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The Latvian mathematician Ernests Fogels died suddenly on February
22th, 1985. He was born on October 12th, 1910 in Lidzibas, commune
Nigrande, district Saldus. His parents were poor farmers. He attended the
Second Gymnasium in Riga, at that time one of the best schools in Latvia.
At a mathematical competition he was rewarded with a book on number
theory (G. Wertheim, Anfangsgriinde der Zahlenlehre, Braunschweig, Vieweg
1902, 428 pp.). This was an extra stimulus to arouse his interest in mathematics.

In 1928 E. Fogels entered the Faculty of Mathematics and Natural
Sciences of Latvian University. As he also had a bent for painting, he attended
the Academy of Fine Arts too. In the meantime he worked as a clerk and
somewhat later as a school teacher of mathematics.

E. Fogels intended to write his graduation (at that time called “candidate”)
thesis in number theory. But there was no professor who could supervise his
research. Therefore his student’s competitive paper “Space roulette” was
accepted. In 1933 he graduated from the university. In 1935 he was invited to
join the staff at the same university. During two years using his own lecture
notes he edited two books by Lejnieks (E. Lejnieks, Augstaka algebra (Higher
algebra), Riga 1936, 158 pp.; Skaitlu teorija (Number theory), Riga 1936, 289
pp.) and wrote two papers on Diophantine equations [2], [3].

In 1937 E. Fogels was appointed university private-docent and delivered
lectures mainly in algebra and number theory. At the end of 1938 he went on
probation course to England, to the Cambridge University. His plan to work
under the supervision of G. H. Hardy failed. He was willingly accepted
by A. E. Ingham who proposed to improve the estimate of the difference
between two consecutive primes. In June 1939 he came home. World War II
interrupted his probation course.

In 1940 E. Fogels was appointed associate professor at Latvian University.,
In 1947 he defended the candidate thesis “On mean values of arithmetical
functions”, the main part of which was written in the early forties [13].

" The same year he went to work at the Institute of Physics and
Mathematics of the Academy of Sciences of the Latvian SSR as a research
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fellow. In the course of three years he wrote 12 papers [14]-[25]. In 1950
he started working at the Riga Pedagogical Institute. During eight years he
gave almost all courses in mathematics and wrote about 30 lecture notes for
students. Therefore he had practically no time for research. However, he wrote
two papers [26], [27].

In 1958 the Pedagogical Institute was closed. Because of poor health, until
1961, E. Fogels held no official position. From 1961 to 1966 he was a research
fellow at the Radioastrophysical Observatory of the Academy of Sciences of the
Latvian SSR. This period was fruitful in his scientific activity. He obtained
rather strong results on the density of zeros of different zeta-functions, on the
distribution of primes in arithmetical progressions, on various algebraic fields
and on binary and ternary quadratic forms.

E. Fogels made reports at seminars in Moscow and Leningrad. Yu. V.
Linnik and other colleagues suggested that he should prepare a doctoral thesis
on the basis of his most important results. A special permission for this was
given by the Higher Certifying Commission. However, E. Fogels did not want
to fill in the necessary documents and take up all sorts of other routine work.

In 1966 E. Fogels retired. He continued his scientific work until his death.

For some time E. Fogels was a reviewer for review journals. He was
extremely careful and verified each formula. It took him too much time.
Therefore he soon gave up this work. He was a member of the editorial board
of “Acta Arithmetica” from 1967.

The first published research papers by E. Fogels [2]-[5] concern the
theory of Diophantine equations. He found new cases of solvable Diophantine
equations in quadratic and relative quadratic fields.

The papers [6], [9], [15] were written under the influence of A. E. Ingham.
The first two deal with the problem of finding functions h = h(x) for which the
asymptotic relation

Y a(n)~ AY(x), x- oo,

1<n<€x

can be extended to

(1) Y, am~ AYy(x+h—Ay(x), x-—oo0,
x€En<x+h

where a(n) is one of the functions A(n), A(n) or u(n). By using the method of
Heilbronn and the convexity theorem of Ingham, E. Fogels proved that (1)
holds when h(x) = x°, 0 > (1+4c)/(2+4c), where ¢ is a constant for which
L{(1/2+it) = O(t°), t - c0. Here { is the Riemann zeta-function. Similar results
were obtained for the arithmetical functions g(n), 2°™, d(n?), d*(n), where
q(h) = 1 if n is not divisible by a kth power of a prime, k > 2, and q(n) =0
otherwise, w(n) is the number of different prime factors of n and d(n) is the
number of divisors of n. In [15] the author considered an analogous problem
in case n runs over an arithmetical progression.
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In [10] E. Fogels proved that almost all integers of the field Q(,/ —5) have
a unique factorization into indecomposable factors. In [17], [18] he showed
that any arithmetic of a countable set whose elements have unique fac-
torizations into primes is isomorphic to the ordinary arithmetic of natural
numbers.

In [14], [26] E. Fogels gave two interesting examples of sequences of
positive integers which are not linear progressions but still contain infinitely
many prime numbers.

In 1948-1952 E. Fogels grew interested in elementary methods of number
theory. The papers [19], [21]-[25] are devoted to the so-called finite methods.
According to this point of view a finite proof should use only rational numbers
with bounded denominators. There should be no differentiation and integ-
ration; the elementary functions cos x, sinx ect. should be replaced by their
rational approximations coming from power series expansions. He proved in
this way some classical theorems of prime number theory. For example, in [19]
he showed the prime number theorem in the form

n(x)~x(Y n7)" 1.
n<x

In [20] an analogue of the Brun-Titchmarsh theorem was proved. Let
n(x, F) be the number of primes not exceeding x which are representable by
a positive definite quadratic form F with integer coefficients and discriminant
—d. Let h(—d) be the number of classes of forms with discriminant —d. Then
for each & > 0 there is a number d,(¢) > O such that if d > d,(e) and if x > d°
then

ax
F - .
n B < dteg

a = (1+¢)(0.5—2.11og d/log x—loglog x)~!.

The principal tool in the proof was an extension of A. Selberg’s sieve method to

the case of ideals in Q(\/ —d).

In 1944 Yu. V. Linnik proved the existence of an absolute constant ¢, > 0
such that the smallest prime in any arithmetical progression Dn+1, (D, ]) = 1,
n=0,1,2,..., does not exceed D'. In 1954 K. A. Rodosskii simplified
Linnik’s method. By supplying this method with two more parameters and
using another dissection of the critical strip, E. Fogels proved [27]-[29] the
following result. There are absolute constants ¢, > 0, ¢, > 0 such that for any
positive € < ¢,, for all x > Dy(e) and all x > D'°%¢2/9) there is at least one
prime p=Imod D, (D, ]) = 1, in the interval (x, xD*?). There are more than
x/@(D)D* primes p = I mod D for x < exp(D%), D > D,(¢). Here ¢ is the Euler
totient function. A corollary of this result is n(x, D, [) > x/@(D)D* for all
x g(DeslosC/*e exp(D?), D > D,(e). Here n(x, D, I) is the number of primes
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not exceeding x and = ! mod D. The constant D,(¢) depends on Siegel’s zero.
This theorem filled a gap between Linnik’s theorem and a generalization
of Hoheisel’s theorem stating that there is a prime p =/ mod D between
x and x+x? if x > exp(D*!), D > Dy(¢,), and 6, 0 < 0 < 1, is an appropriate
constant.

Later on.E. Fogels extended [30], [31], [35] these results to algebraic
number fields. Let K be an algebraic number field of degree n and discriminant
4, let f be an ideal in K, and let H be a class of ideals mod f. Set w = |4|Nf and
let x > 1. E. Fogels showed that there is then a positive constant c,, which
depends only on n, such that the interval (x, xw**) contains at least one rational
prime that is the norm of an ideal in H. In. the special case n = 2, this implies an
appropriate assertion on rational primes representable by a primitive quadratic
form. The proof requires information about the zeros of the Hecke L-functions
near the line ¢ = 1. This information was proved in [32]-{34]. In [32], [38] an
estimate for the “exceptional” zero was given.

These investigations led E. Fogels to the abstract theory of primes [36],
[37], [39], [43], [45] introduced by A. Beurling and studied by many other
authors. An abstract analogue of primes in arithmetical progressions is
obtained by considering an infinite commutative semigroup G with a countable
number of generators. The elements of G are divided into h classes H,,
1 <i< D, forming an Abelian group (for any aeH,; and a’'e H; we have
aa’ € H, where k depends only on i and j). A homomorphism N of G into the
multiplicative semigroup of reals > 1 leads to analogues N(a) of absolute
values. An asymptotic density law is assumed in the form

Y 1=Dx+0(D"x'79
acH;
N@<x

with 0 < 8 <1 and 75, ¢; and 6 independent of j.
If 6> 1/2, then

(*) there is a positive constant ¢ such that for any x > 1 and any H, there
is at least one generator be H; with x < N(b) < xD*.

For h (the class number) odd this assertion holds as well in the case
of 0 <1/2
For even h let K; denote any subgroup of G with index 2. Then there exists

the limit
lim< y Ly 1>=c,..

x=w \x2N@ ¢ x2N@a @
aeG acK;
Let 6 <1/2. If there is a constant c; such that C;> D™ for any j
then the above assertion (x) holds (with the constant ¢, depending also
on ¢,).
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Let n(x, H) be the number of generators be H; with N(b) < x. For
appropriate constants cg, ¢, > 0 and any x > D we have n(x, H) > x/D*log x.
In [43] E. Fogels used another homomorphism & of G imto the
muitiplicative semigroup of complex numbers, @: a—(N(a))'/? exp (2nia(a)),
0 < a(a) < 1. In addition to the asymptotic density law above, he assumed that

Y 1 =D"xx+0(D*°x!™?
aeH
N@)<x,0<a(a)<x

uniformly in », 0 < % < 1, and with § independent of j and satisfying 0 < & < 3.
He proved a theorem analogous to () on the generators lying in the region
{a(@ =ao+pr mod 1, 0 < B <1, x < N(a) < xDerrlosles®D} ' p=e12 « [ < 1.

In [45] E. Fogels considered some interesting particular semigroups.
Specifically, the representation of primes by binary quadratic forms F(x,, x,)
= Ax?+ Bx, x,+ Cx} was studied. Let d = B>— AC. The following theorem is
obtained. For appropriate absolute constants cy3, c;4, 0 <y < 1 and for all
x 2 |d|* in the region x < |F(x,, x,)| < x+x? in the (x,, x,)-plane between
any two straight lines starting from the origin and forming an angle with the
non-Euclidean measure > x~ !¢ there is a lattice point (x,, x,) for which
|F(x,, x,)| is a prime.

In [40], [44] a strengthening of a theorem of Linnik was proved. Let
0<Ai<logT where T>D; the number of zeros of [],meanL(s, ) in
1-/log T<o <1, t§ T, s=o0+it, does not exceed ¢'5. Yu. V. Linnik
proved this theorem in case T = D. A similar theorem holds for the product of
Hecke’s L-functions over an arbitrary algebraic number field as well as for
L-functions of a semigroup.

This result led E. Fogels to some improvements of the previous ones. For
example, he proved that there exists an absolute constant é < 1 such that if
D > Dy, then for any x > D'¢ there is a prime p =/ mod D in the interval
(x, x+x%. This improves the theorem of [29] where the interval was (x, xD*)
and where the restrictions D > D(g), x > D*!°8¢€2/® were used.

In [46] E. Fogels gave an estimate for the number of zeros in a rectangle
of the critical strip of zeta functions on Gauss’ field with Hecke’s characters
(Grossencharaktere). From this theorem he deduced that for any ¢ > 0 there is
a Gaussian prime in any circle S in the complex plane whenever the distance
R of the centre of S from the origin is large enough and the radius of S exceeds
R?3%¢ 1t follows that there are infinitely many primes p = a® 4+ b? such that
b? < p?3** These investigations were in line with those of Vilnius math-
ematicians (J. Kubilius, K. Bulota, M. Maknys).

The papers [47], [48], [50], [51], [52] were devoted to the Hecke
L-functions of a quadratic number field. E. Fogels proved an approximate
functional equation in case ¢ = 1/2 and a Bombieri-type density theorem. As
an application, an analogue of Bombieri’s theorem on large sieve for prime
ideals of a quadratic field was stated.
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E. Fogels devoted the last years of his life to the Riemann hypothesis. He
constructed many variants of possible proofs, though no one of them was-
successful. The papers [53], [54] contain one of such attempts. The author
himself noted a gap in the proof. However, it presented some new interesting
connections of the Riemann hypothesis with the theory of prime numbers.

E. Fogels had a strong personality. He was very hard-working and
energetic. He was one of those men who devoted all their lives to science. He
was also a good teacher. His personality will remain in the memory of his
colleagues for ever.
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