des couples (α, β) ainsi obtenus est dense dans (] $1,+\infty[]^{2}$. Si l'on suppose en outre, $\left(\sigma_{0,1}\right)^{2}-4 \sigma_{0,2}>4 \tau_{0}^{2}$, on a également $\alpha \neq \beta$.
(On rappelle que

$$
\begin{aligned}
& \sigma_{n, 1}=\frac{D^{2}\left(a_{n}, \hat{a}_{n+1}, a_{n+2}\right)}{D^{2}\left(a_{n}\right)}=\frac{a_{n+3} a_{n}-a_{n+1} a_{n+2}}{a_{n+2} a_{n}-a_{n+1}^{2}}, \\
& \left.\sigma_{n, 2}=\frac{D^{2}\left(\hat{a}_{n}, a_{n+1}, a_{n+2}\right)}{D^{2}\left(a_{n}\right)}=\frac{\mathscr{A}_{n+2}}{\mathscr{A}_{n+1}}, \quad n \in N .\right)
\end{aligned}
$$

Preuve. Soient F_{n} les applications de \boldsymbol{R}^{4} dans \boldsymbol{R}^{4} définies par:

$$
F_{n}: R^{4} \rightarrow R^{4},
$$

$$
\gamma=(\lambda, \mu, \alpha, \beta) \mapsto\left(\lambda \alpha^{n}+\mu \beta^{n}, \lambda \alpha^{n+1}+\mu \beta^{n+1}, \lambda \alpha^{n+2}+\mu \beta^{n+2}, \lambda \alpha^{n+3}+\mu \beta^{n+3}\right) .
$$

Les F_{n} sont des difféomorphismes sur tout ouvert' Ω_{n} où la matrice jacobienne de F_{n}, dont le déterminant d_{n} est un déterminant de Vandermonde généralisé, est inversible.

On a:

$$
d_{n}=-\lambda \mu(\alpha \beta)^{2 n}(\alpha-\beta)^{4} .
$$

Par suite sur tout ouvert Ω_{n} sur lequel d_{n} est différent de 0 , les F_{n} ont des difféomorphismes réciproques Φ_{n} définis par:

$$
\begin{gathered}
\Phi_{n}: F_{n}\left(\Omega_{n}\right) \rightarrow \Omega_{n}, \\
(x, y, z, t) \mapsto\left(\frac{x \beta_{n}-y}{\alpha_{n}^{n}\left(\beta_{n}-\alpha_{n}\right)}, \frac{x \alpha_{n}-y}{\beta_{n}^{n}\left(\alpha_{n}-\beta_{n}\right)}, \alpha_{n}, \beta_{n}\right)
\end{gathered}
$$

où α_{n} et β_{n} sont racines de l'équation:

$$
X^{2}-\frac{t x-y z}{x z-y^{2}} X+\frac{t y-z^{2}}{x z-y^{2}}=0 .
$$

On a en outre, pour $\gamma \in \Omega_{n}$:

$$
\begin{gathered}
D_{4} \Phi_{n, 1}\left(F_{n}(\gamma)\right)=\frac{(n+2) \alpha-n \beta}{\alpha^{n+1}(\beta-\alpha)^{3}}, \\
D_{4} \Phi_{n, 3}\left(F_{n}(\gamma)\right)=\frac{1}{\lambda \alpha^{n}(\beta-\alpha)^{2}}=\frac{\mu \beta^{n}}{\lambda \mu(\alpha \beta)^{n}(\beta-\alpha)^{2}} .
\end{gathered}
$$

Les formules donnant $D_{4} \Phi_{n .2}\left(F_{n}(\gamma)\right)$ (resp. $D_{4} \Phi_{n, 4}\left(F_{n}(\gamma)\right)$) se déduisent de $D_{4} \Phi_{n, 1}\left(F_{n}(\gamma)\right)\left(\operatorname{resp} . D_{4} \Phi_{n, 3}\left(F_{n}(\gamma)\right)\right.$ par la symétrie évidente $(\lambda, \alpha) \leftrightarrow(\mu, \beta)$. Définissons, pour $n \geqslant 0$:

$$
\begin{aligned}
A_{n}=\left\{(\lambda, \mu, \alpha, \beta) \in R^{4}, \alpha>1+\sigma\right. & \beta>1+\sigma, \sigma>0 \\
& \left.\lambda \mu(\alpha \beta)^{n}(\beta-\alpha)^{2}>c(1+K)^{n}\left|\lambda \alpha^{n}+\mu \beta^{n}\right|\right\}
\end{aligned}
$$

où $0<c<\mathscr{A}_{1} / a_{0}, K=\sigma^{2} /(1+2 \sigma)$, σ étant déterminé ultérieurement.
On voit immédiatement que pour tout $n \geqslant 0$, les F_{n} sont des difféomorphismes sur A_{n}. En outre, $A_{n} \subset A_{n+1}$, pour tout $n \geqslant 0$.

En effet, si $(\lambda, \mu, \alpha, \beta)$ vérifie par exemple $\beta \geqslant \alpha$ et

$$
\lambda \mu(\alpha \beta)^{n}(\beta-\alpha)^{2}>c(1+K)^{n}\left|\lambda \alpha^{n}+\mu \beta^{n}\right|,
$$

$\alpha>1+\sigma, \beta>1+\sigma, \sigma>0$, alors $\lambda \mu>0$ et

$$
\begin{aligned}
\lambda \mu(\alpha \beta)^{n+1}(\beta-\alpha)^{2} & >c(1+K)^{n} \alpha\left|\lambda \alpha^{n} \beta+\mu \beta^{n+1}\right| \\
& >c(1+K)^{n} \alpha\left|\lambda \alpha^{n+1}+\mu \beta^{n+1}\right| \\
& >c(1+K)^{n}(1+\sigma)\left|\lambda \alpha^{n+1}+\mu \beta^{n+1}\right| \\
& >c(1+K)^{n+1}\left|\lambda \alpha^{n+1}+\mu \beta^{n+1}\right|,
\end{aligned}
$$

car $1+\sigma>1+\sigma \frac{1+\sigma}{1+2 \sigma}=1+K$.

Enfin, pour $\gamma \in A_{n}$, on a la majoration:

$$
\left|D_{4} \Phi_{n, 3}\left(F_{n}(\gamma)\right)\right| \leqslant \frac{1}{c(1+K)^{n}}=\psi_{n, 3}
$$

d'où $\Psi_{0,3}=\sum_{m=1}^{\infty} \psi_{m, 3}=1 /(c K)$; de même $\Psi_{0,4}=1 /(c K)$.
Soit $\boldsymbol{b}_{0}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$. La condition $\boldsymbol{b}_{0} \in F_{0}\left(A_{0}\right)$ est réalisée car l'équation $X^{2}-\sigma_{0,1} X+\sigma_{0,2}=0$ possède deux racines réelles supérieures à $1, \alpha_{0}$ et β_{0} vérifiant (3.1.1). Supposons réalisées les conditions $b_{i} \in F_{i}\left(A_{i}\right), 0 \leqslant i \leqslant n-1$, et cherchons si la condition $b_{n} \in F_{n}\left(A_{n}\right)$ est réalisée ($b_{n}=\left(a_{n}, a_{n+1}, a_{n+2}, a_{n+3}\right)$).

Comme la suite (a_{n}) est une $E(2)$-suite, les rationnels $\sigma_{n, 1}$ et $\sigma_{n, 2}$ vérifient les inégalités (*) équivalentes aux inégalités de la définition 1.1:

$$
\left\{\begin{array}{l}
-\frac{1}{2} \frac{a_{n}}{\mathscr{A}_{n+1}}<\sigma_{n, 1}-\sigma_{n-1,1} \leqslant \frac{1}{2} \frac{a_{n}}{\mathscr{A}_{n+1}}, \tag{*}\\
-\frac{1}{2} \frac{a_{n+1}}{\mathscr{A}_{n+1}}<\sigma_{n, 2}-\sigma_{n-1,2} \leqslant \frac{1}{2} \frac{a_{n+1}}{\mathscr{A}_{n+1}} .
\end{array}\right.
$$

On déduit alors des inégalités (*), par sommation:

$$
\begin{equation*}
\sigma_{n, 2}>\sigma_{0,2}-\frac{1}{2}\left(\frac{a_{2}}{\mathscr{A}_{2}}+\ldots+\frac{a_{n+1}}{\mathscr{A}_{n+1}}\right) . \tag{3.1.6}
\end{equation*}
$$

Or:

$$
\left(\frac{\mathscr{A}_{n+1}}{a_{n+1}}\right) /\left(\frac{\mathscr{A}_{n}}{a_{n}}\right)=\frac{\mathscr{A}_{n+1}}{\mathscr{A}_{n}} \frac{a_{n}}{a_{n+1}}=\alpha_{n-1} \beta_{n-1} \frac{a_{n}}{a_{n+1}}=\frac{\sigma_{n-1,2}}{\sigma_{n-1,1}-\sigma_{n-1,2} \frac{a_{n-1}}{a_{n}}},
$$

puisque $a_{n+1}=\sigma_{n-1,1} a_{n}-\sigma_{n-1,2} a_{n-1}$.
Supposons vérifiée par récurrence l'inégalité:

$$
\sigma_{n-1.2} \frac{a_{n-1}}{a_{n}}>1
$$

la condition $\sigma_{0,2} \frac{a_{0}}{a_{1}}>1$ n'est autre que l'hypothèse (3.1.5).
On obtient alors:

$$
\begin{equation*}
\left(\frac{\mathscr{A}_{n+1}}{a_{n+1}}\right) /\left(\frac{\mathscr{A}_{n}}{a_{n}}\right)>\frac{\sigma_{n-1,2}}{\sigma_{n-1,1}-1}=\frac{\alpha_{n-1} \beta_{n-1}}{\alpha_{n-1}+\beta_{n-1}-1}>\frac{(1+\sigma)^{2}}{1+2 \sigma}=1+K>1 . \tag{3.1.7}
\end{equation*}
$$

D'où:

$$
\begin{equation*}
\frac{a_{n+1}}{\mathscr{A}_{n+1}}<\frac{a_{n}}{\mathscr{A}_{n}(1+K)}, \quad \text { ou encore } \sigma_{n-1.2} \frac{a_{n}}{a_{n+1}}>1+K . \tag{3.1.8}
\end{equation*}
$$

En reportant la majoration (3.1.8) dans (3.1.6), il vient:

$$
\begin{aligned}
\sigma_{n, 2} & >\sigma_{0,2}-\frac{1}{2} \frac{a_{2}}{\mathscr{A}_{2}}\left(1+\frac{1}{1+K}+\ldots+\frac{1}{(1+K)^{n-1}}\right) \\
& >\sigma_{0,2}-\frac{1}{2} \frac{a_{1}}{\mathscr{A}_{1} K}>(1+\sigma)^{2}+\frac{1+\sigma}{c K}-\frac{1}{2} \frac{a_{1}}{\mathscr{A}_{1} K} \quad \text { d'après (3.1.1) } \\
& >(1+\sigma)^{2} \quad \text { si } 0<c<\mathscr{A}_{1} / a_{0} \text { et }(3.1 .2) ;
\end{aligned}
$$

d'où:

$$
\begin{equation*}
\sigma_{n, 2}>(1+\sigma)^{2} . \tag{3.1.9}
\end{equation*}
$$

Montrons enfin la relation $\sigma_{n, 2} \frac{a_{n}}{a_{n+1}}>1$, qui assurera la récurrence. On a:

$$
\sigma_{n, 2} \frac{a_{n}}{a_{n+1}}=\frac{\sigma_{n, 2}}{\sigma_{n-1,2}} \sigma_{n-1,2} \frac{a_{n}}{a_{n+1}}>\frac{\sigma_{n, 2}}{\sigma_{n-1,2}}(1+K) \quad \text { d'après (3.1.8). }
$$

On déduit alors de (*):

$$
\sigma_{n, 2}>\sigma_{n-1,2}-\frac{1}{2} \frac{a_{n+1}}{\mathscr{A}_{n+1}}
$$

d'où:

$$
\begin{aligned}
\sigma_{n, 2} \frac{a_{n}}{a_{n+1}} & >\frac{\left(\sigma_{n-1,2}-\frac{1}{2} \frac{a_{n+1}}{\mathscr{A}_{n+1}}\right)(1+K)}{\sigma_{n-1,2}}, \quad \text { d'après (3.1.8), } \\
& >1 \quad \text { si } \sigma_{n-1,2}>\frac{(1+K) a_{n+1}}{2 \mathscr{A}_{n+1} K},
\end{aligned}
$$

ce qui est réalisé si

$$
\sigma_{n-1,2}>\frac{(1+K) a_{n}}{2 \mathscr{A}_{n} K(1+K)}=\frac{a_{n}}{2 \mathscr{A}_{n} K},
$$

grâce à (3.1.8).
Or l'inégalité $\sigma_{n-1,2}=\mathscr{A}_{n+1} / \mathscr{A}_{n}>a_{n} / 2 \mathscr{A}_{n} K \quad$ est équivalente à $a_{n} / 2 \mathscr{A}_{n+1} K<1$. Il suffit donc de montrer cette dernière inégalité.

Mais

$$
\frac{a_{n}}{\mathscr{A}_{n+1}}=\frac{a_{n}}{\mathscr{A}_{n}} \frac{\mathscr{A}_{n}}{\mathscr{A}_{n+1}}<\frac{a_{n}}{\mathscr{A}_{n}}<\frac{a_{1}}{\mathscr{A}_{1}} \frac{1}{(1+K)^{n-1}}, \quad n \geqslant 2, \quad \text { d'après (3.1.8); }
$$

d'où

$$
\frac{a_{n}}{2 \mathscr{A}_{n+1} K}<\frac{a_{1}}{2 \mathscr{A}_{1} K}<1, \quad \text { d'après (3.1.4). }
$$

L’inégalité (3.1.9), à savoir $\sigma_{n, 2}=\mathscr{A}_{n+2} / \mathscr{A}_{n+1}>(1+\sigma)^{2}$, entrâ̂ne, puisque $\mathscr{A}_{1}>0$, et par récurrence, $\mathscr{A}_{n+2}>0$. D'où:

$$
\left(\sigma_{n, 1}\right)^{2}-4 \sigma_{n, 2}=\frac{\left(a_{n} \mathscr{A}_{n+2}-a_{n+2} \mathscr{A}_{n+1}\right)^{2}+4 \mathscr{A}_{n+1}^{2} \mathscr{A}_{n+2}}{a_{n+1}^{2} \mathscr{A}_{n+1}^{2}}>0
$$

Par suite, l'équation $X^{2}-\sigma_{n, 1} X+\sigma_{n, 2}=0$ possède deux racines réelles positives distinctes, l'une d'entre elles étant supérieure à $1+\sigma$, puisque $\sigma_{n, 2}>(1+\sigma)^{2}$. D'après (*):

$$
\begin{aligned}
(1+\sigma)^{2}-\sigma_{n, 1} & (1+\sigma)+\sigma_{n, 2} \\
> & (1+\sigma)^{2}-(1+\sigma)\left[\sigma_{0,1}+\frac{1}{2}\left(\frac{a_{1}}{\mathscr{A}_{2}}+\ldots+\frac{a_{n}}{\mathscr{A}_{n+1}}\right)\right] \\
& \quad+\sigma_{0,2}-\frac{1}{2}\left[\frac{a_{2}}{\mathscr{A}_{2}}+\ldots+\frac{a_{n+1}}{\mathscr{A}_{n+1}}\right] \\
> & (1+\sigma)^{2}-(1+\sigma) \sigma_{0,1}+\sigma_{0,2}-(1+\sigma) \frac{a_{0}}{2 \mathscr{A}_{1} K}-\frac{a_{1}}{2 \mathscr{A}_{1} K}>0,
\end{aligned}
$$

d'après (3.1.3).
Par suite, les deux racines α_{n} et β_{n} sont toutes deux supérieures à $1+\sigma$.
Pour achever de montrer la relation $b_{n} \in F_{n}\left(A_{n}\right)$, il suffit de prouver que $\mathscr{A}_{n+1} / a_{n}>(1+K)^{n} c$.

Or:

$$
\begin{aligned}
\frac{\mathscr{A}_{n+1}}{a_{n}} \frac{a_{n-1}}{\mathscr{A}_{n}} & =\alpha_{n-1} \beta_{n-1} \frac{\lambda_{n-1}\left(\alpha_{n-1}\right)^{n-1}+\mu_{n-1}\left(\beta_{n-1}\right)^{n-1}}{\lambda_{n-1}\left(\alpha_{n-1}\right)^{n}+\mu_{n-1}\left(\beta_{n-1}\right)^{n}} \\
& >\alpha_{n-1}, \quad \text { si par exemple } \beta_{n-1} \geqslant \alpha_{n-1}, \\
& >1+\sigma>1+K .
\end{aligned}
$$

D'où:

$$
\frac{\mathscr{A}_{n+1}}{a_{n}}>(1+K)^{n} \frac{\mathscr{A}_{1}}{a_{0}}>(1+K)^{n} c \quad \text { car } c<\frac{\mathscr{A}_{1}}{a_{0}} .
$$

La démonstration ci-dessus prouvant la relation $b_{n} \in F_{n}\left(A_{n}\right)$ prouve de même les relations $z \in F_{n}\left(A_{n}\right)$, pour tout $z \in\left[b_{n}, \tilde{b}_{n}\right]$. Enfin, étant donné une équation $X^{2}-\sigma_{0,1} X+\sigma_{0,2}=0$ ayant ses deux racines réelles α_{0} et β_{0}, supérieures à 1 , l'existence de $\sigma>0$ tel que:

$$
\alpha>1+\sigma+\frac{1+2 \sigma}{2 c \sigma^{2}} \quad \text { et } \quad \beta>1+\sigma+\frac{1+2 \sigma}{2 c \sigma^{2}},
$$

a lieu pour $\sigma>\tau_{0}$ où τ_{0} est la racine positive de l'équation $x^{3} \mathscr{A}_{1}-(x+1) a_{0}$ $=0$. D'après le théorème 2.1, les suites $\left(\alpha_{n}\right)$ et $\left(\beta_{n}\right)$ tendent vers des limites respcetives $\alpha>1$ et $\beta>1$ vérifiant:

$$
\left|\alpha-\alpha_{0}\right|<\frac{1}{2} \Psi_{0.3}=\frac{a_{0}}{2 \mathscr{A}_{1} K}, \quad\left|\beta-\beta_{0}\right|<\frac{1}{2} \Psi_{0,4}=\frac{a_{0}}{2 \mathscr{A}_{1} K} .
$$

Or, pour $\sigma \geqslant \tau_{0}$, on a

$$
\frac{a_{0}}{2 \mathscr{A}_{1} K}=\frac{a_{0}(1+2 \sigma)}{2 \mathscr{A}_{1} \sigma^{2}}<\frac{a_{0}}{2 \mathscr{A}_{1}} \frac{1+2 \tau_{0}}{\tau_{0}^{2}}<\tau_{0} ;
$$

on en déduit:

$$
\begin{equation*}
\left|\alpha-\alpha_{0}\right|<\tau_{0} \quad \text { et } \quad\left|\beta-\beta_{0}\right|<\tau_{0} . \tag{3.1.10}
\end{equation*}
$$

Comme τ_{0} tend vers 0 avec a_{0} / \mathscr{A}_{1}, au besoin en remplaçant le quadruplet ($a_{0}, a_{1}, a_{2}, a_{3}$) par ($t a_{0}, t a_{1}, t a_{2}, t a_{3}$) avec t entier suffisamment grand, on en déduit que l'ensemble des (α, β) est dense dans ($] 1,+\infty[)^{2}$. On déduit également de (3.1.10) si $\left(\sigma_{0,1}\right)^{2}-4 \sigma_{0,2}>4 \tau_{0}^{2}$, la relation $\alpha \neq \beta$.

Exemples: 1. La $E(2)$-suite $E(2,3,5,9)$ définit la suite de terme général $a_{n}=2^{n}+1$, non "convergente" car $\sigma_{n, 1}=3, \sigma_{n, 2}=2$ mais l'équation $X^{2}-3 X+2=0$ n'a pas ses deux racines de module supérieur à 1 .
2. La $E(2)$-suite $E(1,3,4,2)$ définit la $E(2)$-suite $1,3,4,2,-4,-12$, $-16,-8,16,48,64,32,-64, \ldots$ On a $\sigma_{n, 1}=2, \sigma_{n, 2}=2$. C'est donc une $E(2)$-suite "convergente" "imaginaire" avec α et β points limites complexes, racines de l'équation $X^{2}-2 X+2=0$.
3. La $E(2)$-suite $E(22,44,132,1320)$ vérifie les conditions du théorème 3.1. En effet $\mathscr{A}_{1}=968, \mathscr{A}_{2}=40.656, \sigma_{0.1}=24, \sigma_{0.2}=42, \alpha_{0,1}=1,9004 \ldots$, $\alpha_{0,2}=22,0995 \ldots, \tau_{0}=0,3099 \ldots, K=0,096038 \ldots, 1 /(2 c K)<0,12$.

En outre, la condition $\left(\sigma_{0,1}\right)^{2}-4 \sigma_{0,2}>4 \tau_{0}^{2}$ étant vérifiée, la $E(2)$-suite $E(22,44,132,1320)$ "converge" et son couple limite (α, β) vérifie $\alpha>1, \beta>1$, $\alpha \neq \beta,|\alpha-1,9004 \ldots|<0,3099 \ldots$ et $|\beta-22,0995 \ldots|<0,3099 \ldots$

Bibliographie

[1] M. J. Bertin, Nouvelles aplications d'un théorème de Pisot, Groupe d'étude en théorie analytique des nombres, Publications de l'I.H.P., Paris 1984.
[2] - Généralisation de suites de Pisot et de suites de Boyd, Comptes-rendus de la Conférence internationale de théorie des nombres (Québec, juillet 1987), W. de Gruyter-Editeur.
[3] D. W. Boyd, Some integer sequences related to Pisot sequences, Acta Arith. 34 (1979), 295-305.
[4] Ch. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa 7 (1938), 205-248.
[5] - Répartition modulo 1 des puissances successives des nombres réels, Comment. Math. Helv. 19 (1946-47), 153-160.
[6] - Quelques aspects de la théorie des entiers algébriques, Sém. Math. Sup., Montréal 1963.
[7] Ch. Pisot and R. Salem, Distribution modulo 1 of the powers of real numbers larger than 1, Compositio Math. 16 (1,2) (1964), 164-168.
[8] R. Salem, Algebraic Numbers and Fourier Analysis, Heath Mathematical monographs, Boston 1963.
université p. Et m. Curie
MATHÉMATIQUES U.E.R. 47
4, Place Jussieu
75005 Paris, France

> Reçu le 27.12.1988
> et révisé le 7.7.1989

