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Uniform distribution of zeta zeros; discrepancy
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1. Introduction and statement of results. As in part II of this cycle [2] let us
denote by & = [a,] the positive Toeplitz matrix defined by

ank e_y"yz7 n> lak> 1’

T uls,

1 o Ykt

Sn=; Z e yka
k=1

where 0 <y, <y, <7y, <... denote the positive imaginary parts of the
non-trivial zeros g, = B, + iy, of a fixed Dirichlet L-function corresponding to
a primitive Dirichlet character y (mod g), g = 1. Each y, occurs in this sequence
according to the multiplicity of g,. This matrix defines a certain summation
method and a kind of uniform distribution (mod 1) (matrix method & and
&/ -uniform distribution (mod 1) resp., cf. [5]), which were the subject of study
in part II. The main result proved there states that for every real x # 0 the
sequence xy,, k=1,2,3,..., is &/-uniformly distributed (mod 1). Our goal
now is to pursue some further questions related to this theorem. Following the
usual pattern denote by Dj¥(x) the «/-discrepancy of the sequence (xy,), i.e.

a
Y e ™p—t
nlS, o

0= {xyk} <t

(L.1) D¥(x)= sup

o<1

’

where {u} denotes the fractional part of a real number u.

THEOREM 1. For every real x # 0 there exists a positive constant ¢, = Co(x)
such that

loglogn
logn

2/3
(1.2) D¥(x) < c0< ) for n>=3.

Though this upper estimate is non-trivial, most probably it does not
represent the true order of magnitude of D¥(x). A better estimate is attained
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subject to a kind of density hypothesis. As in part II let us write

R, (x) = Z e Peyn gl 1/2)x ginex

n! k=1
1 2 )
S,(x)=S§ d((e”"" @©_ )= — Z e TRyleines,
n =1

THEOREM 2. Suppose that for every real x # QO there exists a positive
constant ¢, = c¢,(x) such that for every natural n> 2 we have

(13) bl %an(hx)—S.xhx)l <e

h=1

Then there exists a positive ¢, = c,(x) such that

* C2
(1.49) D¥(x) < logn for n=2.

Let us remark that (1.3) postulates, roughly speaking, that the density of
non-trivial L-function zeros lying outside the critical line is “small”. In the
extremal case, when the Generalized Riemann Hypothesis is true, R,(y) = S,(y)
for every real y and natural n and the left-hand side of (1.3) is identically zero. It
is obvious, therefore, that (1.3) is much less stringent than this hypothesis and
one may hope it can be proved by the existing methods.

Estimate (1.4) seems to be the best possible. There are reasons to
believe that for certain x the asymptotic relation of type D¥(x) ~ c/logn holds.
More explicitly, we can put forward the following conjecture.

CoNIECTURE A. For xeR\{0} and n tending to infinity we have

(1.5) D¥(x) = a(x)/logn+o(1/logn),

where

(1.6) a(x) = 1(;:%(arc sin p~192 4 |Arg(1 — x(p*)p~1""2)))

for

(1.7) X = logp, ptq, pprime, a,deZ, d>0, (a,d)=1

2 d
and a(x) =0 otherwise.

Introducing the discrepancy function H,, by the formula

1
(1.8) H,.() = °gs" Y e mp—tlogn, 0<t<l,
"0<lzxzv:}<t

we can state a still more general conjecture.
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CoNIECTURE B. For every real x # 0 we have

(1.9) Tim H, .(t) = Hy 4(t)

n—+ o

uniformly in te[0, 1], where

1
% (Arg(1—x(p~)p V2 e(dr))+ Arg(1 — x (p) p~1*/?))

(L10) Hg.(t) = if x is given by (1.7),
0  otherwise

(e(u) denotes exp(2miu)).

It can easily be seen that Conjecture A follows from Conjecture B; in fact,
a(x) = ”Hm.i”ao = SUPo<r<1 'Hco.x(t)| and “Hn.x"no - ”Hco.x”uo if Hn.x_’Hao.x
uniformly on [0, 1]. Moreover, let us write

1
= [H,.(t)dt
0

o~

and define the normalized discrepancy function H,, as follows:
Hn.x(t) = Hn,x(t)_hn.m 0<t<1.

It can be observed that Conjecture B is equivalent to Conjectures B, and B,
below.

CONIECTURE B,. For every real x #0 we have

lim Hn.x(t) = H~oo.x(t)
uniformly in te[0, 11, where

lo ey
—2P Arg(1—x(p )P e(dt)

Hoo.x(t) = lf X is given by (17)’

0 otherwise.

CONJECTURE B,. For every real x # 0 we have

lim h, ;= hy x,

n—a
where

lo -
—2F Arg(t—1(7)p™"?)
he,x = if x is given by (1.7),

0 otherwise.
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Though we cannot prove any of these conjectures it is possible to
obtain certain partial results. It is evident that the functions H,,, H,.,
H,. . and H_ . belong to the space L™ = L*(0, 1) of essentially bounded,
Lebesgue measurable functions defined on [0, 1]. L* is a Banach space with
the norm

[/l = esssup|f ().

[(ESES
Conjecture B asserts that H,,, n=1,2,..., tends to H, , in the (strong)
topology of L®. Similarly, Conjecture B, postulates the same upon H, .
and H, ., respectively. From elementary functional analysis we know that
L® is the dual space to L!= L!(0, 1), the space of Lebesgue integrable
functions on [0, 1]; every f € L™ defines a unique functional f*e(L')* by the
formula

1
f*@=[fWg@)dt, geL'.
[}

We can endow L® with the weak L'-topology, i.e. the topology with the basic
neighbourhoods of zero defined by
V(gl, csey gyn 8) = {fELm: |f*(g])| < 8, ] = 1’ ceey n}
(gjel', j=1,....,n,e>0).
THEOREM 3. Suppose that for a real x # 0 the condition (1.3) is satisfied.

Then the sequence of functions H,,eL®, n=1,2, ..., tends to H w.x N weak
Lt-topology.

In the following corollaries we assume that both x # 0 and (1.3) is
satisfied.

COROLLARY 1. Suppose that the sequence I-7,,_x, n=1,2,..., is convergent
almost everywhere in [0, 1] to a function f. Then f = H, , almost everywhere.

COROLLARY 2. Suppose that the sequence H,,, n=1,2, ..., is pointwise
convergent to a continuous function f. Then f = H,, , and h, . —h,, , as n— 0.

COROLLARY 3. We have

liminf H, ,(t) < H,, (t) < limsup H, .(t)

n—w n—+ o

for almost all te[0, 1].

COROLLARY 4. Define the normalized discrepancy function of the sequence
XV k=1,2,..., by the formula
H~n,x

D} (x) = Togn

3
[+ ]
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Then
D¥(x) = a(x)/logn+o(1/logn),

1
where o'Z(x)=(;t—gd’iarcsinp""'/2 if x is of the form (1.7) and &(x)=0

otherwise.
COROLLARY 5. Suppose that Conjecture B, is true. Then
D3 (x) = a(x)/logn+o(1/logn), n=2,
where a(x) is defined as in the formulation of Conjecture A.

Theorem 3 and its corollaries strongly support Conjectures A and B,
showing in particular that H, , and H , are the only reasonable candidates
for the limits of the discrepancy functions H,, and H,, respectively.

The foregoing conjectures and results have obvious connections with the
problem of E. Landau who, on the basis of the classical explicit formulae,
wondered about the arithmetical relations between prime numbers and zeros of
the zeta function (cf. [4], §89). As we have already seen the sequences xy,,
k=1, 2, ..., behave differently according as x is of the form (1.7) or not. This
can be considered as a partial answer to Landau’s question. However, the
described relation between primes and zeta zeros seems to be more “diophan-
tine” than “arithmetic” in character. Another approach to Landau’s problem
has been proposed by P. Turan [6].

2. Some auxiliary results.
LEMMA 1 (see [2], Lemma 4). We have

1 el*12
e kaze(ﬂk —-1/2)x < —.

n! lyk—n| = 2vnlogn n

LEMMA 2 (see [2], Lemma 7). For |x| = 1/2,

1 5 (") logp
ittt \/zm(klogp—(x+i))"“

Iklogp—'xl <1/8

For 0 < |x| < 1/2,

R,(x) = +0(e**'n~12]og?n).
R,(x) = O(n~%log?n),
where the implied constant depends on x. Moreover,
_ _ 1 qn —1/2 12
S,=R,0) = > log 2n+0(n log*n).

LeMMA 3 (see [2], Lemma 8). For real o, T, H satisfying 1/2 <o <1,
T>0,0<H<T let us denote by N(o, T, H, x) the number of L(s, x) zeros
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@ = B+iy such that B > o, ly—T| < H. Then for every T>e, H> T**, >0
and a = 1/3 we have
N(o, T, H, y) < H¥1~9/329 1507 T,
LEMMA 4. For |x| < 2logn, n > 2, we have
IR, (x)—S,(x)| <n~"®+|x|>D?logn+|x|n"?*logb>n,

where D is an arbitrary real number such that Dix| < 1.

Proof. Lemma 1 yields

Q1) RM-S,0=— ¥ e et im_1)40(n )

* |yx—n} < 2Vnlogn

2
== y e ™ y}(cosh((B,—1/2)x)— 1)+ O(n~"'8)
R |yi—n| <2Vnlogn
Pr>1/2
1 78
=2x | — e " yrsinh(ux)du+0(n~""°).
(!)- n! h’k—n|<22~/nlogn )

Br>1/2+u

We break the last integral into two integrals I, and I, for which
0 < u < min(1/2, D) and min(1/2, D) < u < 1/2, respectively. Since D|x| < 1
we have

sinh(u|x|]) < u|x] for 0<u<D

and hence,
D

(2.2) II,| < |x|logn fudu < |x|D*logn.
(V]

Furthermore, we have I,=0 for D>1/2. Let 0<D<1/2. Since
e i <e ™" < n!/\/;, we have

1/2

I, <n~ Y2 { N(1/2+u, n, 2, /nlogn, y)sinh (u|x]) du.
D

An application of Lemma 3 gives n~ V2N (1/2+u, n, 2./nlogn, x) < n~%*log"*n
and thus

1/2

I, < | exp(—u(}logn—|x)))dulog™*n
D
1/2
< | exp((—u/4)logn)dulog’> n < n"?*log” > n,
D

which, together with (2.1) and (2.2), ends the proof.
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LEMMA 5. Let F(t) be nondecreasing on [0, 1] with F(0)=0and F(1) =1
and let G(t) satisfy a Lipschitz condition on [0, 1], i.e.

IG()— G )l < M|t —ul
Jor all 0 < t, u < 1. Suppose that G(0) = 0 and G(1) = 1. Then for any positive

integer m

sup 1F()—~ GOl < oo+ z (———)lF(h) )

osr<1

where
1 1
F(h) = {exp(2niht)dF(t) and Gh) = [ exp (2niht) dG(t).
0 0

This is a generalized version of the well-known Erd6s—Turan inequality
proved by H. Niederreiter and W. Philipp [5] (compare also [1]).

3. Proof of Theorems 1 and 2. We apply Lemma 5 to the functions

F(t) = Y e ™p and G@)=t, 0<t<lI.

nlS, o<(mu<t
Then for h > 1,
F(h) = S5,(2nhx)/S, and G(h) =
Hence for m> 1
(3.1) DF(x) < 1+L 3 1lS,,(21zhx)|
m logn , = h

1 1 == 1
< —t— |R (21thx)|+——— Z R, (2mhx)—S§,(2nhx)|
10g" h=1

=1/m+A+B, say.

Let us consider A first. Suppose m < (logn)/(16x|x|). The sum A contains
0,(1) terms of type |[R,(y)] with O < |y| < 1/2. Their total contribution is at
most O, (n~Y2log?n), by Lemma 2. For (4n|x|)"! < h < m we have, using the
same lemma,

Z logp
P™M11 +(klog p—2mhx)?"/?

If p*l < PIXl denote two prime-powers such that

klogp—2nhx] < 1/8 and |KlogP—2nhx|< 1/8,

IR, (2nhx)| < O(n~Y*log?n).

|klog p— Znhxl <1/8
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then
|k log p— K log P| = log (P'X/p¥) > log(1 + p~I¥) » p~I*l 5 ¢~ 2mhixl 5, = 1/8
Hence, there exists at most one number N, = pfsl such that
| +log N, —2nhx| < byn~'/®
with a sufficiently smali b, > 0. Therefore,
) log p
Iklogp — x| < 1/8 \/m [1+4(klog p—2mhx)?|"'?
log

+|/1(e2”""")exp<—§log(1—b n ”“)) < he ™ L exp(—b,n*®)
h

with sufficiently small positive b, and b,. Hence

1 1
— Y a IR, (2mhx)|

logn (an)x))~ 1 <h<m

log (Z e” "+ (log m)exp(—b,n%®)) < (logn)*.

Finally, we get
(3.2) A < (logn)t.
We can now complete the proof of Theorem 2. Taking
m = [min(1, 1/16=|x|)logn],

using (1.3), we get B < (logn)~! and thus an application of (3.1) and (3.2) ends
the proof.

For the proof of Theorem 1 we have to estimate B without the use of any
unproved hypotheses. Put D = 32(loglogn)/logn in Lemma 4. For

h<'(lln1-10gn
S min \ 87 |x| OB, 64n|x| loglogn

it yields

, (loglogn)®

1.5
log n +h(logn)™1>.

IR,(2nhx)—S,(2rhx)| < ,n" "8 +h
Hence for m<n
B e 1 2.5 2 .
log +m( ogn) 7 < logn+m ogn

Now (3.1) and (3.2) imply

B<n "% 4+m

1 o (loglog n)? -

D*
) <7 +logn log?n



The k-functions in multiplicative number theory, I11 207

We make the optimal choice of m by putting

[=oN
m= .
loglogn

This yields D¥(x) < ((loglogn)/logn)*?, as required.

4. Proof of Theorem 3. For a Lebesgue integrable 1-periodic function
f denote by a,(f), meZ, its mth Fourier coefficient:

a,(f) = | f(t)e(—tm)dt.
()

To show Theorem 3 it is sufficient to prove that

(41) lim am(ﬁn.x) = am(ﬁw.x)
for every me Z. This is so because the sequence of norms |H, ., n=1,2,...,
is bounded (Theorem 2) and the set of trigonometric polynomials is dense in
L', 1).

(4.1) is obvious for m = 0. For m # 0 we have

logn w _ 1 1
a,#,,) =a,(H,,) = ' Y e ™y [ e(—mit)dt—logn|te(—mt)dt
n!S, =1 (7iex) )
logn
= 21tiS,,mS"(_2nmx)'

Lemma 4 implies lim,..(S,(»)—R,(»)) =0 for every y # 0. Moreover,
Lemma 2 yields for y #0

—¢(p*)logp if y = klogp, p prime,
limR,(y) =< 2n/p"  keZ\{0}, p4y,

n—ac

0 otherwise.

Hence we get

1 x(p"logp if —2nmx = klogp, p prime,

lim a,(H,.) =  2mim ¥ ke Z\{0}, ptq,

n— oo

0 otherwise.

Suppose that x # 0 is not of the form (1.7). Then lim,_. ,a,(H,.) = 0 for
all meZ and thus H,,—0 in weak L'-topology.
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