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ACTA ARITHMETICA
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Mean value estimates for exponential sums with applications
to L-functions

by

MaTtT JuTiLA (Turku)

1. Introduction

1.1. In our previous paper [J3], we studied the mean square of the
exponential sum

»
S(M, M'; v, y) = %dlmig(m, v, y)e(f(m, v, y))

with respect to v running over an interval [0, V] and y running ever
a well-spaced system of real numbers. Here d(m) is the usual divisor function,
e(x) = ¢*™®, and the functions f and g are supposed to satisfy certain
conditions. The main result, a general mean value theorem, was applied to the
fourth moment of {(1/2+it) over a system of short intervals. In this way, we
reproved a theorem of H. Iwaniec [Iw], which was in fact our principal
motivation.

Our object in this paper is to generalize Iwaniec’s theorem to L-functions.
To this end, we need a mean value estimate for exponential sums

(1.1) S, (M, M'; v, y) =Y x(m)d(m)g(m, v, y)e(f(m, v, y))

involving Dirichlet characters. If x is a primitive character (mod D), then the
sum S, can be written in terms of the Gaussian sum

D
1, = . x(@)e(a/D)
a=1
and the exponential sum

(1.2) S(M, M’; v, y, 0) =Y d(m) g(m, v, y)e(f(m, v, y)+ma)
M

as follows:

S, =)' X 1@)SM, M'; v, y, a/D).

a=1
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Therefore, since |z,| = D'/?, we obtain

(1.3) Y'is)2<Dpt Y |Y x1@S(..., a/D)?

x mod D gmod D a=1

=(¢(DyD) " IS(M, M'; v, y, /D),

where Z* denotes either a sum over primitive characters, or over a reduced
system of residues (mod D), as the case may be.

The set of the numbers a/D in (1.3) is a D~ '-spaced system. More
generally, let {o,} be a finite set of numbers which is §-spaced (mod 1), in other
words |la;—ayl| > & if i #j, where |[x| denotes the distance of x from the
nearest integer. Further, let {y,}JX., be a Y,-spaced system in the interval
[Y,2Y], and consider the mean value

RV
(14) 1=Y Y [IS(M, M’; v, y,, a) dv.

i r=10
It is our goal to estimate this quantity under certain conditions. The
assumptions concerning the functions f and g will be similar to those in [J3],
and we repeat these in the next section, retaining the previous notation.

1.2. For an interval [a, b] and a positive number u, we denote by D(a, b; u)
the set of all complex numbers z satisfying |z—x| < u for some xe[a,b]. Put,
for short, D, = D(M, M’; ¢, M) and D, = D(0, V; c, V), where the ¢, are
positive constants. Also, write M, = (1—c, )M, M, =M +¢, M, V, = —¢, ¥,
V, =(1+c¢;) V. The notation A=B will mean that 4 < B <€ A.

The functions f and g are supposed to satisfy the following conditions.

(i) f(x, v, y) is real for (x, v, Yye(M,, M)x(V,, V,)x[Y, 2Y].

(i) f is a holomorphic function of (x, v) in D, x D, for fixed ye[Y, 2Y].
Also, f, is a continuously differentiable function of (x, y) in (M, M;)x[Y, 2Y]
for fixed ve(V,, V,).

(iii) There are positive numbers F and T such that

(1.5) fL<€FM™' in D, x(V,, V,)x[Y, 2Y],
(1.6) fix <« FM™IT™'  in (M,, M,)x D, x[Y, 2Y],
and in the set (M, M,;)x(V;, V;)x[Y, 2Y] we have

(1.7) | fesl <FM™2,

(1.8) |fod = FM~1T"1,

(1.9) [l MY,

(iv) The function g, defined in [M, M'] x [0, V] x[Y, 2Y], is continuous
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as a function of (x, v) for fixed y, and g, is a continuous function of x for fixed
(v, y). Also, g € G and g, < G'.

Remark. By the Hartogs theorem, the first part of (ii) is equivalent to the
existence of the complex partial derivatives f, and f, in D, xD, x[Y, 2Y].

1.3. The main result. We are now in a position to formulate our estimate
for I, defined in (1.4). In the sequel, ¢ will stand for a positive constant (not
necessarily the same at each occurrence) which may be supposed to be
arbitrarily small. As in [J3], the assertion of the theorem in the case R =1
should be understood in the sense that the parameter y and thus the conditions
involving y,, Y, and Y, are omitted.

THEOREM 1. Suppose that the functions f and g satisfy the conditions (i}iv),
where M and M’ are sufficiently large positive numbers with M < M’ < 2M. Let
Y<y, <...<yr<2Y, and suppose that y,.,—y, > Y,, where

(1.10) Yo> T VY.

Let {a,)} be a finite set of real numbers such that |lo;—a,|| > 6> F™% for i #},
where B is a positive constant. Suppose further that é < 1,

(1.11) FR3* <M <5 'F

and

(1.12) (min(F, M))~!2*¢T < V< (min(F, M))"'T.
Then

(113) I<6 (G+MG)*MF{RV
+RYZF-12T32y =12 min(RY2, 1+(F/M)"/2)}.

The interesting range for M is F €« M < ¢ ' F, for otherwise the assertion
follows immediately from Theorem 1 of [J3]. Indeed, we may apply this
theorem to the individual terms on the right of (1.4) for each i, and (1.13)
follows, because the cardinality of the system {&} is <671

Owing to the inequality (1.3), we may infer an analogous result for §,.

THEOREM 2. Let D be a positive integer, and suppose that the assumptions of
Theorem 1 on f, g, M, T, V, Y, and Y, are satisfied, except that (1.11) now reads
(1.14) F?3*¢ < M < DF.

Also suppose that D < F® for a positive constant B. Then

R V
(t15) ¢ 3 [IS,(M, M'; 0, ) dv

xmod D r=10

< D(G+MG')? MF*{RV+RY>F~1>T32y =112 min(R'/2, 1+ (F/M)"/?)}.
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If the functions f and g are of the form f(x, t) and g(x, t), where ¢ is
a parameter in the interval [T, 2T], we write

i
(1.16) S(M, M'; t, @) = ). d(m) g(m, t)e(f(m, t)+ma),

M

-
(1.17) S,(M, M'; t) = )" d(m) x(m) g(m, t)e(f(m, t)).

M
Then® the mean values

R 1,+Tg
(1.18) Y JISM, M a)Pd,
i r=1 1
R t,+To

(1.19) 5T JOIS(M, M o),

ymodD r=1 1,

where T<t, <...<tg<2T and t,,,—t, > T, can be interpreted as special
cases of the analogous expressions in (1.4) and (1.15) if we define (as in [J3])
f(x, v, 9)=f(x, y+v), g(x, v, y)=g(x, y+v), and put y,=t¢, Y=T, and
V=Y, =T,. Then f(x, v, y) and g(x, v, y) satisfy the conditions (i}-iv) if f(x, t)
and g(x, t) are supposed to satisfy analogous conditions (see Remark 1 in [J3],
§1.3). Then, under the assumptions of Theorem 1 (where (1.10) is now trivial),
we obtain the estimate (1.13) (with V= T;) for the expression (1.18), and
analogously the estimate (1.15) holds for (1.19). As was pointed out in [J3] (see
Remark 4 in §1.3), it is sometimes of advantage to apply the last mentioned
results to a system of longer subintervals [t;, t,+ Tg] which cover the original
system. In this way, we obtain

R 1+To
(1200 Y Y [ IS(M, M';t,a)dt
ir=1 ir

< 87 Y(G+MG')* MF* {RT,+ R**F~ '3 Tmin(R'3, 1+ (F/M)*3)}

and
tr+To
(121 ¥ f 1S,(M, M5 1)t
xmodD 1,

< D(G+MG')? MF* {RT,+R**F~13 Tmin (R/3, 1+(F/M)"3)}.
1.4. Applications to L-functions. The special case
f(x, )= —tlogx, g(x,t)=x""?
of (1.17) is the Dirichlet polynomial

v
S,(M, M'; 1) = 3 d(m) x(m)m~ 1270,
M
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We may choose now F = T, so the conditions corresponding to (1.14) and
(1.12) read

(1.22) T?3** < M < DT,
(1.23) (min(T, M) 2 T< T, < (min(T, M))™'T,
and (1.21) gives

R t.+To

(1249 Y % [ OISM, M;0)*dt

xmod D r=1 L
< DT*{RT, +(RT)** min(R*?, 1+(T/M)"?)}

for D < T%

The case M =<DT is of relevance for the estimation of Dirichlet L-func-
tions, and we obtain the following generalization of a theorem of H. Iwaniec
(see [Iw], Theorem 4), which is the special case D = 1.

TuroreMm 3. Let T> 1, T2t e g T, <« T?3, T<t, <... <t < 2T, and
tr-l-l_tr; T:,. Then

R 1t,+To

(1.25) YooY [ IL(2+ir, p)tdt < D(RT,+(RT)*?)(DTY.
ymod D r=1 1
In the first place, this follows from (1.24) only for primitive characters
under the assumption T'> D°. But the extension to all characters is easy once
the primitive characters have been dealt with. Further, for T < D* we may
apply the well-known estimate

2T
Y HA12+it, Pt dt < (DT)**
gmodD T

to verify (1.25) directly.
Two special cases of (1.25) are worth pointing out. Firstly, for R =1 and
T, = T??, we have

T+T23

(1.26) Y f  \L(1/2+it, p[*dt < DT**(DTY.

xmod D T

Secondly, the estimate

T
(127) Y [IL(/2+it, Y|'?dt < D*T*(DTY
ZmodD 0
is an easy consequence of (1.25), as will be shown in Section 6. In the case
D = 1, this implication was pointed out by H. Iwaniec [Iw]. While (1.26) is
a new result, the estimate (1.27) was established by D. R. Heath-Brown [H1] in
the case D = 1, and generally by T. Meurman [Mel].
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1.5. Some analogues. In the exponential sums considered above, one may
replace (as in [J1], [J2], and [J3]) the divisor function d(m) throughout by
a(m)ym=*~1/2 where the a(m) are the Fourier coefficients of a holomorphic
cusp form of weight x for the full modular group. Owing to the work of T.
Meurman [Me2], it is even possible to deal with sums involving Fourier
coefficients of non-holomorphic cusp forms (Maass wave forms). As another
class of arithmetical functions which may enter as coefficients in this context,
we may mention ry(m), the number of representations of m by the positive
definite binary integral quadratic form Q (see [J5]). In particular, this class
contains the classical arithmetical function r(m).

The analogue of L*(s, x) in the theory of holomorphic cusp forms is the
Dirichlet series

oy

o(s, )= 3, a() x(n)n~*
n=1
considered by G. Shimura [S]. Our results on L(s, ) cannot be immediately
carried over to ¢(s, ), for to estimate the latter functions, we have to deal with
Dirichlet polynomials with M < DT, thus not only those with M=<DT
Nevertheless, the analogue of (1.26), viz.

T+T2/3
Y | el x)dt < DT*3(DT)y
xmod D T

is an easy consequence of the analogue of (1.24). For D = 1, this is a corollary
of a result of A. Good [G].

1.6. Estimates for exponential sums. We may apply (1.20) to the estimation
of exponential sums of the type

(1.28) § =}, d(m)g(m) e(f(m)+ma),

where f and g satisfy certain conditions analogous to (i){iv), where only those
assumptions pertaining to x are taken into account. To this end, we interpret
the sum § as the value at t = F of the sum (1.16) with f(x, t) = (t/F)f(x) and
g(x, t) = g(x). Now (1.20) with 6 = min(1, F/M), R =1,t, = F, T, = F*”, and
{o} = {a} gives a mean value estimate, which implies a similar pointwise
estimate for the integrand. Indeed, we may suppose that f < F (on replacing
S by f—f(M) if necessary) and apply Lemma 1.4 in [Mo]. The resulting
estimate is

(1.29) S <(G+MG)(MV2F1B 4 MF~1%)F* for M < F&,

note that the condition M > F?/3*¢ in (1.11) can be omitted, for otherwise
(1.29) is trivial.
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If M < F, then the term ma in (1.28) can be absorbed into f(m), and the
term MF~'% in (1.29) can be omitted. Then (1.29) amounts to the estimate
(1.21) in [J3].

An estimate for S in the case M > F was needed in [J4] in connection with
the problem of estimating the exponential sum

A(x, h/k) =Y a(n)e(nh/k)
nEx
where d(n) = a(n)n™*" 12 js the “normalized” nth Fourier coefficient of

a holomorphic cusp form of weight ». Using (1.29) in the proof of Lemma 2 in
[J4], we obtain

(1.30) A(x, h/k) < min(k®Px'3, kM4 x38)xt  for k < x'/4,

which improves and simplifies the result of this lemma.

Actually we expect (1.30) to hold for all k < x'/2, but the argument leading
to (1.29) was quite wasteful, for the starting point was an estimate which holds
primarily for a sum of =< ¢~ ' =1+ M/F terms but it was applied just to a single
term. For a more careful estimation, it might be of advantage to transform the
sum S (by the method in [J1]) into a new form which would be more amenable
to estimation. However, we do not go into details here.

1.7. In the proof of the main result, Theorem 1, we follow the general
scheme of [J2] and [J3]. A new ingredient is another generalization of a lemma
of E. Bombieri and H. Iwaniec (Theorem 4.2 in [B-17]). Previous generalizations
were given in [H-W] and [J3], and the new variant is Lemma 3 below.
Though our argument is analogous to that in [J2] and [J3], we prefer giving
full details of the proof throughout, to make the paper reasonably
self-contained and also to complement the somewhat sketchy presentation
in [J3].

2. Smoothed exponential integrals and sums. The fact that a smoothed
oscillating exponential integral or sum is small under suitable conditions, will
be frequently used in the sequel. The following elementary lemma makes this
argument more precise.

LemMA 1. Let f be a real and g a complex function in the interval (a,b).

Suppose that the derivatives fY(x), gV (x) for j < J, where J >2 is a fixed
integer, are continuous in this interval and satisfy

(2.1) If'(x)=>4>0,

22) fOX) < FX™F  for j=2,...,J,

(2.3) g(x) < GX™7  for j=0,...,J,

(2.4) g9a+)=¢V(b-)=0 for j=0,...,J-1.

2 — Acta Arithmetica 57.2
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Then
2.5) fg(x)e(f(x))dx < (b—a)G(4X)' (1 +(4X)" ' F) 1.

If, in addition, we have
(2.6) AL|f'x) <4 <1
and J = 3, then

2.7) ig(n)f!(f(n]) < (b—a)G(4oX)* (144, X) "1 F)' 71,

where 4, = min(4, 1-4').

Proof. The estimate (2.5) can be verified by repeated integration by parts
(the argument is similar to that in the proof of Lemma 4 in [H2]). The integral
in question equals

5 b .
@mi)~* f{g(a/f ) (e(f )Y dx = —(@2mi)~* fe(f(x)(g(x)/f (x)) dx,

which is
< (b—a)G(AX) " (1+(AX)"'F)

by our assumptions. This settles the case J = 2 of (2.5). Otherwise the same

process is repeated J —2 times, and the last integral is estimated. Note that the

integrated terms vanish by (2.4). At each step, the estimate of the integrand is

changed by a factor (4X)~2F if 4 < F/X, and by a factor (4X)™! otherwise. In

any case, this factor is < (4X)™'(1+(4X)™'F), so (2.5) follows by induction.
For a proof of (2.7), the exponential sum is written as

i fa(x)e(f(x)—mx)dx

m=-—omw a

by Poisson’s summation formula, and the integrals here are estimated by (2.5).

3. A variant of Gallagher’s lemma. The following lemma (Lemma 1 in
[J3]) is an analogue of a well-known lemma due to P. X. Gallagher (Lemma 1.9
in [Mo]).

LEmMA 2. Let f(x, v) be a function of the real variable xe[M, M'] and of
the complex variable veD = D(0, V; cV), where 1 <M <M’ <2M, V> 0, and
¢ > 0 is a constant. Put V, = —cV, V, = (1+c) V. Suppose that f is a holomor-
phic function of v in D for given x, f,. exists in [M, M']xD, and

3.1) fix €AM™YV™Y in [M, M]1xD,
(3.2) Ifod <AMT'V™Y in [M, M} x(V}, V),
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where A > 1. Let a,, for me[M, M"] be any complex numbers with a,, < A, and
set a,, =0 for m¢[M, M']. Write X = A" *M. Then

v M Vi EEE
(33) [[Xame(f(m v)*dv < M X" [ dv[| Y ane(f(m, v))|>dE+ A*V.
0 M ¥z 4

4. A generalization of a lemma of Bombieri and Iwaniec. The original
lemma of E. Bombieri and H. Iwaniec [B-I] was concerned with the question
how often ||h,/k, —h,/k,| and |h k, —h,k,| can be simultaneously small. Here
h; is defined by h;h; = 1 (mod k,). This lemma was generalized in [H-W] and
[J3]. A further generalization is given in the next lemma. We write h ~ H to
mean that H < h < 2H.

LEMMA 3. Let HL K >2,0<d <1, and let J,, J,, ... be disjoint intervals
of length < SH/K in the interval [H/2K, 2H/K] with the union J = | J,J,. Let
Y> 0, Z a subinterval of [Y, 2Y], and w(x, y) a positive function in the set J x Z
which is everywhere of the same order of magnitude. Suppose that w, and w, are
continuous, and that

@.1) loJo| <5~ 1K/H,
4.2) lo,/w| > Y1,

Let {y,}X 1 =Z be a Y,-spaced set of numbers. Then for 0 < A, < 1/2 and
0<4,<1/4 the number of quadruples (h,/k,, hyJk,, y,,, y,)) such that
(b, k) =1, hjk;eJ, h;~ H, k; ~ K, and

(4.3) Iy /ky —Rofka |l < 4,
(4.9 lki/ky—(hy/ks, yr)w(hy/ky, yi)l < 4,
is at most

(45) < (H*+K?+0 "HK)(1+4,Y;'Y)R+4,(4,+4,)(HKR)>.

Proof. We follow the argument of the proof of Lemma 2.4 in [H-W] and
that of Lemma 2 in [J3] with appropriate modifications. For simplicity, we
may assume that w=1.

Choosing the class &, (mod k,) suitably, we may assume that (4.3) holds in
the stronger form

(4.6) _ |E1/k1_h_2fk2| < Al

for a given pair of fractions h,/k,, h,/k, occurring in the lemma. Now, if k; is
defined by hh,+kk, =1, then

(hz)_(hz —Ez)( h, El)(h,)_ hohy+kiky  hok,—h K, (B,
k) \ky = RJ\—ky hJ\k;) \kyhy—kh, kK +hE,)\k,)

Hence to each pair h,/k,, h,/k, satisfying (4.3) we may assign a unimodular



102 M. Jutila

cd

@7 (:i) B (i 3) (2.)

where

matrix (a b) such that

le] < 4,k k,.
By a little calculation, it can be verified that
(4.8) a=chylk,+kifky, d= —chfk,+k,/k,.

The pairs (h,/k,, h,/k;) are now classified according to the matrices (“ 3)
C

This induces a classification for the quadruples (h,/k,, h,/k,, y.,, ¥.,) as well.
The matrices with b =0 or ¢ =0 can be dealt with as in [J3], for the

condition (4.1), which is the principal novelty of our lemma, is not used at this
point. The number of such quadruples is

< (H*+K¥)(1+4,Y5 'Y)R.

Consider now matrices with bc # 0. We may suppose that ¢ > 0, on
interchanging the roles of h,/k, and h,/k, if necessary. In [H-W], an iterative
argument is given which shows, under the assumption (4.1), that if y,, and
Y., are given, then h,/k, must lie in an interval of length < 4,/c if

@9 - c>» 6 'K/H,

where the implied constant is supposed to be sufficiently large. Actually, in
[H-W], there is a constant c, in place of ™! in (4.1) and (4.9), but it is
irrelevant whether ¢, is understood as a constant or as a parameter. As in
[H-W], the number of admissible pairs (h,/k,, h,/k,) (for given y,, and y,))
such that the corresponding matrix satisfies (4.9), is at most

< 4,(4,+4;)(HK)

if H > K. The number of the pairs (y,,, y,,) being R?, we end up with the last
term in (4.5). Also, it is shown in [H-W] how the cases H > K and H < K can
be “reflected” to each other (the réles of H and K can be interchanged). Hence
we may restrict ourselves to the case H > K.

It remains to estimate the number of admissible quadruples for which the
corresponding matrix satisfies

(4.10) 1<c< 6 1K/H.

Let ¢ and hy/k, be fixed for a moment. Since k; = —ch,+ak,;, the
condition (4.4) can be written as

la—chy/ky —a(hy/ky, yro)(hy/kys Yr)l < 4.
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Hence there are only finitely many possibilities for a. The congruence
ad = 1 (mod c) determines d (mod ¢) if a is given. Since d lies in an interval of
length <cH/K, by (4.8), there are <H/K possibilities for d. Accordingly, for
given ¢ and h,/k,, there are <« H/K possible matrices, and each matrix then
determines h,/k,. Further, for each choice of y,,, h,/k,, and h,/k,, there are
<1+4, Y5 'Y possibilities for y,,. Because the triplet (c, h,/k;, y,,) can be
chosen in <6 'K?*R ways, we end up with at most

<6 'HKR(1+4,Y;'Y)
quadruples. This completes the proof of (4.5).

5. Proof of Theorem 1

5.1. As we pointed out in §1.3, the assertion of Theorem 1 for M < F
follows immediately from Theorem 1 of [J3]. By the following simple device,
the remaining case F <« M € 6~ 'F can be reduced to M=<J~'F.

Suppose that the theorem holds for M=<§"'F, and consider the case
F <« M < 6 'F. We may write M =J; ' F, where < d, < 1. The numbers «;
can be subdivided into =<é,6 ! classes, each of which is d,-spaced (mod 1).
Then, by our assumption, the theorem is applicable to each of these classes, and
summation over all classes yields the desired result.

5.2. Before going into the proof, we make a couple of simplifications.

Firstly, we may suppose that g is a constant, for the general case then
follows by partial summation. To emphasize the analogy between our sum
S and Dirichlet polynomials, we choose g =G = M~'/%,

Secondly, as was pointed out in [J3], we may change the value of the
parameter T, occurring in (1.6) and (1.8), on replacing v by a new variable Av.
Let us suppose that T= F.

We introduce the simplifying notation A < B to mean that |4| < c(e) T*B
for arbitrarily small positive numbers &. Then the assertion (1.13) to be proved
can be written as :

(5.1) I@J_l(RV+R”2TV*”2)
for M=<é"'T and TY?*t ¢ V < T?8,

5.3. As the first step in the proof of (5.1), we apply Lemma 2 to the integral
in (1.4) and simplify the resulting inequality. By our assumptions on the
function f, the parameters 4 and X in Lemma 2 are now A=V and X <MV~
For a certain number vye(V;, V,), we have

E+X
(52) 1<€M2V2YY (| Y dm)e(f(m, vy, y,)+ma)?dE+6"* M~ 'RY,
ir ¢

where the sum over m is understood in the sense that only those numbers
m lying in the interval [M, M'] are taken into account.
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Next we want to ignore the “incomplete” sums on the right of (5.2). This
simplification is not as trivial as it was in [J2] and [J3], for X may be relatively
large if & is small. Therefore we appeal to the large sieve inequality for
exponential sums ([Mo], Corollary 2.2), which implies that

£+ X
YIYP<LE I+ X)X < X2 < M2V T2,
i g

Hence the contribution of the incomplete sums is €RX <8 'RTV"!
< 6 ' RV, which can be omitted. Accordingly, the integral over ¢ in (5.2) can be
restricted to the interval [M, M"], where M" = M'—X.

As a further simplification, we replace the integral over ¢ by the

corresponding sum over integers, with an error <€~ RV. Then (5.2) implies
that

(53 I<kM~V2yy % | ¥ d(m+n)e(f(m+n, vy, y,)+n)|?

i r MSm<M" 0<n<X
+6™RV.

5.4. Next we linearize the function in e(...) and recast the right hand side
of (5.3) in terms of integrals involving exponential sums. This step is essentially
a repetition of Section 3 in [J2] in a more general context.

We want to have an approximation to f(m+n, vy, y,), which is linear in
n and independent of m when m lies in an interval of length p=6"'V. We
subdivide the interval [M, M"] into segments [M,_, M,] with M, = M +qpu
for 1 <q<Q=TV~'. Then, putting

54 Ugri = LM, vy, ¥,)+0;,

we write
e(f(m +n, Vg, yr) +nai) = e{naq,r,i) e(f(m +n, Ups yr}_mq.r.i +?‘l0’.;)

for M,—; < m < M. Recalling the assumption (1.7) on f,,, it is easily seen that
the derivative of the latter factor on the right with respect to n is <X 1.
Therefore this factor can be eliminated by partial summation, and redefining
the symbol X suitably (the new X being possibly smaller than the old one), we
may write (5.3) as

2
(55 I1<€M™2p2Yy Y Y| T dmtne(m+ma,,)?

i rg=1 Mg SmsMy 0<n=X
+07 1RV,
where X <« MV L,

For each g, we define somehow a function v,(x) which is J times
continuously differentiable (with J sufficiently large) and satisfies
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O0<y(x)<1 for all x,
v(x)=1 for My_; < x< M +X,
v (x) =0 for x¢[M,_y—p, M, +X+u],
Wx)<p™ forj=0,1,...,J.
Define further

(5.6) S,00) =Y v(m)yd(m)e(ma), U(x)=7) e(—na).
m 0
Then the sum over m in (5.5) is at most
§18 (@ +agr 7 |U (@) dot = [IS,(@)? |U (2 — ., )1 de;
0 0

to verify this, write the product S,(a+a,, ) U(e) as an exponential sum and
calculate its mean square over the unit interval.

The range of integration here is split up into Farey intervals (“arcs”) of the
order K with

(5.7) K={g"tyar=s,

The Farey interval A(a/k) corresponding to a fraction a/k is of length = (kK)~*.
We shall restrict ourselves to fractions with k ~ K, (i.e., Ko < k < 2K). Then,
since obviously

U(e) < min(X, fla ™) < (M~ V+ o),
the assertion (5.1) follows if we show that

58 M722YYY Y T [ IS,@P M7 V4 a—ag,.l) % da

i r q k~Ko amodk Afa/k)
&5 '(RV4+RVTY 12,

The critical values of the integrand are those with a near to Ogri- The
numbers a,, ; carry information on the function f and on the systems {y,} and
{0}

5.5. Because the sums S,(x) in (5.8) involve values of d(n) in different
ranges, they are not immediately comparable. Therefore we transform them by

the following summation formula (Theorem 1.7 in [J1]) into sums over
essentially the same range.

LEMMA 4. Let 0 < A < B and let the function f be continuously differentiable
in the interval [A, B). Let k=1 and (a, k) = 1. Then

B
(5.9 Z' d(n)e(na/k) f(n) = k™' | (log x+2y—2logk) f(x)dx

A=n<B
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+k71 i d[n)?f(x) {—2mne(—na/k) Y0(41t\/:§/k)
n=1 p

+4e(na/k) K o(4r /nx/k)} dx,

where y is Euler’s constant, Y, and K, are Bessel functions (in the usual notation),
and Z’ means that if A or B is an integer, then the term corresponding ton = A
or n= B is to be halved.

We apply this to S («) for «e A(a/k) with k ~ K. Thus a = a/k + f, where
B < (kK,)™!, and v,(x)e(Bx) stands for the function f in the lemma. Since the
function K (x) is exponentially decreasing for x > 1, it is clear that the terms
involving K,(...) in (5.9) are negligible.

Consider next the leading term

(5.10) k™! [v,(x)(log x +2y—2log k) e(Bx) dx.

By Lemma 1, this is small if || > u~ ! T*>=<§V "' T In any case, we have the
trivial estimate <Kg'ulogT<dé 'Kg'VlegT So, to estimate the con-
tribution of the terms (5.10) to the left hand side of (5.8), we may replace S, ()
by Ko !ulog T and restrict the integration to the interval la—a/k| < = ' T%
The result is

(5.11) L5 'Kg2*M2yp? YYYY Y (M V4 latk—og,.l) 2.

i rqgka
It should be noted that since u~ ! =<0V ~' < 6T ' V=M 'V, it was possible to
replace o by a/k in M™' V+ |la—a,,ll. The most significant terms in (5.11) are
those with

(5.12) lafk—ag, il <MV,

the contribution of the others can be estimated similarly.

How often (5.12) can be fulfilled? Since the numbers a, are d-spaced and
f. <8 by (1.5), there are only finitely many possible indices i for a given
fraction a/k. Further, since

(5.13) aq+1.r.i_aq.r.i=M_l Vv,

by (1.7) and our choice of y, there are finitely many possible values of g for
given a/k, r, and i. Hence (5.12) can hold at most <K%R times, and the
contribution of these terms to (5.11) is <6 'RV

The terms involving Y, in (5.9) constitute the nontrivial part of the
transformation formula for S, (2). By the asymptotic expansion

(5.14) Yo(x) ~ €% Y a,x'2 r4e i ¥ b x127T,

r=1 r=1

these terms are essentially exponential integrals. If sufficiently many terms here
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are taken into account, the error will be negligible. The most significant terms
in (5.14) are those with r = 1, so let us consider the contribution of one of these,
say a,x 12e"™

The corresponding part of the transformation formula for S («) equals, up
to a constant factor, the following series:

(5.15) k-2 i d(n)n~*" e(—nafk) [ v,(x)x " e(Bx+2 \/nx/k) dx.
n=1

Next we show, by Lemma 1, that the tail of this series can be omitted.
Indeed, if n > N, where N is a suitable number satisfying
(5.16) N=K 2 M=<Ti*tzpy-1

with ¢ as in (5.7), then

d
|E(ﬂx+2.. /nx/k)| > n'?M~12Kq?

for n> N (recall that f <(KK,;)"!). Lemma 1 is now applied with
A=n'?M~Y2Ks! and X=6"'V. Then

AX > (/N)VAKK )16~ 1V> (n/N)2 T2,

so that taking J sufficiently large, we may omit the terms with n > N in (5.15).

The partial sum over n < N of the series (5.15) is subdivided into subsums,
in which the condition of summation is n ~ N, for a certain number N, < N.
It suffices to consider one of these sums, say S'q(rx). This is substituted into (5.8)
in place of S, (a). However, for technical reasons, we replace the integral over
the Farey interval A(a/k) by a weighted integral over a wider interval
La/k—n, a/k+n]. We suppose that A(a/k) = [a/k—n/2, a/k+1/2], and let w(x)
be a2 smooth weight function (similar to v,(x) above) with support [ —7, 7]. The
integrand in (5.8) is now provided with the weight w(a—a/k) = w(B), and the
integration is taken over the interval |f] < n.

The integrand in (5.8) depends heavily on the size of [a—og, ;ll. We split
up the range for « so as to control this quantity. Let a/k, g, r, and i be given.
Since n=(KK,)™!, there exists a nonnegative integer ¢ such that

(5.17) R —1DM IV < la—og,ll €22M 1VH(KKy)™!
for all ae[a/k—n, a/k+1n]. Then

[ 1S,@P (M~ V4 la—og,ill) ™2 dx < 272 M2V =2 [ w(B) |S, ()| da,
Alafk)
where f =a—a/k. From now on, we restrict ourselves to quadruples
© = (a/k, g, r, i) such that (5.17) holds for a certain fixed value of p.
Returning to (5.8), we now see that its proof is reduced to showing that
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(5.18)  Kg'27%} [fo,(x)v () (xy)~ M ) d(m)d(n)(mn)~ 1
T m,n~Ng
x e((n—m)afk) e(2k 1 (/mx—/ny)) A(x— y)dxdy
<O Y (RV+RVATV112),
where

AQ) = [w(B)e(Cpdp.

If |¢| > KK, T then A(¢) is small, by Lemma 1. Hence the domain of
integration in the double integral in (5.18) can be restricted by the condition
Ix—y| < KK, T¢ In this case, we estimate trivially A(x—y) < (KK, ™'

Accordingly, we set y = x+ ¢ with |¢| < KK, T* and consider the integral
with respect to x. Again, we may apply Lemma 1 to eliminate a number of
unimportant terms. More exactly, those pairs (m, n) for which

(5.19) KollW/m/x—/nf(x+&| > p ' T

can be omitted. Observe that the validity of this condition is iﬂdcpend'ent of &,
for the variation of the left hand side as a function of £ is €« KM ™32N'"2 g M~!
by (5.16). Now (5.19) with ¢ =0 yields the condition |m—n| < P, where

(5.20) SKo M2 NY2V -1 « P KL SK M'ANY2 V™1,

We dispose of the diagonal terms with m = n in (5.18). For given values of
afk and r, the number of pairs (g, i) satisfying (5.17) is < 22+ M (KK,V)™! by
(5.13) and the spacing condition for the «,. Hence a little calculation shows that
the contribution of the diagonal terms is

KLRO“'W(4+TV ) <RV

In the rest of the proof, we impose an additional condition on our
quadruples 7 satisfying (5.17). Since (5.17) holds, in particular, for o = a/k, there
are integers h and v such that (h, k) = 1, h/k = a/k (mod 1), and

(5.21) Ui = hk+(v+0(1)) 22 M~ V.

We may suppose that h > 0 and h= K, on specifying the numbers «; suitably
(mod 1). Denote the number of possible values of v by v,. Then

(5.22) Vo € 1+27¢(KKo) 'MV !,

In the sequel, we restrict ourselves to quadruples T = (a/k, g, r, i) such that
besides (5.17) also (5.21) is satisfied for given values of ¢ and v.

To reformulate the assertion (5.18), we write x = M_+u and y = x+¢.
Then it suffices to prove that for given u and ¢ with u < y and ¢ € KK, we
have
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(523) K5'27%y, ¥y ¥

T m.n~No
0<|m—n|<P

0g(X) vg(y) d(m)d(n) (xymn) ™'/

_ x e((n—m)afk+2(,/mx—./ny)/k)
K RV4+RYVTV ™12,
5.6. To estimate the expression on the left of (5.23), we appeal to the
following inequality of E. Bombieri and H. Iwaniec ([B-I], Lemma 2.4). In the
rest of the proof, we follow closely the argument in [J2] and [J3].

LeMMA 5. Let & and % be two sets of points X€ R and jeRX with
components x, and y,, respectively, and let a(x) for Xe & and b(j) for je¥ be
arbitrary complex numbers. Let X\, ..., X and Y,, ..., Yg be positive numbers.
Define

A= 3

x.3'ed
= — x| S(2¥R) 2

la(x)a(x)|, B= 2

y.yey
Iyie = yi <(2X3) 1
cC= Y

Y. aX)b(@)e(x-y).
XX ye¥

|%k] € Xk |yk] < Y

b&) b,

Then
K
ICP? < 2n®)*AB [] (1+ X, Y.
k=1

Now we interpret the expression e(...) in (5.23) as e(%: ), where

X=(n—m, /m—/n, /0, 5 =(ak 2/x/k 2/x—/D/H).
Here x and y depend on g as indicated above. Further, with
a(x) = dm)d(n)(mn)~ 1%, b(F) = v (x) v,(y) (xy) 14,

the sum over 7, m, and n in (5.23) equals the sum C in Lemma 5. We may
choose

(X1, X,, X5) = (P, O(P/\/N,), O(/Ny)),

(Y1, Y, Y3) = (1, O(/M/K,), O(KT*[\/ M)).
Then, noting that X, ¥, <1, we have
3

(5249 [TU+X,Y)<€Ks!MI2NG12p2,

k=1

Next we have to estimate the quantities A and B in Lemma 5. It is easily
seen, as in [J2] and [J3], that

(5.25) A<P.
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The estimation of B is a deeper problem and requires the arithmetic
information embodied in Lemma 3.

In the definition of B, there are three conditions of summation, two first of
which read

(5.26) |ay/ky —a,/k,| < P71,

(5.27) Wafks = /%3/ks] € /No/P;
here x, and x, should be understood as two values of the variable x, not as
components of the vector x. The third condition will be ignored.

In (5.26), we may replace a,/k, by h,/k; (mod 1). Henceforth we are going to
work with h;/k; instead of a;/k;, and the condition (5.26) is accordingly replaced
by

(5.28) lhy/ky —ho/k, |l < P~
Next we estimate how many pairs of quadruples (hj/k;, g;, r;, ij) (j = 1, 2)

satisfy (5.21), (5.27), and (5.28). Recall that x; = M,,+u, so that (5.27) involves
implicitly the indices g;. Let W be an upper bound for the number of such pairs
of quadruplets. Then B < M~ W, and combining this with (5.24) and (5.25) we

may, by Lemma 5, reduce the proof of (5.23) to showing that
(5.29) Kg3P2 e M~UANGU4y PI2YW2 LRV RVETYV 12,

To analyze the condition (5.27), we recall the equations (5.4) and (5.21),
which give together

(530)  fuM,,, v, y)+ o, = hyfk;+v2 M VO M)

for j = 1, 2. If we ignore the error term, this appears to be an implicit equation
for M,,. Therefore, with an approximation to M, in mind, we define the
function £(B, y) implicitly by

(5.31) £(QB, ), vo, ) = B+v2e M1V

If x runs over the interval [M, M'], then f (x, vy, y) runs over an interval
of length =34. This interval depends on y but not too strongly if we limit
y temporarily to a sufficiently short subinterval [Y;, ¥,;] of [¥, 2Y] with
Y,-Y, =Y. Let [B,, B,] be the set of the values of f,(x, vy, y)—v22 M~V for
all xe[M, M'], ye[Y,, Y,], and let [B}, B>] be a concentric interval which is
longer by a small proportion. Then (8, y)e((1—c,) M, M’ +c, M) (with ¢, as
in §1.2) is defined for all B[}, B2] and ye[Y,, ¥,]. Without essential loss of
generality, we may suppose that y,e[Y,, ¥;] for all r.

By the implicit function theorem and our assumptions on the function f,
we have

(5.32) 1Q,/Q <671,
(5.33) 12,/Q=Y"".
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The equation (5.30) gives information on the dependence of M,, on h//k,,
yr, and o;, only if the error term is at most O(d). Therefore we assume now that

(5.34) 2M~'V<9,

where the implied constant is sufficiently small, and consider the opposite case
later. Then hyk;—a; €[B), B2] for j=1,2.

By (5.30){5.32) and (5.34), we have
(5.35) M,, = Q(hfk;—ay, y,)+ 022571 V).

Since x;—M,, < 6~ 'V, the same expression is valid for x; as well. Hence,
substituting x; in this form into (5.27), we obtain the inequality

(5.36) lky/ky—Q(hy/ky =iy, ¥,,)' 2 [Qha k= iy y0)' ] < 45,
where
(5.37) 4, =K M YANYPP ' 4 20T 'V 20T 'V.

Since the numbers hj/k;—o;, in (5.36) lie in the interval [B}, f5] of length
=9, the rationals h/k; determine the numbers o;, uniquely, at least if we
suppose, as we may, that the system {a,} is cd-spaced for a sufficiently large
constant ¢. If we fix «,, then Q(h/k—a;, y) is defined for ye[Y;, ¥,] and for

those rationals h/k lying in the interval [o;+ B, o;+ f5). This observation,
(5.36), and Lemma 3 motivate the following definition:

(538) w(x, y)=R(x—a, y)" ' for xe[a,+py, o, +p5), yelY,, Y,

Then (5.36) amounts essentially to the condition (4.4) in Lemma 3. Moreover,
the assumptions (4.1) and (4.2) of the lemma are satisfied by (5.32) and (5.33)
(now H=K). Further, the condition (5.28) coincides with (4.3), where

(5.39) 4, <P

Lemma 3 now gives for the number X of the pairs of admissible triplets
(hj/k;, rj5 i) (j=1,2) the estimate

(5.40) X €6 'K3(1+4,Y5 ' Y)R+4,(4,+4,) K&R>.

Further, for each triplet (h;/k;, r;, i;), the number of possible values of g;1s <29,
by (5.35). Hence W < 22¢X, and (5.29) follows if we prove that

(5.41) Ko322-eM-UaNg U4y P32y X2 & RV+RIZTY 12,

Next we estimate X using (5.37), (5.39), and (5.40). Note that P <€ TV ! by
(5.20) and (5.16), whence 4, €2¢4,. Also, 4,Y; 'Y < 2¢ by (1.10) and (5.37).

Hence
X €223 'K3R+K$P 2R?).

The quantity v, was estimated in (5.22). Then, using the definitions (5.7),
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(5.16), and (5.20) of K, N, and P, we find that the left hand side of (5.41) is
QKO—HZZ—NZ M—U“Na 1/4 p3/2 V(J_”zKole-l-K%PulR)
C x(1+27¢(KK) ' MV ™Y
< (KoK 'RYATV =124 612K RVV?)(14(KK,) "MV ™)
< (K™IRVZTY =124 512 RV (K+ K~ MV™Y)
<(RYVTV 24 RV)(1+TV™?)
< RYVATY-12 4Ry,
as desired.

5.7. To complete the proof of Theorem 1, we still have to verify (5.29)
when (5.34) fails to hold, ie. if

(5.42) 2M-1ys 6.

Recall that W denotes the number of pairs of quadruples (h/k;, 'qj, i)
(j = 1, 2) satisfying (5.21), (5.27), and (5.28). We ignore the condition (5.27), and
letting g, and r; run over all possible values, we estimate the number of possible
pairs (hy/k;, i) (j=1,2).

If h,/k, is given, then there are <1+ K3P~! possibilities for h,/k,, by
(5.28). Further, for given h;/k;, q;, and r,, there are <4~ '2°M ~'V possibilities
for i, since the «; are o-spaced. The number of all pairs (q;, 7)) (j = 1, 2) being
<(TV~Y)2R2, we have

W <22 K31+ K3P ') R2,
Further, by (5.22) and (5.42), we have
vo € 14671 (KKy) ™t
Hence the left hand side of (5.29) is
< Kg'?2 e M UANG YA P2RYV(1 4671 (KKo) ™) (1+ Ko P 17?)
E K M NFHEPRRT Vz(l +07"Y(KKy) ') 1+ K P13
KOPKM'VPNY2RT 1 VY2 412K MV2N2RT 112
+OKPMYANYART "' V4+ K 'Ky  MYANY4RT 1V
<€RT™'2V3?% < RV,
so that (5.29) holds even in the case (5.42).

6. Applications to L-functions. We comment briefly on the proofs of the
estimates (1.25) and (1.27).

Let x be a primitive character (mod D). The fact that |L(1/2+iT, y)|?, for
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D < T?, can be expressed in terms of a Dirichlet polynomial S, (M, M'; t) with
|t—T] <log?*T and M, M'=<DT, follows from the estimate

log2T
(6.1) IL(12+iT, p)I* <log T(1+ [ IS, (M, M'; T+v)[* dv),
—1log2T
where M = a(DT/2r), M' = b(DT/2n), and 0 <a <1 < b. This, in turn, is
a consequence of the estimate
log?T

(6.2)  |{12+iT, > <log T(1+ § e " |L(1/2+i(T+v), x)|* dv).

—log2T
In the case of the zeta-function, this is due to D. R. Heath-Brown (for a proof,
see [Iv], Lemma 7.1), and the generalization to L-functions is straightforward.
By the functional equation L(s, y) = ®(s, ) L(1—s, ), we have

\L(l/Z+i(T+ v), X = L(1/2+i(T+v), x) 2 (1/2+i(T+v), 1) .

We replace L?(s, x) by its Dirichlet series (or by a suitable partial sum if y is the
principal character), multiply this by e~!"!, and integrate term by term over the
interval —log? T< v < log?T. It is easily seen (by arguments similar to those in
[1v], §7.4) that the contribution of those terms for which the variable of
summation lies outside the interval [M, M"] is negligible, so (6.1) follows. Then
(1.25) is a consequence of (1.24).

Note that the above argument cannot be carried over to functions ¢(s, y),
so that the analogy between L*(s, y) and ¢(s, x) is not quite perfect.

Finally we show how the twelfth moment estimate (1.27) follows from
Theorem 3. .

Consider the number of pairs (¢;, x), j=1,..., J with T<¢; < 2T such
that

(63) IL(1/2+it, 7)) > V
and |t;—¢t;l = 1 if ;= y; but i # j. It suffices to show that
(6.4) J < DT>V 12(DT).

We may suppose that V> DY4TY8(DT), for otherwise the assertion
follows from the bound J < (DT)'**V ™%, which is a consequence of the
standard estimate for the fourth moment of L-functions.

We construct a system of R non-overlapping intervals of length T*/2*¢
covering the points ¢;. We omit those points lying in a log? T:neighbourhood of
one of the endpoints of some interval, but a similar argument can be applied to
these points afterwards, with a new system of intervals. All the powers
|L{1/2+it, y)|*, in particular those with y = y,, are now integrated over our
system of intervals. Then it follows from (6.2), (6.3), and (1.24) that

JV* € D(RT'***+(RT)**)(DTY..
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Now R < J, so by our assumption on ¥V we may omit the first term on the
right. Then

Jv4 < DJ?3 TZ!?»(DT)z’

which implies the assertion (6.4), in the case D < T®. But otherwise (1.27) follows
directly from the fourth moment and the estimate L(1/2+it, x) < (DT)"**=
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Khintchine-type theorems on manifolds
by
M. M. DobsoN (York), B. P. RYynNE and J. A. G. VICKERS (Southampton)

To the memory of Professor V. G. Sprindiuk

1. Introduction. SprindZuk made fundamental contributions to the difficult
problem of extending classical results on metric Diophantine approximation to
submanifolds, or in his terminology, from the case of “independent variables”
to that of “dependent variables” [9]. In this paper some Khintchine-type
theorems are obtained for a fairly general class of manifolds.

For any vectors x = (X;, ..., X), ¥ = (V45 ---» ) in R* we write

k
xy=) xy; and |x|=max{x]:i=1,...,k}.
i=1
For any real number t let
litll = inf {|t—p|: peZ}.
Let y(r), r = 1, 2, ..., be a sequence of numbers with y(r)e[0, 1/2]. It follows

from Groshev's generalisation of Khintchine’s theorem ([9], Chap. 1, Theorem
12) that for almost all xe R* the inequality

(1.1) lg-xll < yql)-

has finitely many solutions gqeZ* if the series

(1.2) Z Yr)r!
rax]

converges and infinitely many solutions if the series diverges (providing y(r)
satisfies certain monotonicity conditions when k=1 or 2). Khintchine’s
theorem on simultaneous Diophantine approximation ([9], Chap. 1, Theorem 8)
asserts that the dual system of inequalities

(1.3) lgxll <ylal), i=1,...,k,
has finitely many solutions geZ for almost all xeR* if the series
(1.4) PR AL

r=1
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