On Schertz’s class number formula related to elliptic units
for some non-Galois extensions

by

JIRO SUZUKI (Tokyo)

Introduction. The purpose of this paper is to give a refinement of Schertz’s
class number formula related to elliptic units. We are going to study some
non-Galois cases. Let \(K/Q \) be a finite non-Galois extension, \(k \) be an imaginary
quadratic field, and put \(L = Kk \). We denote by \(h \) the class number of \(K \) and by
\(E \) the unit group of \(K \). Suppose that \(L/k \) is an abelian extension. Then Schertz
[6] has shown a class number formula related to elliptic units as follows:

Theorem (Schertz). Notations being as above, one can construct a group
\(F \) of certain elliptic units of \(K \) such that

\[
ch/h_0 = (E:FE_0)
\]

with an explicit constant \(c \) depending only on the construction of \(F \). Here, \(h_0 \) and
\(E_0 \) are the class number and the unit group of the maximal absolutely abelian
subfield \(K_0 \) of \(K \), respectively.

In this formula, \(h_0 \) can be known in various ways because \(K_0 \) is absolutely
abelian. But the constant \(c \) is much more complicated and not so small in [6].
Now, to know the class number \(h \), we shall make \(c \) as small and explicit as
possible. Then we have the best possible construction of \(F \) in Schertz’s formula.
Namely,

Theorem 1. Notations being as above, suppose that the Galois closure \(L \) of
\(K \) is dihedral over \(Q \) and cyclic over \(k \). Let \(n = [K:Q] \). Then we can construct
a group \(F \) of certain elliptic units such that

\[
h = (E:F) \quad \text{if } n \text{ is odd,}
\]

\[
2^b h/h_0 = (E:FE_0) \quad \text{if } n = 4 \text{ or } 2l, \ (2, l) = 1.
\]

In (0.3), \(K_0 \) is a quadratic field and \(b \) is a computable positive integer.

The proof of Theorem 1 is described in Section 3. For that purpose, we
prepare some properties of \(Z \)-modules in cyclotomic fields in Section 1. Schertz’s result above is described in Section 2 precisely. Finally, in Section 4,
we discuss a few more cases where L/Q is not dihedral. In particular, in the case where $[K:Q]$ is the product of two primes we prove Theorem 2 which, together with Theorem 1, completely give a formula for $n = pq$ with primes p, q. The class number formula (0.1) is previously studied in detail by H. Hayashi [1], K. Nakamura [2], [3], [4] when $n = 3, 4, 5, 6$.

1. Preliminaries on cyclotomic fields. Let m be a positive integer, > 2. Let $\zeta = \zeta_m$ be a primitive mth root of unity and put $Q_m = Q(\zeta)$. Let J be the complex conjugation of Q_m and let Q_m^+ be the fixed field of Q_m for J. Then Q_m^+ is the maximal real subfield of Q_m. Let O (resp. O^+) be the ring of integers of Q_m (resp. Q_m^+), and D_m (resp. D_m^+) be the discriminant of Q_m (resp. Q_m^+). Let N be the norm on Q_m/Q. Let $\Phi_m(X)$ be the mth cyclotomic polynomial:

$$\Phi_m(X) = \prod_{(a,m)=1} (X - \zeta_a).$$

Throughout this section, p always denotes a prime number.

Let $n \in Q$. We define the function Φ^*_n from $\{\pm 1\}$ to Z according to the value $\Phi_n(\pm 1)$ as follows

$$\Phi^*_n(\pm 1) = \begin{cases} \Phi_n(\pm 1) & \text{if } n > 2, n \in Z, \\ 1 & \text{if } n \in Q - Z. \end{cases}$$

When $n = 1$ or 2, $\Phi^*_1(1) = \Phi^*_2(1) = 1$ and $\Phi^*_1(-1) = \Phi^*_2(1) = 2$.

We recall that $m > 2$, then $\Phi_m(\pm 1)$ is known as follows:

$$(1.1) \quad \Phi_m(1) = \begin{cases} p, & m = p^a, \ a \geq 1, \\ 1, & \text{otherwise}. \end{cases}$$

Since $\Phi_m(-1) = \prod (-1 - \zeta_a) = \prod (1 + \zeta_a)$,

$$\Phi_m(-1) = \begin{cases} \Phi_{m/2}(1) & \text{if } m = 2(\text{mod } 4), \\ \Phi_m(1) & \text{if } m = 0(\text{mod } 4), \\ \Phi_{2m}(1) & \text{if } m = \pm 1(\text{mod } 4). \end{cases}$$

Therefore,

$$(1.2) \quad \Phi_m(-1) = \begin{cases} p, & m = 2p^a, \ a \geq 1, \\ 1, & \text{otherwise}. \end{cases}$$

Note that $N(\zeta - 1) = \Phi_m(1)$. We shall only use $\Phi^*_n(\pm 1)$ as the absolute norm of some ideal $\neq (0)$. When we use $\Phi^*_n(\pm 1)$ as the meaning of some positive integer, we can use $\Phi_n(\pm 1)$ instead of $\Phi^*_n(\pm 1)$, without confusion.

Let $p = (\zeta - 1)O$. Then p is a prime ideal of O when m is a prime power, otherwise $p = O$.

The following lemma is known (see Washington [7], Lemma 4.19).
Lemma 1. The discriminant of the maximal real subfield Q^+_m is given by

$$|D^+_m| = (m^{\phi(m)}) \prod_{p \mid m} p^{\phi(m)/(p-1)} \Phi_m(1) \Phi_{m/2}(1)^{1/2},$$

where p runs through all prime divisors of m.

Here, the factor $\Phi_m(1) \Phi_{m/2}(1)$ equals p or 4 according as m or $m/2$ is p^a or 2^a, where p is an odd prime. Otherwise, $\Phi_m(1) \Phi_{m/2}(1) = 1$.

Let ζ_0 be an mth root of unity. We consider a Z-module given by the following formula:

$$M = \sum_{j=1}^{m-1} Z((\zeta^j - 1) + \zeta_0 (\zeta^{-j} - 1)).$$

Since $m > 2$, $M \neq 0$. Denote by $d(M)$ the absolute value of the discriminant of the Z-module M. Suppose $\zeta_0 = \pm 1$.

Lemma 2. Let $\zeta_0 = 1$. Then $M = p \cap O^+$, and

$$d(M) = \Phi_m(1)^2 |D^+_m|.$$

Proof. Since $\zeta_0 = 1$, we have $M = \sum_{j=1}^{m-1} Z(\zeta^j + \zeta^{-j} - 2)$ from (1.3). We shall prove the above in 3 steps.

1. M is an ideal of O^+. Since $O^+ = Z[\zeta + \zeta^{-1}]$ (see [7], Proposition 2.16), the Z-module M is an ideal of O^+. Indeed,

$$(\zeta + \zeta^{-1})(\zeta^j + \zeta^{-j} - 2) = (\zeta^{j+1} + \zeta^{-j+1} - 2) + (\zeta^{j-1} + \zeta^{-j-1} - 2) - 2(\zeta + \zeta^{-1} - 2).$$

2. $p^2 \cap O^+ \subseteq M \subseteq p \cap O^+$. The inclusion $M \subseteq p \cap O^+$ is clear. Since M is an ideal of O^+ and $(\zeta + \zeta^{-1} - 2) \in M$,

$$p^2 \cap O^+ = (\zeta - 1)^2 O \cap O^+ = (\zeta + \zeta^{-1} - 2) O^+ \subseteq M.$$

3. $p^2 \cap O^+ = p \cap O^+$. If $p = O$ then the equality is trivial. Assume $p \neq O$, then p is the prime ideal which totally ramifies in Q_m/Q. Let $p^+ = p \cap O^+$. Since $[Q_m : Q^+_m] = 2$, $p^+ O = p^2$. This implies that $p^2 \cap O^+ = p \cap O^+$. Hence $M = p \cap O^+$. In step 3, we saw that $[O^+ : p \cap O^+] = \Phi_m(1)$. Using the formula for the discriminant of an ideal of an algebraic number field, the lemma is proved.

Lemma 3. Let $\zeta_0 = -1$ and let m be even. Then $M = (\zeta - \zeta^{-1}) O^+$ and

$$d(M) = \Phi_{m/2}(1) \Phi_{m/2}(-1) |D^+_m|.$$
where \(e = 1 \) or \(0 \). Therefore \(M = (\zeta - \zeta^{-1})\mathcal{O}^+ \). The discriminant of \(M \) is given by

\[
d(M) = |N(\zeta - \zeta^{-1})| |D_m^+|,
\]

and

\[
|N(\zeta - \zeta^{-1})| = |N(\zeta^2 - 1)| = |N(\zeta - 1)N(\zeta + 1)| = \Phi_m(1)\Phi_m(-1).
\]

The lemma is proved.

Remark 1. The rank of \(p \cap \mathcal{O}^+ \) as \(\mathbb{Z} \)-module is \(\varphi(m)/2 \). The set \(\{\zeta^j + \zeta^{-j} - 2\mid 1 \leq j \leq \varphi(m)/2\} \) is an independent system over \(\mathbb{Z} \). Furthermore the fact that the set is a basis of \(p \cap \mathcal{O}^+ \) is proved in a way similar to the proof of the fact that \(\{\zeta^j + \zeta^{-j}\mid 0 < j < \varphi(m)/2\} \) is a basis of \(\mathbb{Z}[\zeta^{1/2}, \zeta^{-1}] \). Similarly, \(\{\zeta^j - \zeta^{-j}\mid 1 \leq j \leq \varphi(m)/2\} \) is a basis of \((\zeta - \zeta^{-1})\mathcal{O} \).

Suppose \(\zeta_0 \neq \pm 1 \).

Lemma 4. Let \(\zeta_0 \) be a primitive \(d \)-th root of unity, where \(d \) is a divisor of \(m \) and \(d \neq 1, 2 \). Then there is a \(\mathbb{Z} \)-submodule \(M_0 \) of \(M \) such that the discriminant of \(M_0 \) on \(Q_m^+ \) is given by

\[
d(M_0) = \Phi_d(-1)^{\varphi(m)/\varphi(d)}\Phi_m(1)^2 |D_m^+|.
\]

Proof. Let \(M_0 = (1 + \zeta_0)(p \cap \mathcal{O}^+) \). Then \(M_0 \) is a \(\mathbb{Z} \)-submodule of \(M \) because \(p \cap \mathcal{O}^+ = \sum_{i=1}^{\varphi(m)/2} \mathbb{Z}(\zeta^i + \zeta^{-i} - 2) \) by Lemma 2 and

\[
(1 + \zeta_0)(\zeta^i + \zeta^{-i} - 2) = (\zeta^i - 1 + \zeta_0(\zeta^{-i} - 1)) + (\zeta^{-i} - 1 + \zeta_0(\zeta^{-i} - 1)) \in M.
\]

The discriminant of \(M_0 \) is given by \(d(M_0) = |N(1 + \zeta_0)| |d(p \cap \mathcal{O}^+)\). Since \(\zeta_0 \) is a primitive \(d \)-th root of unity, \(|N(1 + \zeta_0)| = \Phi_d(-1)^{\varphi(m)/\varphi(d)} \). The lemma is proved.

2. Schertz's results. In this section, we shall describe Schertz's result and give the notations. Using the class field theory, there is a positive integer \(f \) such that the ray class field \(\mathcal{H}(f) \) modulo \(f \) includes \(L \). Let \(\mathcal{C}(f) \) be the ray class group modulo \(f \) of \(k \). The Artin symbol \((c, \mathcal{H}(f)/k) \) gives an isomorphism from \(\mathcal{C}(f) \) to the Galois group \(G(\mathcal{H}(f)/k) \). Since \(f = \tilde{f} \), the complex conjugation \(c \rightarrow \bar{c} \) is an automorphism of \(\mathcal{C}(f) \). Using this fact, we can prove the next properties. (But the proof is omitted here, see [6].)

The extension \(\mathcal{H}(f)/\mathbb{Q} \) is Galois, the Galois group \(G(\mathcal{H}(f)/\mathbb{Q}) \) is the semi-direct product \(G(\mathcal{H}(f)/k) \cdot \langle J \rangle \), and \(G(\mathcal{H}(f)/k) \) is a normal subgroup of \(G(\mathcal{H}(f)/\mathbb{Q}) \). Since \(J^{-1}(c, \mathcal{H}(f)/k) = (\bar{c}, \mathcal{H}(f)/k) \), we define \(c^J \) by \(\bar{c} \). Let \(U \) be the subgroup of \(\mathcal{C}(f) \) corresponding to the field \(L \). Since \([L : K] = 2 \), \(U^J = U \) can be proved. (See [6, II], pp. 67–68.) Therefore \(L/\mathbb{Q} \) is Galois. There is an element \(c_0 \) of \(\mathcal{C}(f) \mod U \) such that \(G(L/K) = \langle c_0, L/\mathbb{Q} \rangle J \), the Galois group \(G(L/\mathbb{Q}) \) is the semi-direct product \(G(L/k) \cdot \langle c_0, L/\mathbb{Q} \rangle J \), and \(G(L/k) \) is a normal subgroup of \(G(L/\mathbb{Q}) \). For the maximal abelian subfield \(K_0 \) of \(K \), the composite \(L_0 = K_0k \) is the maximal abelian subfield of \(L \). Let \(U_0 \) be the subgroup of \(\mathcal{C}(f) \) corresponding to \(L_0 \). Then \(U_0 = \{ c^J \mid c \in \mathcal{C}(f) \} \). Let \(A = \mathcal{C}(f)/U \) and \(X \).
be the character group of A. Since $U' = U$, we define the action of the automorphism J on X by $\chi'(c) = \chi(c)$ for any $\chi \in X$. Let $X_0 = \{ \chi \in X | \chi' = \chi \}$. Then X_0 is the character group of U_0. The classes of characters $W = (X - X_0)/\sim$ are defined by the equivalence relation:

$$\chi \sim \chi' \quad \text{if and only if} \quad \langle \chi \rangle = \langle \chi' \rangle \quad \text{or} \quad \langle \chi' \rangle = \langle \chi' \rangle.$$

If L/Q is dihedral, then $\langle \chi \rangle = \langle \chi' \rangle$ is equivalent to $\langle \chi' \rangle = \langle \chi' \rangle$. Therefore, we assume that $\chi \sim \chi'$ satisfies $\langle \chi \rangle = \langle \chi' \rangle$ in this section. Later, we shall treat the case $\langle \chi' \rangle \neq \langle \chi \rangle$ in Section 4. For any class ω of W, let m_ω be the order of an element of ω. We take the subset ω' of ω defined by

$$\omega' = \{ \chi' | 1 \leq j \leq m_\omega/2, (j, m_\omega) = 1 \}.$$

Then $\omega' \cap \omega' = \omega$ and $\omega' \cap \omega' = \emptyset$. Put $r_\omega = \# \omega' = \varphi(m_\omega)/2$. The rank r of F is found in [6], namely,

$$(2.1) \quad r = \sum_{\omega \in W} r_\omega + r_0, \quad r_0 = \# \{ \chi \in X_0 | \chi(c_0) = 1, \chi \neq 1 \}.$$

For any class ω, let U_ω, A_ω, and k_ω be the following:

$$U_\omega = \{ c \in \text{Cl}(f) | \chi(c) = 1 \text{ for any } \chi \in \omega \},$$

$$A_\omega = \text{Cl}(f)/U_\omega,$$

$$k_\omega \text{ is the field corresponding to } U_\omega.$$

Now, F is constructed by canonical elliptic units $\theta_\omega(a)$ of $L (a \in A_\omega, \omega \in W)$. (For elliptic units in the case where $H_{(f)}$ is the ring class field, see [5].) For each class ω of W, we take integers $\lambda_i (a) (i = 1, \ldots, r_\omega, a \in A_\omega)$ such that $d_\omega = |\det(v_{ij})| \neq 0$ where

$$v_{ij} = \sum_{a \in A_\omega} \lambda_i ((\chi'(a) - 1) + \chi'(c_0)(\chi^{-j}(a) - 1)) \quad \text{for } i, j = 1, \ldots, r_\omega.$$

Let $\theta_{i\omega} = \prod_{a \in A_\omega} (\theta_\omega(a))^{1+(c_0L/k)^j} \lambda_i a$. The group F is generated by $\{ \theta_{i\omega} | i = 1, \ldots, r_\omega, \omega \in W \}$. We give the constant c in (0.1) as follows. Let

$$c_1 = n^{(r-1)/2}, \quad c_2 = n_0^{(1-r_0)/2} \quad \text{and} \quad c_3 = \prod_{\omega \in W} d_\omega m_\omega$$

where $n_0 = [K_0 : Q]$. Let $c_4 = c_1 c_2 c_3$ and $c_5 = \prod_{\omega \in W} 24 t_\omega$, where $t_\omega = \min \{ t | t(U_\omega : 1) = 0 (\text{mod } h_k) \}$, h_k is the class number of k. The constant c is given by

$$c = c_4 c_5.$$

Remark 2. Let b be the number of classes in W which have even order. Using II, Satz 3.2 in [6], we can take $c_5 = 2^b$ by the choice of $\theta_\omega(a)$. For the number d_ω, Schertz [6] showed that we can take d_ω such that $d_\omega \neq 0$ and d_ω divides $(4m_\omega)^{\varphi(m_\omega)/2} \Phi_m(1)|D_m^+|$. But this is not enough for our purpose.
3. Proof of Theorem 1. First, by Remark 2, we can take $c_5 = 2^b$ for some integer b. Therefore, if we prove $c_4 = 1$ then $c = 2^b$. Since L/k is cyclic, we assume that $X = \langle \chi \rangle$. Since L/Q is dihedral, $\chi' = \chi^{-1}$. Hence, the relation $(\chi')^2 = \chi$ implies that the order of χ' is 1 or 2. Therefore,
\[X_0 = \begin{cases} \{1, \chi^{n/2}\} & \text{if } n \text{ is even}, \\ \{1\} & \text{if } n \text{ is odd}. \end{cases} \]

Therefore, $n_0 = [K_0:Q] = 1$ or 2. Let
\[e = \begin{cases} 1 & \text{if } n \text{ is even}, \\ 0 & \text{if } n \text{ is odd}. \end{cases} \]

Then we have $n_0 = 2^e$. For the value of $\chi(c_0)$, the next lemma holds.

Lemma 5. Let notations be as above. Let $n = [L:k]$. Assume that $n = 2^a u$, $(2, u) = 1$. Then there is an element b of $\text{Cl}(f)$ such that $G(L/K') = \langle c_0 b^2, L/k \rangle$ and $\chi(c_0 b^2)$ is a 2^a-th root of unity. Here, K' is a conjugate of K.

Proof. Let $(b, L/k) \in G(L/k)$. Then the conjugate of $(c_0, L/k)$ by $(b, L/k)$ is $(b^{-2} c_0, L/k)$. Since $(u, 2) = 1$, we can choose an element b of $\text{Cl}(f)$ such that $\chi(b^{-2} c_0)$ is a 2^a-th root of unity.

By the above lemma, we assume that $\chi(c_0)$ is a 2^a-th root of unity. We shall prove the theorem by considering three cases.

Case 1. $\chi(c_0) = 1$. Fix a class ω of W. Since $\chi(c_0) = 1$, $\chi'(c_0) = 1$ for any j. Therefore $v_{ij} = \sum_{\omega \in \Lambda_\omega} \lambda_{ij} (\psi^{j}(a) + \psi^{-j}(a) - 2)$. Put $m = m_\omega$ and $r = r_\omega$. Since $v_{ij} \in \mathcal{O}^+$ and $\{v_{ij} \mid \psi_j \in \omega\}$ are all conjugates of v_{i1} over Q^-_{m}/Q, $d_\omega = |\det(v_{ij})| = d((v_{i1}, \ldots, v_{r1}))^{1/2}$, where $r = \varphi(m)/2$. Let $\zeta_0 = \psi(c_0)$. Then $M = \sum_{j=1}^{m-1} Z(\zeta_j + \zeta_j - 2)$. Using Lemmas 1 and 2, we have
\[(3.1) \quad d(M) = \Phi_m(1)^2 (m^{\varphi(m)} / \prod_{p|m} p^{\varphi(m)/(p-1)} \Phi_m(1) \Phi_{m/2}(1))^{1/2}. \]

Assume that $\{v_{i1}, \ldots, v_{r1}\}$ is a basis of M. Then, from (3.1),
\[(3.2) \quad d_\omega = \Phi_m(1) (m^{\varphi(m)} / \prod_{p|m} p^{\varphi(m)/(p-1)} \Phi_m(1) \Phi_{m/2}(1))^{1/4}. \]

We shall compute the coefficient c_4. Since L/k is cyclic, the correspondence between divisors of n and classes of W is one-to-one. So, put $d_m = d_\omega$. We have $\prod_{\omega \in \mathcal{W}} d_\omega m_\omega^{-r_\omega} = \prod_{m|n} d_m m_{-\varphi(m)/2}$, where the product is taken over all divisors of n except 1 and 2. From (3.2), we have
\[(3.3) \quad \prod_{m|n} d_m m_{-\varphi(m)/2} = \prod_{m|n} \Phi_m(1)^{3/4} \prod_{m|n} (m_\varphi(m)^{\varphi(m)} / \prod_{p|m} p^{\varphi(m)/(p-1)} \Phi_m(1))^{-1/4}. \]

For any positive integer n, the formulas
\[(3.4) \quad \sum_{m|n} \varphi(m) = n, \quad \prod_{m|n} \Phi_m(1) = n \]
are known. By comparison of the index of each prime divisor of \(n \), we obtain
\[
\prod_{m | n} \left(n^{\varphi(m)} \prod_{p | m} p^{\varphi(m)/(p-1)} \right) = n^r.
\]

Under the factorization of \(n \) in Lemma 5, using (1.1),
\[
\prod_{m | n} \Phi_{m/2}(1) = \prod_{m | u} \Phi_m(1)^e \prod_{m | 2} \Phi_{m/2}(1) = (n/2)^e.
\]

Using (3.3)–(3.6),
\[
\prod_{m | n} d_m m^{-\varphi(m)/2} = n^{(3-e-n)/4}.
\]

Since \(L/Q \) is cyclic, using (2.1), the rank \(r \) of \(E \) is given by
\[
r - r_0 = \left(\sum_{m | n} \varphi(m) - \varphi(2) - \varphi(1) \right)/2.
\]

By the assumption on the degree \(n \), \(\chi(c_0) = 1 \) yields that
\[
\begin{cases}
 r_0 = 0, \ K_0 = Q & \text{if } n \text{ is odd}, \\
 r_0 = 1, \ K_0 \text{ is a real quadratic field} & \text{if } n \text{ is even}.
\end{cases}
\]

We obtain \(r_0 = e \). From (3.4) and (3.8), the rank of \(E \) is
\[
r = (n - 1 - e)/2.
\]

From the definition of the constants \(c_1, c_2, c_3 \) in Section 2, we have
\[
c_1 = n^{(r-1)/2} = n^{(n-3+e)/4}.
\]

Since \(r_0 = e = 0 \) or \(1 \), and \(n_0 = 2^e \),
\[
c_2 = 2^{(1-e)/2} = 1.
\]

From (3.7), \(c_3 = n^{(3-e-n)/4} \). Hence \(c_4 = c_1 c_2 c_3 = 1 \). In this case, the theorem is proved.

Case 2. \(\chi(c_0) = -1 \). If \(m_\omega \) is odd then \(d_\omega \) is the same as in case 1. Therefore we shall compare cases 1 and 2 for the value of \(d_\omega \) only in the case where \(m_\omega \) is even. For that purpose, we write \(c_1', d_\omega' \) instead of \(c_1, d_\omega \) in case 1 and so on. If \((j, n) = 1 \), then \(j \) is odd and \(\chi'(c_0) = -1 \). Therefore,
\[
v_{ij} = \sum_{\alpha \in A_\omega} \lambda_{\alpha} (\psi_j(\alpha) - \psi^{-j}(\alpha)) \quad \text{and} \quad v_{ij} \in M = \sum_{j=1}^{m-1} Z(\zeta^j - \zeta^{-j}).
\]

Suppose that \(\{v_{11}, \ldots, v_{r_1}\} \) is a basis of \(M \). Then using Lemma 3,
\[
d_\omega = (\Phi_m(1) \Phi_m(-1))^{1/2} |D_m^+|^{1/2}.
\]

By comparison of (3.2) and (3.9),
\[
d_\omega'/d_\omega = \Phi_m(1)/\Phi_m(1) \Phi_m(-1)^{1/2}.
\]
Put \(m = 2^a u, (2, u) = 1 \), where \(a \geq 1 \). By the assumption of the degree \(n \), if \(a \geq 2 \) then \(n = 4 \) and \(\Phi_m(1) = \Phi_m(-1) = 2 \). If \(a = 1 \) then \(\Phi_m(1) = 1 \). Therefore,

\[
d'_\omega/d_\omega = \begin{cases} 1 \Phi_m(-1)^{-1/2} & \text{if } a = 1, \\
1 & \text{otherwise.}
\end{cases}
\]

Assume \(a > 1 \). Then \(d'_\omega/d_\omega = 1 \). Since \(\chi^2(c_0) = 1, r_0 = 1 \). Therefore, \(c_4 = c'_4 = 1 \).

Assume \(a = 1 \). Then \(d'_\omega/d_\omega = \Phi_m(-1)^{1/2} \). Therefore, \(\prod_{\omega \in W}(d'_\omega/d_\omega) = u^{1/2} \). Since \(r_0 = 0 \), the rank \(r = r' - 1 \). Then \(c_1 c'_2/c_1 c_2 = (n/2)^{1/2} \). Therefore \(c'_4/c_4 = 1 \). In this case, the theorem is proved.

Case 3. \(\chi(c_0) \neq \pm 1 \). In this case, by the assumption of \(n \), we have \(n = 4 \) and \(W = \{ \chi \} \). We compute \(d_\omega \) immediately using Lemma 4. Then \(d_\omega = 2^{3/2} \). Since \(n_0 = 2, r_0 = 0 \) and \(r = 1 \). So \(c_4 = 1 \). Now, the proof of Theorem 1 is complete.

Corollary. Let \(L \) be cyclic over \(k \). If the maximal real subfield \(K \) of \(L \) is non-Galois over \(Q \) then

\[h = 2^b h_0(E:FE_0). \]

Proof. Since \(K \) is the maximal real subfield of \(L \), \(\chi(c_0) = 1 \). Therefore, the corollary can be proved as in the above proof of case 1.

4. Non-dihedral cases. In this section, we consider the case where \(n = p \) or \(n = pq \), both \(p \) and \(q \) are primes, and the case is not included in Theorem 1. We consider the automorphism \(\tau \) of order 2 instead of the complex conjugation \(J \) on \(X \). When \(\langle \chi' \rangle \neq \langle \chi \rangle \), we choose representatives of the class \(\omega \) of \(W \) and give \(v_i \)'s which are different from those of Section 2. (More details in [6].) If \(n = p \), then \(L \) has only one character class, therefore, \(L/Q \) is dihedral. Suppose \(n = pq \). Similarly, if \(p = 2 \) and \(q \neq 2 \) then \(L/Q \) is dihedral. If \(p = q = 2 \) then \(L/Q \) is dihedral because \(G(L/Q) \) is a non-abelian group of order 8. Suppose that both \(p \) and \(q \) are odd primes. Then the next theorem holds.

Theorem 2. Let \(K/Q \) be non-Galois and suppose the Galois closure \(L \) of \(K \) is abelian over \(k \). Suppose \(n = [K:Q] = pq \) (both \(p \) and \(q \) are odd primes), and \(L/Q \) is not dihedral. Then we can construct a group \(F \) of elliptic units such that if \(p = q \) then \(G(L/k) \) is an abelian group of type \((p, p) \) and,

\[p^{p^2 + 2p^2 - 3/4} h/h_0 = (E:FE_0); \]

if \(p \neq q \) and \(K_0 \neq Q \) then,

\[2^{(p-1)(q-1)/2} h/h_0 = (E:FE_0). \]

Proof. In both cases above, the character group \(X \) is the direct product \(\langle \chi \rangle \times \langle \psi \rangle \) where \(\chi \) and \(\psi \) are the characters of order \(p \) and \(q \), respectively. Since \(\tau^2 = 1 \) and \(L/Q \) is not abelian, we assume that \(\psi^r = \psi^{-1} \). We denote by \(\langle \psi \rangle^* \) the subset of \(\langle \psi \rangle \) whose element has order \(m \) where \(m \) is the order of \(\psi \). Let \(p = q \). Then we have two cases: (1) \(\chi^r = \chi^{-1} \), (2) \(\chi^r = \chi \).
Case 1: W has $p + 1$ classes $\langle \chi \rangle^*$ and $\langle \chi^i \psi \rangle^*$ ($i = 1, \ldots, p$). In this case, the construction of F is the same as in Theorem 1. For any class ω, $d_\omega = p^{(p+1)/4}$ and $r_\omega = \varphi(p)/2$. Therefore $c_4 = p^{(p^2 + 2p - 3)/4}$.

Case 2: $X_0 = \langle \chi \rangle \cdot \langle (\psi^i \chi)^* \rangle = \langle \psi^{-i} \chi \rangle \neq \langle \psi^i \chi \rangle$ ($i = 1, \ldots, (p-1)/2$). Then W has $(p + 1)/2$ classes $\langle \psi \rangle^*$ and $\langle \psi^i \chi \rangle^* \cup \langle \psi^{-i} \chi \rangle^*$ ($i = 1, \ldots, (p-1)/2$). If $\omega = \langle \psi \rangle^*$ then d_ω is the same as in case 1. Otherwise, we take v_{ij} in Section 2 as

$$v_{ij} = \sum_{a \in \mathbb{Z}_p} \lambda_{ia}(\phi^j(a) - 1)$$

for $i, j = 1, \ldots, p$ where $\phi \in \langle \psi^k \chi \rangle^*$ for some k. Then $m_\omega = p$ and d_ω is the discriminant of the \mathbb{Z}-module constructed by v_{ij}'s. We can take $d_\omega = \Phi_p(1)|D_p|^{1/2}$ in [6], I, Satz 1.4. Therefore, $c_4 = \prod_{\omega \in W} d_\omega m_\omega^{-r_\omega} = p^{(p^2 + 2p - 3)/4}$ where the product is taken over all classes of W. In the former case, the theorem is proved.

Let $p \neq q$. Then $X_0 = \langle \chi \rangle$. Since L/k is cyclic, W has two classes $\langle \chi \rangle^*$ and $\langle \chi \psi \rangle^*$. If $\omega = \langle \chi \rangle^*$ then d_ω is the same as in Theorem 1. Let Q_{pq}^* be the fixed field of Q_{pq} for τ. Let $\omega = \langle \chi \psi \rangle^*$ and M be the \mathbb{Z}-module constructed by v_{ij} in Section 2. Then M includes the \mathbb{Z}-module $2(p \cap Q^*)$ where Q^* is the ring of integers of Q_{pq}^*. The discriminant D^* of Q^* is $(pq)^{(p+q)/2} q^{1-p}$ which is easily shown by examining the ramification of Q_{pq}/Q_{pq}^*. If we take v_{ij} as a basis of $2(p \cap Q^*)$, then $d_\omega = 2^{\sigma(pq)/2} \Phi_p(1)|D^*|^{1/2}$. Therefore, $c_4 = 2^{(p-1)(q-1)/2}$. The proof is completed.

Example. Let K_0 be abelian of degree p. Let $K \supset K_0$ and K/Q be non-Galois of degree pq. Suppose the Galois closure L of K to be abelian over an imaginary quadratic field k and $[L:k] = pq$. Then L/Q is not dihedral.

References

DEPARTMENT OF MATHEMATICS
SOPHIA UNIVERSITY
7-1 Kioicho, Chiyoda-ku Tokyo 102, Japan

Received on 10.10.1986
and in revised form on 14.11.1989

(1679)