On Schertz's class number formula related to elliptic units for some non-Galois extensions

by
Jiro Suzuki (Tokyo)

Introduction. The purpose of this paper is to give a refinement of Schertz's class number formula related to elliptic units. We are going to study some non-Galois cases. Let K / \boldsymbol{Q} be a finite non-Galois extension, k be an imaginary quadratic field, and put $L=K k$. We denote by h the class number of K and by E the unit group of K. Suppose that L / k is an abelian extension. Then Schertz [6] has shown a class number formula related to elliptic units as follows:

Theorem (Schertz). Notations being as above, one can construct a group F of certain elliptic units of K such that

$$
\begin{equation*}
\operatorname{ch} / h_{0}=\left(E: F E_{0}\right) \tag{0.1}
\end{equation*}
$$

with an explicit constant c depending only on the construction of F. Here, h_{0} and E_{0} are the class number and the unit group of the maximal absolutely abelian subfield K_{0} of K, respectively.

In this formula, h_{0} can be known in various ways because K_{0} is absolutely abelian. But the constant c is much more complicated and not so small in [6]. Now, to know the class number h, we shall make c as small and explicit as possible. Then we have the best possible construction of F in Schertz's formula. Namely,

Theorem 1. Notations being as above, suppose that the Galois closure L of K is dihedral over \boldsymbol{Q} and cyclic over k. Let $n=[K: Q]$. Then we can construct a group F of certain elliptic units such that

$$
\begin{gather*}
h=(E: F) \quad \text { if } n \text { is odd }, \tag{0.2}\\
2^{b} h / h_{0}=\left(E: F E_{0}\right) \quad \text { if } n=4 \text { or } 2 l,(2, l)=1 . \tag{0.3}
\end{gather*}
$$

In (0.3), K_{0} is a quadratic field and b is a computable positive integer.
The proof of Theorem 1 is described in Section 3. For that purpose, we prepare some properties of \boldsymbol{Z}-modules in cyclotomic fields in Section 1. Schertz's result above is described in Section 2 precisely. Finally, in Section 4,
we discuss a few more cases where L / \boldsymbol{Q} is not dihedral. In particular, in the case where [$K: Q$] is the product of two primes we prove Theorem 2 which, together with Theorem 1, cempletely give a formula for $n=p q$ with primes p, q. The class number formula (0.1) is previously studied in detail by H . Hayashi [1], K. Nakamula [2], [3], [4] when $n=3,4,5,6$.

1. Preliminaries on cyclotomic fields. Let m be a positive integer, >2. Let $\zeta=\zeta_{m}$ be a primitive m th root of unity and put $Q_{m}=Q(\zeta)$. Let J be the complex conjugation of $\boldsymbol{Q}_{\boldsymbol{m}}$ and let \boldsymbol{Q}_{m}^{+}be the fixed field of $\boldsymbol{Q}_{\boldsymbol{m}}$ for J. Then \boldsymbol{Q}_{m}^{+}is the maximal real subfield of \boldsymbol{Q}_{m}. Let \mathcal{O} (resp. \mathcal{O}^{+}) be the ring of integers of \boldsymbol{Q}_{m} (resp. \boldsymbol{Q}_{m}^{+}), and D_{m} (resp. D_{m}^{+}) be the discriminant of \boldsymbol{Q}_{m} (resp. \boldsymbol{Q}_{m}^{+}). Let N be the norm on $\boldsymbol{Q}_{m} / \boldsymbol{Q}$. Let $\Phi_{m}(X)$ be the m th cyclotomic polynomial:

$$
\Phi_{m}(X)=\prod_{(a, m)=1}\left(X-\zeta_{a}\right) .
$$

Throughout this section, p always denotes a prime number.
Let $n \in \boldsymbol{Q}$. We define the function Φ_{n}^{*} from $\{ \pm 1\}$ to \boldsymbol{Z} according to the value $\Phi_{n}(\pm 1)$ as follows

$$
\Phi_{n}^{*}(\pm 1)= \begin{cases}\Phi_{n}(\pm 1) & \text { if } n>2, n \in Z \\ 1 & \text { if } n \in Q-Z\end{cases}
$$

When $n=1$ or $2, \Phi_{1}^{*}(1)=\Phi_{2}^{*}(-1)=1$ and $\Phi_{1}^{*}(-1)=\Phi_{2}^{*}(1)=2$.
We recall that $m>2$, then $\Phi_{m}(\pm 1)$ is known as follows:

$$
\Phi_{m}(1)= \begin{cases}p, & m=p^{a}, a \geqslant 1 \tag{1.1}\\ 1, & \text { otherwise }\end{cases}
$$

Since $\Phi_{m}(-1)=\Pi\left(-1-\zeta_{a}\right)=\Pi\left(1+\zeta_{a}\right)$,

$$
\Phi_{m}(-1)= \begin{cases}\Phi_{m / 2}(1) & \text { if } m=2(\bmod 4) \\ \Phi_{m}(1) & \text { if } m=0(\bmod 4) \\ \Phi_{2 m}(1) & \text { if } m= \pm 1(\bmod 4)\end{cases}
$$

Therefore,

$$
\Phi_{m}(-1)= \begin{cases}p, & m=2 p^{a}, a \geqslant 1, \tag{1.2}\\ 1, & \text { otherwise } .\end{cases}
$$

Note that $N(\zeta-1)=\Phi_{m}(1)$. We shall only use $\Phi_{m}^{*}(\pm 1)$ as the absolute norm of some ideal $\neq(0)$. When we use $\Phi_{n}^{*}(\pm 1)$ as the meaning of some positive integer, we can use $\Phi_{n}(\pm 1)$ instead of $\Phi_{n}^{*}(\pm 1)$, without confusion.

Let $p=(\zeta-1) \mathcal{O}$. Then p is a prime ideal of \mathcal{O} when m is a prime power, otherwise $p=0$.

The following lemma is known (see Washington [7], Lemma 4.19).

Lemma 1. The discriminant of the maximal real subfield $\boldsymbol{Q}_{\boldsymbol{m}}^{+}$is given by

$$
\left|D_{m}^{+}\right|=\left(m^{\varphi(m)} / \prod_{p \mid m} p^{\varphi(m) /(p-1)} \Phi_{m}(1) \Phi_{m / 2}(1)\right)^{1 / 2}
$$

where p runs through all prime divisors of m.
Here, the factor $\Phi_{m}(1) \Phi_{m / 2}(1)$ equals p or 4 according as m or $m / 2$ is p^{a} or 2^{a}, where p is an odd prime. Otherwise, $\Phi_{m}(1) \Phi_{m / 2}(1)=1$.

Let ζ_{0} be an m th root of unity. We consider a Z-module given by the following formula:

$$
\begin{equation*}
M=\sum_{j=1}^{m-1} Z\left(\left(\zeta^{j}-1\right)+\zeta_{0}\left(\zeta^{-j}-1\right)\right) \tag{1.3}
\end{equation*}
$$

Since $m>2, M \neq 0$. Denote by $d(M)$ the absolute value of the discriminant of the Z-module M. Suppose $\zeta_{0}= \pm 1$.

Lemma 2. Let $\zeta_{0}=1$. Then $M=p \cap \mathcal{O}^{+}$, and

$$
d(M)=\Phi_{m}(1)^{2}\left|D_{m}^{+}\right| .
$$

Proof. Since $\zeta_{0}=1$, we have $M=\sum_{j=1}^{m-1} Z\left(\zeta^{j}+\zeta^{-j}-2\right)$ from (1.3). We shall prove the above in 3 steps.

1. M is an ideal of \mathcal{O}^{+}. Since $\mathcal{O}^{+}=\boldsymbol{Z}\left[\zeta+\zeta^{-1}\right]$ (see [7], Proposition 2.16), the \boldsymbol{Z}-module \boldsymbol{M} is an ideal of \mathcal{O}^{+}. Indeed,

$$
\left(\zeta+\zeta^{-1}\right)\left(\zeta^{j}+\zeta^{-j}-2\right)=\left(\zeta^{j+1}+\zeta^{-j-1}-2\right)+\left(\zeta^{j-1}+\zeta^{-j+1}-2\right)-2\left(\zeta+\zeta^{-1}-2\right)
$$

2. $\boldsymbol{p}^{2} \cap \mathcal{O}^{+} \subset M \subset \boldsymbol{p} \cap \mathcal{O}^{+}$. The inclusion $M \subset \boldsymbol{p} \cap \mathcal{O}^{+}$is clear. Since M is an ideal of \mathcal{O}^{+}and $\left(\zeta+\zeta^{-1}-2\right) \in M$,

$$
\boldsymbol{p}^{2} \cap \mathcal{O}^{+}=(\zeta-1)^{2} \mathcal{O} \cap \mathcal{O}^{+}=\left(\zeta+\zeta^{-1}-2\right) \mathcal{O}^{+} \subset M .
$$

3. $\boldsymbol{p}^{2} \cap \mathcal{O}^{+}=\boldsymbol{p} \cap \mathcal{O}^{+}$. If $\boldsymbol{p}=\mathcal{O}$ then the equality is trivial. Assume $\boldsymbol{p} \neq \mathcal{O}$, then p is the prime ideal which totally ramifies in $\boldsymbol{Q}_{m} / \boldsymbol{Q}$. Let $p^{+}=p \cap \mathcal{O}^{+}$. Since $\left[\boldsymbol{Q}_{m}: \boldsymbol{Q}_{m}^{+}\right]=2, \boldsymbol{p}^{+} \mathcal{O}=\boldsymbol{p}^{2}$. This implies that $\boldsymbol{p}^{2} \cap \mathcal{O}^{+}=\boldsymbol{p} \cap \mathcal{O}^{+}$. Hence $M=p \cap \mathcal{O}^{+}$. In step 3, we saw that $\left[\mathcal{O}^{+}: p \cap \mathcal{O}^{+}\right]=\Phi_{m}(1)$. Using the formula for the discriminant of an ideal of an algebraic number field, the lemma is proved.

Lemma 3. Let $\zeta_{0}=-1$ and let m be even. Then $M=\left(\zeta-\zeta^{-1}\right) \mathcal{O}^{+}$and

$$
d(M)=\Phi_{m / 2}(1) \Phi_{m / 2}(-1)\left|D_{m}^{+}\right| .
$$

Proof. Since $\zeta_{0}=-1$, we have $M=\sum_{j=1}^{m-1} Z\left(\zeta^{j}-\zeta^{-j}\right)$ from (1.3). Further $\mathcal{O}^{+}=Z\left[\zeta+\zeta^{-1}\right]$. For any integer k,

$$
\zeta^{k}-\zeta^{-k}=\left(\zeta-\zeta^{-1}\right)\left(\zeta^{k-1}+\zeta^{-k+1}+\zeta^{k-3}+\zeta^{-k+3}+\ldots\right)+e\left(\zeta-\zeta^{-1}\right)
$$

where $e=1$ or 0 . Therefore $M=\left(\zeta-\zeta^{-1}\right) \mathcal{O}^{+}$. The discriminant of M is given by

$$
d(M)=\left|N\left(\zeta-\zeta^{-1}\right)\right|\left|D_{m}^{+}\right|
$$

and

$$
\left|N\left(\zeta-\zeta^{-1}\right)\right|=\left|N\left(\zeta^{2}-1\right)\right|=|N(\zeta-1) N(\zeta+1)|=\Phi_{m}(1) \Phi_{m}(-1) .
$$

The lemma is proved.
Remark 1. The rank of $p \cap \mathcal{O}^{+}$as \boldsymbol{Z}-module is $\varphi(m) / 2$. The set $\left\{\zeta^{j}+\zeta^{-j}-2 \mid 1 \leqslant j \leqslant \varphi(m) / 2\right\}$ is an independent system over \boldsymbol{Z}. Furthermore the fact that the set is a basis of $\boldsymbol{p} \cap \mathcal{O}^{+}$is proved in a way similar to the proof of the fact that $\left\{\zeta^{j}+\zeta^{-j} \mid 1 \leqslant j \leqslant \varphi(m) / 2\right\}$ is a basis of $Z\left[\zeta^{1}+\zeta^{-1}\right]$. Similarly, $\left\{\zeta^{j}-\zeta^{-j} \mid 1 \leqslant j \leqslant \varphi(m) / 2\right\}$ is a basis of $\left(\zeta-\zeta^{-1}\right) \mathcal{O}$.

Suppose $\zeta_{0} \neq \pm 1$.
Lemma 4. Let ζ_{0} be a primitive d-th root of unity, where d is a divisor of m and $d \neq 1,2$. Then there is a Z-submodule M_{0} of M such that the discriminant of M_{0} on \boldsymbol{Q}_{m}^{+}is given by

$$
d\left(M_{0}\right)=\Phi_{d}(-1)^{\varphi(m) / \varphi(d)} \Phi_{m}(1)^{2}\left|D_{m}^{+}\right| .
$$

Proof. Let $M_{0}=\left(1+\zeta_{0}\right)\left(p \cap \mathcal{O}^{+}\right)$. Then M_{0} is a Z-submodule of M because $\boldsymbol{p} \cap \mathcal{O}^{+}=\sum_{j=1}^{m-1} Z\left(\zeta^{j}+\zeta^{-j}-2\right)$ by Lemma 2 and

$$
\left(1+\zeta_{0}\right)\left(\zeta^{j}+\zeta^{-j}-2\right)=\left(\left(\zeta^{j}-1\right)+\zeta_{0}\left(\zeta^{-j}-1\right)\right)+\left(\left(\zeta^{-j}-1\right)+\zeta_{0}\left(\zeta^{j}-1\right)\right) \in M .
$$

The discriminant of M_{0} is given by $d\left(M_{0}\right)=\left|N\left(1+\zeta_{0}\right)\right|\left|d\left(\boldsymbol{p} \cap \mathcal{O}^{+}\right)\right|$. Since ζ_{0} is a primitive d th root of unity, $\left|N\left(1+\zeta_{0}\right)\right|=\Phi_{d}(-1)^{\varphi(m) / \varphi(d)}$. The lemma is proved.
2. Schertz's results. In this section, we shall describe Schertz's result and give the notations. Using the class field theory, there is a positive integer f such that the ray class field $H_{(f)}$ modulo (f) of k includes L. Let $\mathrm{Cl}(f)$ be the ray class group modulo f of k. The Artin symbol ($c, H_{(f)} / k$) gives an isomorphism from $\mathrm{Cl}(f)$ to the Galois group $G\left(H_{(f)} / k\right)$. Since $f=\bar{f}$, the complex conjugation $c \rightarrow \bar{c}$ is an automorphism of $\mathrm{Cl}(f)$. Using this fact, we can prove the next properties. (But the proof is omitted here, see [6].)

The extension $H_{(f)} / \boldsymbol{Q}$ is Galois, the Galois group $G\left(H_{(f)} / \boldsymbol{Q}\right)$ is the semi-direct product $G\left(H_{(f)} / k\right) \cdot\langle J\rangle$, and $G\left(H_{(f)} / k\right)$ is a normal subgroup of $G\left(H_{(f)} / Q\right)$. Since $J^{-1}\left(c, H_{(f)} / k\right) J=\left(\bar{c}, H_{(f)} / k\right)$, we define c^{J} by \bar{c}. Let U be the subgroup of $\mathrm{Cl}(f)$ corresponding to the field L. Since $[L: K]=2, U^{J}=U$ can be proved. (See [6, II], pp. 67-68.) Therefore L / Q is Galois. There is an element c_{0} of $\mathrm{Cl}(f) \bmod U$ such that $G(L / K)=\left\langle\left(c_{0}, L / Q\right) J\right\rangle$, the Galois group $G(L / Q)$ is the semi-direct product $G(L / k) \cdot\left\langle\left(c_{0}, L / Q\right) J\right\rangle$, and $G(L / k)$ is a normal subgroup of $G(L / Q)$. For the maximal abelian subfield K_{0} of K, the composite $L_{0}=K_{0} k$ is the maximal abelian subfield of L. Let U_{0} be the subgroup of $\mathrm{Cl}(f)$ corresponding to L_{0}. Then $U_{0}=\left\{c^{1-J} \mid c \in \mathrm{Cl}(f)\right\}$. Let $A=\mathrm{Cl}(f) / U$ and X
be the character group of A. Since $U^{J}=U$, we define the action of the automorphism J on X by $\chi^{J}(c)=\chi(\bar{c})$ for any $\chi \in X$. Let $X_{0}=\{\chi \in X \mid$ $\left.\chi^{J}=\chi\right\}$. Then X_{0} is the character group of U_{0}. The classes of characters $W=\left(X-X_{0}\right) / \sim$ are defined by the equivalence relation:

$$
\chi \sim \chi^{\prime} \quad \text { if and only if } \quad\langle\chi\rangle=\left\langle\chi^{\prime}\right\rangle \text { or }\left\langle\chi^{J}\right\rangle=\left\langle\chi^{\prime}\right\rangle .
$$

If L / \boldsymbol{Q} is dihedral, then $\langle\chi\rangle=\left\langle\chi^{\prime}\right\rangle$ is equivalent to $\left\langle\chi^{J}\right\rangle=\left\langle\chi^{\prime}\right\rangle$. Therefore, we assume that $\chi \sim \chi^{\prime}$ satisfies $\langle\chi\rangle=\left\langle\chi^{\prime}\right\rangle$ in this section. Later, we shall treat the case $\left\langle\chi^{J}\right\rangle \neq\langle\chi\rangle$ in Section 4. For any class ω of W, let m_{ω} be the order of an element of ω. We take the subset ω^{\prime} of ω defined by

$$
\omega^{\prime}=\left\{\chi^{j} \mid 1 \leqslant j \leqslant m_{\omega} / 2,\left(j, m_{\omega}\right)=1\right\} .
$$

Then $\omega^{\prime} \cup \omega^{\prime J}=\omega$ and $\omega^{\prime} \cap \omega^{\prime J}=\varnothing$. Put $r_{\omega}=\# \omega^{\prime}=\varphi\left(m_{\omega}\right) / 2$. The rank r of F is found in [6], namely,

$$
\begin{equation*}
r=\sum_{\omega \in W} r_{\omega}+r_{0}, \quad r_{0}=\#\left\{\chi \in X_{0} \mid \chi\left(c_{0}\right)=1, \chi \neq 1\right\} . \tag{2.1}
\end{equation*}
$$

For any class ω, let U_{ω}, A_{ω} and k_{ω} be the following:

$$
\begin{gathered}
U_{\omega}=\{c \in \operatorname{Cl}(f) \mid \chi(c)=1 \text { for any } \chi \in \omega\}, \\
A_{\omega}=\mathrm{Cl}(f) / U_{\omega}
\end{gathered}
$$

k_{ω} is the field corresponding to U_{ω}.
Now, F is constructed by canonical elliptic units $\theta_{\omega}(a)$ of $L\left(a \in A_{\omega}, \omega \in W\right)$. (For elliptic units in the case where $H_{(f)}$ is the ring class field, see [5].) For each class ω of W, we take integers $\lambda_{i a}\left(i=1, \ldots, r_{\omega} ; a \in A_{\omega}\right)$ such that $d_{\omega}=\left|\operatorname{det}\left(v_{i j}\right)\right| \neq 0$ where

$$
v_{i j}=\sum_{a \in A_{\omega}} \lambda_{i a}\left(\left(\chi^{j}(a)-1\right)+\chi^{j}\left(c_{0}\right)\left(\chi^{-j}(a)-1\right)\right) \quad \text { for } i, j=1, \ldots, r_{\omega} .
$$

Let $\theta_{i \omega}=\prod_{a \in A_{\omega}}\left(\theta_{\omega}(a)^{1+\left(c_{0}, L / k\right) J}\right)^{\lambda_{i \alpha}}$. The group F is generated by $\left\{\theta_{i \omega} \mid\right.$ $\left.i=1, \ldots, r_{\omega}, \omega \in W\right\}$. We give the constant c in (0.1) as follows. Let

$$
c_{1}=n^{(r-1) / 2}, \quad c_{2}=n_{0}^{\left(1-r_{0}\right) / 2} \quad \text { and } \quad c_{3}=\prod_{\omega \in W} d_{\omega} m_{\omega}^{r_{\omega}}
$$

where $n_{0}=\left[K_{0}: \boldsymbol{Q}\right]$. Let $c_{4}=c_{1} c_{2} c_{3}$ and $c_{5}=\prod_{\omega \in W} 24 t_{\omega}$, where $t_{\omega}=\min \{t \mid$ $\left.t\left(U_{\omega}: 1\right)=0\left(\bmod h_{k}\right)\right\}, h_{k}$ is the class number of k. The constant c is given by $c=c_{4} c_{5}$.

Remark 2. Let b be the number of classes in W which have even order. Using II, Satz 3.2 in [6], we can take $c_{5}=2^{b}$ by the choice of $\theta_{\omega}(a)$. For the number d_{ω}, Schertz [6] showed that we can take d_{ω} such that $d_{\omega} \neq 0$ and d_{ω} divides $\left(4 m_{\omega}\right)^{\varphi\left(m_{\omega}\right) / 2} \Phi_{m}(1)\left|D_{m}^{+}\right|$. But this is not enough for our purpose.
3. Proof of Theorem 1. First, by Remark 2, we can take $c_{5}=2^{b}$ for some integer b. Therefore, if we prove $c_{4}=1$ then $c=2^{b}$. Since L / k is cyclic, we assume that $X=\langle\chi\rangle$. Since L / Q is dihedral, $\chi^{J}=\chi^{-1}$. Hence, the relation $\left(\chi^{i}\right)^{J}=\chi^{i}$ implies that the order of χ^{i} is 1 or 2 . Therefore,

$$
X_{0}= \begin{cases}\left\{1, \chi^{n / 2}\right\} & \text { if } n \text { is even } \\ \{1\} & \text { if } n \text { is odd }\end{cases}
$$

Therefore, $n_{0}=\left[K_{0}: Q\right]=1$ or 2 . Let

$$
e= \begin{cases}1 & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

Then we have $n_{0}=2^{e}$. For the value of $\chi\left(c_{0}\right)$, the next lemma holds.
Lemma 5. Let notations be as above. Let $n=[L: k]$. Assume that $n=2^{a} u,(2, u)=1$. Then there is an element b of $\mathrm{Cl}(f)$ such that $G\left(L / K^{\prime}\right)$ $=\left\langle\left(c_{0} b^{2}, L / k\right) J\right\rangle$ and $\chi\left(c_{0} b^{2}\right)$ is a 2^{a}-th root of unity. Here, K^{\prime} is a conjugate of K.

Proof. Let $(b, L / k) \in G(L / k)$. Then the conjugate of $\left(c_{0}, L / k\right) J$ by $(b, L / k)$ is $\left(b^{-2} c_{0}, L / k\right)$. Since $(u, 2)=1$, we can choose an element b of $\mathrm{Cl}(f)$ such that $\chi\left(b^{-2} c_{0}\right)$ is a 2^{a}-th root of unity.

By the above lemma, we assume that $\chi\left(c_{0}\right)$ is a 2^{a}-th root of unity. We shall prove the theorem by considering three cases.

Case 1. $\chi\left(c_{0}\right)=1$. Fix a class ω of W. Since $\chi\left(c_{0}\right)=1, \chi^{j}\left(c_{0}\right)=1$ for any j. Therefore $v_{i j}=\sum_{a \in A_{\omega}} \lambda_{i a}\left(\psi^{j}(a)+\psi^{-j}(a)-2\right)$. Put $m=m_{\omega}$ and $r=r_{\omega}$. Since $v_{i j} \in \mathcal{O}^{+}$and $\left\{v_{i j} \mid \psi^{j} \in \omega^{\prime}\right\}$ are all conjugates of $v_{i 1}$ over $\boldsymbol{Q}_{m}^{+} / \boldsymbol{Q}, d_{\omega}=\left|\operatorname{det}\left(v_{i j}\right)\right|$ $=d\left(\left[v_{11}, \ldots, v_{r 1}\right]\right)^{1 / 2}$, where $r=\varphi(m) / 2$. Let $\zeta_{0}=\psi\left(c_{0}\right)$. Then M $=\sum_{j=1}^{m-1} Z\left(\zeta^{j}+\zeta^{-j}-2\right)$. Using Lemmas 1 and 2 , we have

$$
\begin{equation*}
d(M)=\Phi_{m}(1)^{2}\left(m^{\phi(m)} / \prod_{p \mid m} p^{\varphi(m) /(p-1)} \Phi_{m}(1) \Phi_{m / 2}(1)\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

Assume that $\left\{v_{11}, \ldots, v_{r 1}\right\}$ is a basis of M. Then, from (3.1),

$$
\begin{equation*}
d_{\omega}=\Phi_{m}(1)\left(m^{\varphi(m)} / \prod_{p \mid m} p^{\varphi(m) /(p-1)} \Phi_{m}(1) \Phi_{m / 2}(1)\right)^{1 / 4} \tag{3.2}
\end{equation*}
$$

We shall compute the coefficient c_{4}. Since L / k is cyclic, the correspondence between divisors of n and classes of W is one-to-one. So, put $d_{m}=d_{\omega}$. We have $\prod_{\omega \in W} d_{\omega} m_{\omega}^{-r_{\omega}}=\prod_{m \mid n}^{\prime} d_{m} m^{-\varphi(m) / 2}$, where the product is taken over all divisors of n except 1 and 2. From (3.2), we have

$$
\begin{equation*}
\prod_{m \mid n}^{\prime} d_{m} m^{-\varphi(m) / 2}=\prod_{m \mid n}^{\prime} \Phi_{m}(1)^{3 / 4} \prod_{m \mid n}^{\prime}\left(m^{\varphi(m)} \prod_{p \mid m} p^{\varphi(m) /(p-1)} \Phi_{m / 2}(1)\right)^{-1 / 4} . \tag{3.3}
\end{equation*}
$$

For any positive integer n, the formulas

$$
\begin{equation*}
\sum_{m \mid n} \varphi(m)=n, \quad \prod_{m \mid n} \Phi_{m}(1)=n \tag{3.4}
\end{equation*}
$$

are known. By comparison of the index of each prime divisor of n, we obtain

$$
\begin{equation*}
\prod_{m \mid n}\left(m^{\varphi(m)} \prod_{p \mid m} p^{\varphi(m) /(p-1)}\right)=n^{n} . \tag{3.5}
\end{equation*}
$$

Under the factorization of n in Lemma 5, using (1.1),

$$
\begin{equation*}
\prod_{m \mid n} \Phi_{m / 2}(1)=\prod_{m \mid u} \Phi_{m}(1)^{e} \prod_{m \mid 2} \Phi_{m / 2}(1)=(n / 2)^{e} . \tag{3.6}
\end{equation*}
$$

Using (3.3)-(3.6),

$$
\begin{equation*}
\prod_{m \mid n}^{\prime} d_{m} m^{-\varphi(m) / 2}=n^{(3-e-n) / 4} \tag{3.7}
\end{equation*}
$$

Since L / Q is cyclic, using (2.1), the rank r of E is given by

$$
\begin{equation*}
r-r_{0}=\left(\sum_{m \mid n} \varphi(m)-\varphi(2)-\varphi(1)\right) / 2 \tag{3.8}
\end{equation*}
$$

By the assumption on the degree $n, \chi\left(c_{0}\right)=1$ yields that

$$
\begin{cases}r_{0}=0, K_{0}=\boldsymbol{Q} & \text { if } n \text { is odd } \\ r_{0}=1, K_{0} \text { is a real quadratic field } & \text { if } n \text { is even }\end{cases}
$$

We obtain $r_{0}=e$. From (3.4) and (3.8), the rank of E is

$$
r=(n-1-e) / 2
$$

From the definition of the constants c_{1}, c_{2}, c_{3} in Section 2, we have

$$
c_{1}=n^{(r-1) / 2}=n^{(n-3+e) / 4} .
$$

Since $r_{0}=e=0$ or 1 , and $n_{0}=2^{e}$,

$$
c_{2}=2^{e(1-e) / 2}=1
$$

From (3.7), $c_{3}=n^{(3-e-n) / 4}$. Hence $c_{4}=c_{1} c_{2} c_{3}=1$. In this case, the theorem is proved.

Case 2. $\chi\left(c_{0}\right)=-1$. If m_{ω} is odd then d_{ω} is the same as in case 1 . Therefore we shall compare cases 1 and 2 for the value of d_{ω} only in the case where m_{ω} is even. For that purpose, we write $c_{1}^{\prime}, d_{\omega}^{\prime}$ instead of c_{1}, d_{ω} in case 1 and so on. If $(j, n)=1$, then j is odd and $\chi^{j}\left(c_{0}\right)=-1$. Therefore,

$$
v_{i j}=\sum_{a \in A_{\omega}} \lambda_{i a}\left(\psi^{j}(a)-\psi^{-j}(a)\right) \quad \text { and } \quad v_{i j} \in M=\sum_{j=1}^{m-1} Z\left(\zeta^{j}-\zeta^{-j}\right) .
$$

Suppose that $\left\{v_{11}, \ldots, v_{r 1}\right\}$ is a basis of M. Then using Lemma 3,

$$
\begin{equation*}
d_{\omega}=\left(\Phi_{m}(1) \Phi_{m}(-1)\right)^{1 / 2}\left|D_{m}^{+}\right|^{1 / 2} . \tag{3.9}
\end{equation*}
$$

By comparison of (3.2) and (3.9),

$$
d_{\omega}^{\prime} / d_{\omega}=\Phi_{m}(1) /\left(\Phi_{m}(1) \Phi_{m}(-1)\right)^{1 / 2} .
$$

Put $m=2^{a} u,(2, u)=1$, where $a \geqslant 1$. By the assumption of the degree n, if $a \geqslant 2$ then $n=4$ and $\Phi_{m}(1)=\Phi_{m}(-1)=2$. If $a=1$ then $\Phi_{m}(1) \doteq 1$. Therefore,

$$
d_{\omega}^{\prime} / d_{\omega}= \begin{cases}\Phi_{m}(-1)^{-1 / 2} & \text { if } a=1 \\ 1 & \text { otherwise }\end{cases}
$$

Assume $a>1$. Then $d_{\omega}^{\prime} / d_{\omega}=1$. Since $\chi^{2}\left(c_{0}\right)=1, r_{0}=1$. Therefore, $c_{4}=c_{4}^{\prime}=1$. Assume $a=1$. Then $d_{\omega}^{\prime} / d_{\omega}=\Phi_{m}(-1)^{1 / 2}$. Therefore, $\prod_{\omega \in W}\left(d_{\omega}^{\prime} / d_{\omega}\right)=u^{1 / 2}$. Since $r_{0}=0$, the rank $r=r^{\prime}-1$. Then $c_{1}^{\prime} c_{2}^{\prime} / c_{1} c_{2}=(n / 2)^{1 / 2}$. Therefore $c_{4}^{\prime} / c_{4}=1$. In this case, the theorem is proved.

Case 3. $\chi\left(c_{0}\right) \neq \pm 1$. In this case, by the assumption of n, we have $n=4$ and $W=\{\chi\}$. We compute d_{ω} immediately using Lemma 4. Then $d_{\omega}=2^{3 / 2}$. Since $n_{0}=2, r_{0}=0$ and $r=1$. So $c_{4}=1$. Now, the proof of Theorem 1 is complete.

Corollary. Let L be cyclic over k. If the maximal real subfield K of L is non-Galois over \boldsymbol{Q} then

$$
h=2^{b} h_{0}\left(E: F E_{0}\right) .
$$

Proof. Since K is the maximal real subfield of $L, \chi\left(c_{0}\right)=1$. Therefore, the corollary can be proved as in the above proof of case 1.
4. Non-dihedral cases. In this section, we consider the case where $n=p$ or $n=p q$, both p and q are primes, and the case is not included in Theorem 1 . We consider the automorphism τ of order 2 instead of the complex conjugation J on X. When $\left\langle\chi^{\tau}\right\rangle \neq\langle\chi\rangle$, we choose representatives of the class ω of W and give $v_{i j}$'s which are different from those of Section 2. (More details in [6].) If $n=p$, then L has only one character class, therefore, L / Q is dihedral. Suppose $n=p q$. Similarly, if $p=2$ and $q \neq 2$ then L / Q is dihedral. If $p=q=2$ then L / Q is dihedral because $G(L / Q)$ is a non-abelian group of order 8. Suppose that both p and q are odd primes. Then the next theorem holds.

Theorem 2. Let K / Q be non-Galois and suppose the Galois closure L of K is abelian over k. Suppose $n=[K: Q]=p q$ (both p and q are odd primes), and L / Q is not dihedral. Then we can construct a group F of elliptic units such that if $p=q$ then $G(L / k)$ is an abelian group of type (p, p) and,

$$
p^{\left(p^{2}+2 p-3\right) / 4} h / h_{0}=\left(E: F E_{0}\right)
$$

if $p \neq q$ and $K_{0} \neq \boldsymbol{Q}$ then,

$$
2^{(p-1)(q-1) / 2} h / h_{0}=\left(E: F E_{0}\right) .
$$

Proof. In both cases above, the character group X is the direct product $\langle\chi\rangle \times\langle\psi\rangle$ where χ and ψ are the characters of order p and q, respectively. Since $\tau^{2}=1$ and L / Q is not abelian, we assume that $\psi^{\tau} \neq \psi^{-1}$. We denote by $\langle\psi\rangle^{*}$ the subset of $\langle\psi\rangle$ whose element has order m where m is the order of ψ. Let $p=q$. Then we have two cases: (1) $\chi^{\tau}=\chi^{-1}$, (2) $\chi^{\tau}=\chi$.

Case 1: W has $p+1$ classes $\langle\chi\rangle^{*}$ and $\left\langle\chi^{i} \psi\right\rangle^{*}(i=1, \ldots, p)$. In this case, the construction of F is the same as in Theorem 1. For any class ω, $d_{\omega}=p^{(p+1) / 4}$ and $r_{\omega}=\varphi(p) / 2$. Therefore $c_{4}=p^{\left(p^{2}+2 p-3\right) / 4}$.

Case 2: $X_{0}=\langle\chi\rangle .\left\langle\left(\psi^{i} \chi\right)^{r}\right\rangle=\left\langle\psi^{-i} \chi\right\rangle \neq\left\langle\psi^{i} \chi\right\rangle(i=1, \ldots,(p-1) / 2)$. Then W has $(p+1) / 2$ classes $\langle\psi\rangle^{*}$ and $\left\langle\psi^{i} \chi\right\rangle^{*} \cup\left\langle\psi^{-i} \chi\right\rangle^{*}(i=1, \ldots,(p-1) / 2)$. If $\omega=\langle\psi\rangle^{*}$ then d_{ω} is the same as in case 1 . Otherwise, we take $v_{i j}$ in Section 2 as

$$
v_{i j}=\sum_{a \in A_{\omega}} \lambda_{i a}\left(\phi^{j}(a)-1\right)
$$

for $i, j=1, \ldots, p$ where $\phi \in\left\langle\psi^{k} \chi\right\rangle^{*}$ for some k. Then $m_{\omega}=p$ and d_{ω} is the discriminant of the Z-module constructed by $v_{i j}$'s. We can take $d_{\omega}=\Phi_{p}(1)\left|D_{p}\right|^{1 / 2}$ in [6], I, Satz 1.4. Therefore, $c_{4}=\prod_{\omega \in W} d_{\omega} m_{\omega}^{-r_{\omega}}=p^{\left(p^{2}+2 p-3\right) / 4}$ where the product is taken over all classes of W. In the former case, the theorem is proved.

Let $p \neq q$. Then $X_{0}=\langle\chi\rangle$. Since L / k is cyclic, W has two classes $\langle\chi\rangle^{*}$ and $\langle\chi \psi\rangle^{*}$. If $\omega=\langle\chi\rangle^{*}$ then d_{ω} is the same as in Theorem 1. Let $\boldsymbol{Q}_{p q}^{*}$ be the fixed field of $\boldsymbol{Q}_{p q}$ for τ. Let $\omega=\langle\chi \psi\rangle^{*}$ and M be the \boldsymbol{Z}-module constructed by $v_{i j}$ in Section 2. Then M includes the Z-module $2\left(p \cap \mathcal{O}^{*}\right)$ where \mathcal{O}^{*} is the ring of integers of $Q_{p q}^{*}$. The discriminant D^{*} of \mathcal{O}^{*} is $(p q)^{\varphi(p q) / 2} q^{1-p}$ which is easily shown by examining the ramification of $Q_{p q} / Q_{p q}^{*}$. If we take $v_{i j}$ as a basis of $2\left(p \cap \mathcal{O}^{*}\right)$, then $d_{\omega}=2^{\phi(p q) / 2} \Phi_{p q}(1)\left|D^{*}\right|^{1 / 2}$. Therefore, $c_{4}=2^{(p-1)(q-1) / 2}$. The proof is completed.

Example. Let K_{0} be abelian of degree p. Let $K \supset K_{0}$ and K / Q be non-Galois of degree $p q$. Suppose the Galois closure L of K to be abelian over an imaginary quadratic field k and $[L: k]=p q$. Then L / Q is not dihedral.

References

[1] H. Hayashi, On elliptic units and class number of a certain dihedral extension of degree $2 l$, Acta Arith. 44 (1985), 35-45.
[2] K. Nakamula, Class number calculation of a cubic field from the elliptic unit, J. Reine Angew. Math. 331 (1982), 114-123.
[3] - Class number calculation of a quartic field from the elliptic unit, Acta Arith. 45 (1985), 215-227.
[4] - Class number calculation of a sextic field from the elliptic unit, ibid., 229-247.
[5] R. Schertz, Arithmetische Ausdeutung der Klassenzahlformel für einfach reele kubische Zahlkörper, Abh. Math. Sem. Univ. Hamburg 41 (1974), 221-223.
[6] - Die Klassenzahl der Teilkörper abelscher Erweiterungen imaginär-quadratischer Zahlkörper, I, J. Reine Angew. Math. 295 (1977), 151-168; II, ibid. 296 (1977), 58-79.
[7] L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York-Heidel-berg-Berlin 1982.

[^0]
[^0]: DEPARTMENT OF MATHEMATICS
 SOPHIA UNIVERSITY
 7-1 Kioicho, Chiyoda-ku Tokyo 102, Japan

