Additive functions monotonic on the set of primes

by

J. M. De Koninck* (Québec), I. Kátai** (Budapest) and A. Mercier*** (Chicoutimi)

1. Introduction. Let \(L: [1, \infty) \to [1, \infty) \) be a monotonically increasing function such that \(\lim_{x \to \infty} L(x) = +\infty \). Let \(f = f_L \) be a strongly additive function determined by \(f(p) = L(p) \) on the set of primes. For an integer \(n > 1 \), let \(p(n) \) and \(P(n) \) denote the smallest and the largest prime factor of \(n \), respectively.

De Koninck and Mercier [3] proved that if \(L \) is a slowly oscillating function which increases “fast enough” and \(f = f_L \) is as above, then, as \(x \to \infty \),

\[
\sum_{2 \leq n \leq x} f(P(n)) \sim \sum_{2 \leq n \leq x} f(n).
\]

In [2], we proved that, for a large class of strongly additive functions \(f_L \),

\[
\sum_{2 \leq n \leq x} f_L(n)/L(P(n)) \sim x \quad \text{as} \quad x \to \infty.
\]

Our purpose in this paper is to find necessary and sufficient conditions which \(L \) must satisfy in order that the functions

\[
\frac{f_L(n)}{L(P(n))} \quad \text{or} \quad \frac{f_L(n)}{L(n)}
\]

have mean values or limit distributions.

In what follows, \(p, p_1, p_2, \ldots, q, q_1, q_2, \ldots \) stand for prime numbers. The letters \(c, c_1, c_2, \ldots \) denote suitable positive constants (not necessarily the same at every occurrence) which may depend only on \(L \). As usual, \(\pi(x) \) denotes the number of primes up to \(x \) while \(\pi(x, k, l) \) stands for the number of primes \(p \leq x, p \equiv l \pmod{k} \). Finally \(\phi(n) \) denotes the Euler totient function, \(\phi_1(n) \) denotes the \(t \)th iterative function, \(\phi_0(n) = n, \phi_1(n) = \phi(n), \phi_t(n) = \phi(\phi_{t-1}(n)). \)

* Research supported by grants of NSERC of Canada and FCAR of Québec.
** Work done while this author was a visiting professor at Temple University (Philadelphia).
Research partially supported by the Hungarian Research Fund No. 907.
*** Research supported by a grant of NSERC of Canada.
2. Lemmata on primes and on additive functions.

2.1. Let \(\Psi(x, y) \) be the number of integers \(n \) up to \(x \) for which \(P(n) \leq y \). It is known (see de Bruijn [1]) that

\[
\Psi(x, y) \leq x \exp \left(-c \frac{\log x}{\log y} \right)
\]

is valid uniformly in \(x, y \geq 2 \), and furthermore that

\[
\Psi(x, x^\alpha) = x(1+o_x(1)) \Omega(1/x) \quad (x \to \infty)
\]

uniformly in every interval \(\alpha \in [\delta, 1] \), \(\delta > 0 \), where \(\Omega \) is a continuous function.

2.2. By using elementary estimations on \(\pi(x) \), one can obtain immediately that, if \(s \geq 1 \),

\[
\sum_{p \leq H} \frac{(\log p)^{s}}{p} \leq c \frac{1}{s (\log H)^s}
\]

\[
\sum_{q \leq H} \frac{(\log q)^{s}}{q} \leq c \frac{(\log H)^s}{s}
\]

uniformly in \(H \geq 2 \).

2.3. Let \(c > 0 \). Then for \(0 < \delta < 1 \),

\[
\sum_{p \leq x^{\delta}} \exp \left(-c \frac{\log x}{\log p} \right) \leq e(\delta) + o_x(1)
\]

where \(e(\delta) \to 0 \) as \(\delta \to 0 \).

Inequality (2.5) is an immediate consequence of the elementary estimate \(\pi(x) < c_x x/\log x \).

2.4. If \(1 \leq k < x \) and \((k, \ell) = 1 \), we have

\[
\pi(x, k, \ell) < \frac{3x}{\varphi(k) \log(x/k)}
\]

For a proof of this result, see [5], Theorem 3.8.

2.5 (Theorem 2.3 in [5]). Let \(g \) be a natural number, \(a_i, b_i \) \((i = 1, \ldots, g) \) be pairs of integers satisfying \((a_i, b_i) = 1 \) \((i = 1, \ldots, g) \), and let

\[
E = \prod_{i=1}^{g} a_i \prod_{1 \leq r \neq s \leq g} (a_r, b_s - a_s) \neq 0.
\]

Let \(y \) and \(x \) be real numbers such that \(1 < y \leq x \). Further, let \(\mathcal{A} \) be a set of primes for which there exist constants \(\delta \) and \(A \) such that

\[
\sum_{p \leq y, p \in \mathcal{A}} \frac{1}{p} \geq \delta \log \log y - A.
\]

Then

\[
\# \{ n : n \in [x-y, x], (a_i n + b_i, \mathcal{A}) = 1, \forall i = 1, \ldots, g \}
\]

\[
\ll \prod_{p \leq x, \, p \in \mathcal{A}} \left(1 - \frac{1}{p} \right)^{w(p) - g} \frac{y}{(\log y)^A},
\]

where \(w(p) \) denotes the number of solutions of

\[
\prod_{i=1}^{g} (a_i, n + b_i) = 0 \pmod{p},
\]

and where the constant implied by the \(\ll \) notation depends only on \(g \) and \(A \).

This theorem contains as a special case the following:

Corollary. The number of solutions of the equation \(p - 1 = a q \) in prime variables \(p, q \), where \(p \) runs in the range \(1 < p \leq x \), is

\[
\ll \frac{x}{\varphi(a) \log^2(x/a)}
\]

and the constant implied by the \(\ll \) symbol is absolute.

2.6. Let \(0 < \sigma < 1/4 \), \(U(x, \sigma) \) be the number of those integers \(n \) up to \(x \), the second largest prime factor \(q \) of which is larger than \(P(n)^{1-\sigma} \). Then for each fixed \(\xi \in (0, 1/4) \),

\[
U(x, \sigma) \ll \Psi(x, x^\xi) + x \left(\log \frac{1}{1-\sigma} \right) \left(\log \frac{1}{\xi} \right) + o(x).
\]

This can be proven as follows. We separate the set of integers \(n \leq x \) in two sets; those for which \(P(n) < x^\xi \) and those for which \(P(n) \geq x^\xi \). The first set has no more than \(\Psi(x, x^\xi) \) elements. To estimate the second one, we first fix \(p \), then the second largest prime factor \(q \) of \(n \) is varying in \(p^{1-\sigma} \leq q < p \). The size of this second set is therefore not larger than

\[
x \sum_{x < p \leq \varepsilon x} \sum_{p < q \leq x} \frac{1}{p^{1-\sigma}} \frac{1}{q} = x \left(\log \frac{1}{1-\sigma} \right) \left(\log \frac{1}{\varepsilon^\xi} \right) + o(x).
\]

2.7. Let \(g(n) \) be an arbitrary strongly additive function. Then

\[
\sum_{x \leq n \leq x+1} \left(g(n) - \sum_{p \leq x} \frac{g(p)}{p} \right)^2 \ll c x \sum_{p \leq x} g^2(p).
\]

This is the so-called Turán-Kubilius inequality.

2.8. Uniformly in \(y > 2 \), \(0 < \varepsilon < 1 \), we have

\[
\# \{ p \leq y : P(p-1) \leq y^\varepsilon \} \ll c \lambda(\varepsilon) y/\log y,
\]

where \(\lambda(\varepsilon) \) is a function tending to zero as \(\varepsilon \to 0 \). (This inequality follows easily from Theorem 2.3 of [5] cited in 2.5.) Consequently, if \(0 < n_2 < n_1 \), then
\[
\liminf_{x \to \infty} \frac{1}{x^{1/q}} \leq d(\eta_1, \eta_2),
\]
where \(\lim_{\eta_2 \to 0} d(\eta_1, \eta_2) = 0 \) for every choice of \(\eta_1 > 0 \).

3. Lemmata on functions \(L \).

3.1. **Lemma 1.** Let \(L : [2, \infty) \to \mathbb{R}^+ \) be monotonic, continuous and satisfying
\[
\lim_{x \to \infty} L(x) = +\infty. \tag{3.1}
\]
Suppose that there exists a constant \(c > 0 \) such that
\[
\frac{1}{L(x)} \int \frac{L(u)}{u \log u} du \to c \quad \text{as } x \to \infty.
\tag{3.2}
\]
Then
\[
L(x) = (\log x)^{\delta(x)} H(x), \tag{3.3}
\]
where \(H(x) \) is a very slowly oscillating function, i.e., a function such that
\[
\lim_{x_1 \to \infty} \max_{x_1 \leq x_2 \leq x_1^2} \frac{|H(x_2)|}{H(x_1)} = 0.
\tag{3.4}
\]
Reciprocally, if \(L \) satisfies (3.2) and (3.3), then (3.1) holds also.

Remark. The notion of very slowly oscillating function was introduced by De Koninck and Mercier [3]. They defined such a function \(H : [A, +\infty) \to \mathbb{R}^+ \), \(A > 0 \), as one which satisfies
\[
\lim_{x \to \infty} \frac{H(x)}{H(x)} = 1, \quad \text{for every fixed } a > 0.
\]
This is clearly equivalent to our definition.

Proof of Lemma 1. Define
\[
F(x) = \int_{\frac{1}{2}}^{x} \frac{L(u)}{u \log u} du.
\tag{3.5}
\]
Clearly
\[
F'(x) = \frac{L(x)}{x \log x}.
\tag{3.6}
\]
By hypothesis, we have
\[
L(x) \sim \frac{1}{c} F(x),
\tag{3.7}
\]
So, using (3.5) and (3.7), it follows that
\[
\frac{F'(x)}{F(x)} \sim \frac{1}{cx \log x}.
\]
Therefore
\[
\log F(x) - \log F(2) = \int_{\frac{1}{2}}^{x} \frac{L(u)}{L(x) u \log u} du \sim \int_{\frac{1}{2}}^{x} \frac{1}{(1 + o_1(1))} \frac{1}{u \log t} dt = \frac{1 + o_1(1)}{c} \log \log x,
\]
whence we obtain
\[
F(x) = (\log x)^{\delta(x)} (\log x)^{o_1(1)}.
\]
Thus, by (3.6),
\[
L(x) = (\log x)^{\delta(x)} (\log x)^{o_1(1)} = (\log x)^{\delta(x)} H(x), \tag{3.8}
\]
where \(\delta(x) \to 0 \) as \(x \to \infty \).

Now we estimate \(\log (H(x_2)/H(x_1)) \) in the range \(x_1 \leq x_2 \leq x_1^2 \). First we observe that by (3.2) we have
\[
\frac{H(x_2)}{H(x_1)} = \frac{L(x_2)}{L(x_1)} \frac{1}{c} \log \frac{x_2}{x_1}.
\]
Using (3.6), we then obtain
\[
\log \frac{L(x_2)}{L(x_1)} = \log \frac{F(x_2)}{F(x_1)} + o_1(1).
\]
On the other hand, we have
\[
\log \frac{F(x_2)}{F(x_1)} = \int_{\frac{1}{\log t}}^{x_2} \frac{1 + o_1(1)}{x_1 \log t} dt = \int_{\frac{1}{\log t}}^{x_2} \frac{1 + o_1(1)}{c \log t} dt.
\]
Combining these last two estimates, we conclude that
\[
\log \frac{H(x_2)}{H(x_1)} = \int_{\frac{1}{\log t}}^{x_2} \frac{1 + o_1(1)}{c \log t} dt,
\]
which implies (3.3).

We now prove the second assertion. For this we assume that (3.2) and (3.3) are satisfied. So we have, for every fixed \(\delta > 0 \),
\[
\int_{\frac{1}{\log t}}^{x} \frac{L(u)}{L(x) u \log u} du \leq (1 + o_1(1)) \int_{\frac{1}{\log t}}^{x} \frac{1}{(1 + o_1(1))} \frac{1}{u \log u} du = (1 + o_1(1)) c (1 - \delta^{1/2}).
\tag{3.9}
\]
This implies that, uniformly in \(x \),
\[
\int_{\frac{1}{\log t}}^{x} \frac{L(u)}{u \log u} du < c_1 L(x).
\]
Consequently
\[\int \frac{L(u)}{u \log u} \, du < c_1 \left(L(x) + L(x^{1/2}) + L(x^{1/4}) + \ldots \right) \]
\[= c_1 L(x) \left(1 + \frac{L(x^{1/2})}{L(x)} + \frac{L(x^{1/4})}{L(x)} + \frac{L(x^{1/4})}{L(x)} + \ldots \right). \]

But from (3.2) it is clear that, uniformly in \(x > c_2 \), there exists \(0 < \theta < 1 \) such that
\[L(x^{1/2})/L(x) < \theta. \]

Thus we have
\[\int \frac{L(u)}{u \log u} \, du < c_2 L(x). \tag{3.8} \]

Then the conclusion follows easily from (3.7) and (3.8).

Remark 2. Assume that the conditions of Lemma 1 are satisfied with \(c = 0 \). Then
\[\frac{\log L(x)}{\log x} \to 0 \quad \text{as} \quad x \to \infty. \tag{3.9} \]

This result can be obtained easily if we observe that (3.1) implies that for every \(\epsilon > 0 \) we have \(L(x^{1/2})/L(x) < \epsilon \) whenever \(x > x_0(\epsilon) \).

Remark 3. Assume that the conditions of Lemma 1 are satisfied with \(c = \infty \). Then
\[\frac{\log L(x)}{\log x} \to 0 \quad \text{as} \quad x \to \infty. \tag{3.10} \]

In order to prove this, first let \(F \) be as in (3.4). Then \(L(x) = o_+(1) F(x) \), and using (3.5) we deduce that
\[\frac{F'(u)}{F(u)} = o_+(1) \frac{1}{u \log u} \quad (u \to \infty). \tag{3.11} \]

This implies that
\[\log F(x) = \log F(2) + \int \frac{1}{u \log u} \, du = \delta(x) \log \log x, \tag{3.12} \]
where \(\delta(x) \to 0 \) as \(x \to \infty \). But since \(L(x) \ll F(x) \), (3.10) follows from (3.12).

3.2. In this section we assume that \(L: [2, \infty) \to \mathbb{R}^+ \) is a monotonic function satisfying \(\lim_{x \to \infty} L(x) = +\infty \). Further, for each \(\Delta \in (0, 1) \), let \((\mathcal{H}_\Delta)\) denote the condition:
\[(\mathcal{H}_\Delta): \lim_{x \to \infty} \frac{L(x^{1-\Delta})}{L(x)} = 0. \]

Remark 4. A function \(L \) which satisfies condition \((\mathcal{H}_\Delta)\) for some \(\Delta \in (0, 1) \) and which is also a slowly oscillating function (that is, such that \(\lim_{x \to \infty} L(\alpha x)/L(x) = 1 \) for each fixed \(\alpha > 0 \)) must satisfy
\[\frac{L(x)}{L(x)} \ln x \to \infty \quad \text{as} \quad x \to \infty, \]
which means essentially that it increases faster than any power of \(\log x \).

Lemma 2. Assume that condition \(\mathcal{H}_{1/2} \) holds. Then there exists a monotonic function \(H \) such that \(\lim_{y \to \infty} H(y) = +\infty \) and such that
\[\frac{L(y)}{L(x)} < \left(\frac{\log y}{\log x} \right)^{H(y)} \quad \text{whenever} \quad 2 \leq y \leq x^{1/16}. \tag{3.13} \]

Proof. First we let
\[\varepsilon(y) \triangleq \max_{y \leq \epsilon, \epsilon \leq x} L(y), \]
and define \(H \) by
\[\varepsilon(y) = 2^{-2H(y)}. \]

Since clearly \(\lim_{y \to \infty} \varepsilon(y) = 0 \), we have \(\lim_{y \to \infty} H(y) = +\infty \). Let \(y \) and \(x \) be any pair of real numbers satisfying the condition \(2 \leq y \leq x^{1/16} \). Further, let \(k \) be the largest integer for which \(y^k \leq x \). Clearly \(k \geq 1 \). Since \(\varepsilon \) is monotonic, we can write
\[\frac{L(y)}{L(x)} \leq \frac{L(y)}{L(y^2)} \cdots \frac{L(y^{k-1})}{L(y^k)} \leq \varepsilon(y)^k = 2^{-2kH(y)}, \]
further, since
\[y^{k+1} > \sqrt{x}, \quad 2^{k+1} > \frac{1}{2} \log x, \quad \text{i.e.} \quad 2^{-2k} \leq 4 \log y, \]
we have
\[\frac{L(y)}{L(x)} \leq \left(\frac{4 \log y}{\log x} \right)^{2H(y)}. \]
Finally, since \(H(y) \geq 0 \) and
\[\left(\frac{4 \log y}{\log x} \right)^2 \leq \log y \]
we easily obtain (3.13).

Lemma 3. Assume that \((\mathcal{H}_\Delta)\) holds for every \(\Delta \in (0, 1) \). Let \(C \) and \(\varepsilon \) be arbitrary positive numbers. Then there exists a constant \(x_0 = x_0(C, \varepsilon) \) such that
Additive functions monotonic on the set of primes

Proof. The proof is similar to the one of Lemma 2. If \(y < x^{1/16} \), then (3.14) is a consequence of (3.13). So let us take \(y \geq x^{1/16} \). Set \(\sigma = 1/(1 - \epsilon) \) and, for each \(k = 1, 2, \ldots \), define \(y_k = y^k \). Further, let \(T \) be defined by \(y_T \leq x^{1 - \epsilon} < y_{T+1} \) and let \(A \) be a large positive number such that

\[
e^{AT} > (1 - \epsilon)^{-C} \sigma^T C.
\]

Clearly (3.15) implies that

\[
\frac{\log y}{\log x}^C \geq e^{-AT} \quad \text{if} \quad y \leq x^{1 - \epsilon}.
\]

Choose \(y_0 \) large enough so that

\[
\max_{y \geq y_0} \frac{L(y)}{L(x)} \leq e^{-A}.
\]

Then, if \(y \geq y_0 \), we have

\[
\frac{L(y)}{L(x)} \leq \frac{L(y)}{L(y_1)} \cdots \frac{L(y_{T-1})}{L(y_T)} \leq e^{-AT}.
\]

Observing that

\[
\log y_T = \sigma T \log y,
\]

\[
\log y_T \leq (1 - \epsilon) \log x,
\]

\[
(1 - \epsilon) \log x < \log y_{T+1} < \sigma \log y_T,
\]

(3.14) follows rapidly.

4. On additive functions satisfying \(f(n)/f(P(n)) \to 1 \) for almost all \(n \). Assume that \(L : [2, \infty) \to \mathbb{R}^+ \) is a monotonic function satisfying \(\lim_{x \to \infty} L(x) = +\infty \) and that \(f = f_L \) is a strongly additive function. Let

\[
u(n) \overset{\text{def}}{=} \frac{f(n)}{f(P(n))} - 1 = \frac{1}{L(P(n))} \sum_{1 \leq q < P(n)} L(q).
\]

Theorem 1. Let \(L, f, u \) be as above. Assume that \(u(n) \to 0 \) as \(n \to \infty \) for almost all \(n \). Then \((\mathcal{H}_0)\) holds for every \(0 < A < 1 \). On the other hand, if \((\mathcal{H}_1)\) holds for every \(0 < A < 1 \), then, for every \(a > 0 \),

\[
\lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} \left(e^{\nu(n)} - 1 \right) = 0,
\]

in which case \(u(n) \to 0 \) for almost all \(n \).

Proof. First assume that \(u(n) \to 0 \) for almost all \(n \) and suppose that \((\mathcal{H}_0)\) fails to hold for some \(\delta \in (0, 1) \), which we can assume to be smaller than 1/2. We shall show that this leads to a contradiction.

Let \(d \) be defined by \(\delta = 3 \cdot 3/(1 + d) \). Let \(1 \leq x_1 < x_2 < \ldots \) be a sequence of real numbers such that

\[
L(x_i^{1 - 2\delta}) > cL(x_i^{1 + \delta}) \quad (i = 1, 2, \ldots)
\]

for some \(c > 0 \). Define \(Y_k = x_k^{2 - 4\delta} \cdot \frac{d}{1 - 2\delta} \). Now let \(p \) and \(q \) run over the intervals

\[
x_i^{1 - 2\delta} < q < x_i^{1 + \delta}, \quad x_i < p < x_i^{1 + \delta}
\]

If \(n \leq Y_k \) and \(n \) is a multiple of \(pq \), then \(n = mpq \), where

\[
m \leq Y_k(pq) < x_i^{1 - 2\delta} \quad (i < q).
\]

\(P(n) = p \) and \(q \) is the second largest prime factor of \(n \). With this it is clear that

\[
u(n) > \frac{L(q)}{L(p)} > \frac{L(x_i^{1 - 2\delta})}{L(x_i^{1 + \delta})} > c.
\]

We now count the number \(S \) of such integers \(n \). Clearly

\[
S = \sum_{pq \leq Y_k} \left(\frac{1}{pq} \right) (\sum_{1 \leq p \leq \sqrt{p}}) + o(Y_k).
\]

Since

\[
\sum_{q} \frac{1}{q} = \log \frac{1}{1 - 2\delta} + o(1) \quad \text{and} \quad \sum_{p} \frac{1}{p} = \log (1 + d) + o(1),
\]

we may conclude that

\[
S \geq dY_k + o(Y_k), \quad \text{with} \quad d = \log \frac{1 - \delta}{1 - 2\delta} \cdot \log (1 + d) > 0.
\]

This contradicts our assumptions. The first assertion is thus proven.

II. Assume now that \((\mathcal{H}_1)\) holds for every \(\Delta \in (0, 1) \). Let

\[
S(x, u, a) \overset{\text{def}}{=} \sum_{x \leq n < x + 1} (e^{\nu(n)} - 1).
\]

We want to show that

\[
S(x, u, a) = o(x).
\]

Since \(u(n) \leq o(n) \) and
We first estimate \(S(x, u_3, 4a) \). Using (4.5) and Lemma 3, we obtain
\[
\sum_{n \leq x} e^{2\alpha(n)} \ll x (\log x)^{2a-1},
\]
a simple application of the Cauchy–Schwarz inequality shows that
\[
\sum_{n \leq x} (e^{\alpha(n)} - 1) = o(x),
\]
where \(\mathcal{S}_x \) is a subset of \(\{ n \in \mathbb{N} : n \leq x \} \) for which
\[
\text{card} (\mathcal{S}_x) = O \left(x (\log x)^{2a} \right).
\]
Therefore, because of (2.1), we may omit those integers \(n \leq x \) for which \(P(n) < \exp ((\log x)^{1/2}) \).

Let \(u_1(n), u_2(n) \) be arbitrary positive quantities such that \(u_1(n) + u_2(n) = u(n) \). First consider the obvious identity
\[
e^{\alpha(n)} - 1 = (e^{\alpha_1(n)} - 1) (e^{\alpha_2(n)} - 1) + (e^{\alpha_1(n)} - 1) - (e^{\alpha_2(n)} - 1).
\]
Now since
\[
(e^{\alpha_j(n)} - 1)^2 \leq e^{2\alpha_j(n)} - 1 \quad (j = 1, 2),
\]
we easily obtain, using the Cauchy–Schwarz inequality,
\[
S(x, u, a) \leq S(x, u_1, a) + S(x, u_2, a) + S(x, u_1 + 2a) (S(x, u_2 + 2a))^{1/2}.
\]
We now choose small positive numbers \(\varepsilon, \eta \) arbitrarily and pick according to these a large positive \(C \) such that the inequality
\[
(1 - \varepsilon)^{C - 1} < \eta
\]
is satisfied. Let \(x_0 \) be the constant involved in (3.14). We let
\[
u_1(n) \overset{\text{def}}{=} \sum_{q \mid n, q < x_0} \frac{L(q)}{L(P(n))}, \quad u_2(n) \overset{\text{def}}{=} u(n) - u_1(n).
\]
Since we have assumed that \(P(n) \geq \exp (\sqrt{\log x}) \), it is clear that, because of (3.14), one has \(u_1(n) \to 0 \) and hence \(S(x, u_1, a) = o(x) \) as \(x \to \infty \). Therefore, keeping in mind (4.4), in order to obtain (4.3), it is enough to prove that
\[
S(x, u_2, 2a) = o(x) \quad (x \to \infty).
\]
To do this, we split \(u_2 \) into two parts, \(u_2 = u_3 + u_4 \), where
\[
u_3(n) \overset{\text{def}}{=} \sum_{q \mid n, q < P^{1 - \varepsilon}, \ P^{1 - \varepsilon} < p_n \leq x_0} \frac{L(q)}{L(P(n))}, \quad u_4(n) \overset{\text{def}}{=} \sum_{q \mid n, q \leq P^{1 - \varepsilon}, \ P^{1 - \varepsilon} < p_n \leq x_0} \frac{L(q)}{L(P(n))}.
\]
We shall show that
\[
(1/x) S(x, u_i, 4a) < \delta \quad (i = 3, 4)
\]
for every \(\delta > 0 \) and every large \(x \), thus establishing the proof of (4.3) and hence of Theorem 1.

Using (2.1), we may write
\[
S(x, u_3, 4a) \leq \sum_{exp \log x < p < x^{1/4}} \frac{1}{p} (e^{\log \log p} - 1) e^{-\frac{1}{2} \log p} + \sum_{x^{1/4} < p < x} \frac{1}{p} (e^{10 \log p} - 1).
\]
The second sum is bounded by \(2(e^{10 \log x} - 1) \). To estimate the first sum, we can separate it into two parts, namely the one for which \(p < x^{10\log x} \) and the one for which \(p \geq x^{10\log x} \). Thus we obtain that the first sum on the right of (4.6) is
\[
\ll \sum_{exp \log x < p < x^{10\log x}} \frac{1}{p} e^{-\frac{1}{2} \log p} \sum_{x^{10\log x} < p < x} \frac{\log x}{p} e^{-\frac{1}{2} \log p}.
\]
The second sum in the above expression is clearly bounded. On the other hand, one can see, using (2.5), that the first sum above is bounded by a function of \(\eta \) which tends to 0 as \(\eta \to 0 \). Hence we have proven that \(S(x, u_3, 4a) < (\delta/2)x \) if \(\eta \) is small enough and \(x \) large enough.

We now proceed to estimate \(S(x, u_4, 4a) \). Let \(\varepsilon > 0 \) be small but fixed. For each integer \(n \geq \exp (\sqrt{\log x}) \), we let \(P(n) = p \), and \(q_1, \ldots, q_r \) be all its prime divisors which belong to the interval \([p^{1-\varepsilon}, p] \). If there are no such primes \(q_j \), then \(u_4(n) = 0 \), and in general, \(u_4(n) \leq r \). Therefore
\[
S(x, u_4, 4a) \leq \sum_{r = 1}^{\infty} (e^{4r} - 1) T_r(x),
\]
where \(T_r(x) \) stands for the number of those integers \(n \leq x \) such that \(P(n) = p > \exp (\sqrt{\log x}) \) and which have exactly \(r \) prime divisors in \([p^{1-\varepsilon}, p] \). We will show that there exists an absolute constant \(c_1 > 0 \) such that
\[
T_r(x) \leq c_1 x (2a)^{r!}.
\]
Setting this in (4.7), it will follow that
\[
S(x, u_4, 4a) \leq c_1 x \sum_{r = 1}^{\infty} e^{4r} (2a)^{r!} = c_1 x (2e^{2a} - 1).
\]
Hence, if \(\varepsilon \) is sufficiently small, we will have
\[
S(x, u_4, 4a) \leq c_1 x 4e^{2a} \varepsilon.
\]
from which it follows that \(S(x, u_{k}, 4a) = o(x) \). This will end the proof of Theorem 1 if we can prove (4.8). For this, we first write

\[
T_1(x) = \sum_{\exp^{\log x} \leq p \leq x} \sum_{q_1, \ldots, q_r \leq p} 1,
\]

where in the inner sum the \(q_i \)'s and \(m \) satisfy

\[
p^{1-\varepsilon} \leq q_1 < \ldots < q_r \leq p, \quad P(m) \leq p^{1-\varepsilon}.
\]

Hence we have

\[
T_1(x) = \sum_{\exp^{\log x} \leq p \leq x} \sum_{p^{1-\varepsilon} \leq q_1 < \ldots < q_r \leq p} \psi \left(\frac{x}{pq_1 \ldots q_r} \right) p^{1-\varepsilon}.
\]

(4.9)

We now separate the sum over \(p \) into two sums, according as \(p > x^{1/(8n)} \) or \(p \leq x^{1/(8n)} \). We first consider the one with \(p > x^{1/(8n)} \). In this case, since \(p^{1-\varepsilon} < x \), it follows that \(p < x^{1/4} \) and therefore the part of the sum in (4.9) concerned by those \(p \)'s is clearly

\[
\ll x \sum_{x^{1/(8n)} \leq p \leq x^{1/2}} \frac{1}{p^r} \left(\sum_{1 \leq q \leq p} \frac{1}{q} \right) \leq 3 \frac{(2x)^{r-1}}{r!}.
\]

If \(p \leq x^{1/(8n)} \), then \(q_1, \ldots, q_r \leq p^{1+\varepsilon} < x^{1/4} \) and

\[
\psi \left(\frac{x}{pq_1 \ldots q_r} \right) p^{1-\varepsilon} \leq \frac{x}{pq_1 \ldots q_r} \exp \left(-\frac{c \log x}{2 \log p} \right). \tag{4.10}
\]

Summing first on \(q_1, \ldots, q_r \), the sum with \(p \leq x^{1/(8n)} \) is bounded by

\[
\frac{(2x)^r}{r!} \sum_{p \leq x^{1/(8n)}} \exp \left(-\frac{c \log x}{2 \log p} \right) \ll 1.
\]

This proves (4.8) and finishes the proof of Theorem 1.

Remark 5. Let \(P_1 > P_2 > \ldots > P_k \) be the largest prime factors of \(n \) and define

\[
u_n = \frac{1}{L(P_k)} \sum_{q \leq P_k} L(q).
\]

By the method used in the proof of Theorem 1, one could prove the following generalization of Theorem 1:

Theorem 1'. Assume that condition \((\mathcal{H})\) holds for every \(0 < \Delta < 1 \). Then, for every positive integer \(k \) and every \(a > 0 \),

\[
\sum_{n \leq x} (e^{a_n}(n) - 1) \to 0.
\]

5. The behaviour of \(f(n) \mathcal{H} (P(n)) \) on subsets of \(N \). In this section we shall show that the sufficiency of the conditions (in Theorem 1) remains true if we replace the set of all integers by some subset satisfying certain conditions. Hence we state:

Theorem 2. Let \(\mathcal{A} = \{a_1, a_2, \ldots\} \) be an infinite sequence of not necessarily distinct integers such that \(a_n = O(n^k) \), where \(k \) is a fixed positive real number. Assume that

\[
\lim_{x \to \infty} \frac{1}{x} \# \{n \leq x : P(a_n) < x^\delta \} \leq c(\delta),
\]

where

\[
\lim_{\delta \to 0} c(\delta) = 0.
\]

Further, for \(0 < \varepsilon < \delta \), let \(S(x, \delta, \varepsilon) \) be the number of those integers \(n \leq x \) for which there exists a suitable couple of primes \(q_1, q_2 \) such that

\[
q_1 q_2 | a_n; \quad x^\delta < q_1 < q_2 < q_1 x^\varepsilon
\]

and set

\[
d(\delta, \varepsilon) \overset{\text{def}}{=} \lim_{x \to \infty} \frac{1}{x} S(x, \delta, \varepsilon).
\]

Assume that

\[
\lim_{\varepsilon \to 0} d(\varepsilon, \delta) = 0 \quad \text{for every } 0 < \delta < 1/2.
\]

and furthermore that for \(L \) the condition \((\mathcal{H}_L)\) is valid for every \(0 < \Delta < 1 \).

Then \(u(a_n) \to 0 \) for almost all \(n \).

Proof. First we choose \(0 < \varepsilon < \delta \) fixed. We then define the set \(\mathcal{A} = \mathcal{A}_{n \in \mathbb{N}} \) as the set of all integers \(n \leq x \) such that \(P(a_n) > x^\delta \) and for which there exist no pairs \(q_1, q_2 \) of primes satisfying the conditions

\[
q_1, q_2 \in [x^{\delta/2}, P(a_n)]; \quad q_1 q_2 | a_n, \quad q_1 < q_2 < q_1 x^\varepsilon.
\]

Let \(\mathcal{B} \) be the complementary set, that is,

\[
\mathcal{B} = \{1, 2, \ldots, [x]\} \setminus \mathcal{A}.
\]

We shall first prove that \(u(a_n) \) is small for every \(n \in \mathcal{B} \). So let \(a_n = P(a_n)^{1/2} b_n d_n \), where \(P(a_n)^{1/2} b_n d_n \) is composed of the prime power divisors \(q^a \) of \(a_n \) satisfying \(x^{\delta/2} < q < P(a_n) \), and \(d_n \) of those for which \(q \leq x^{\delta/2} \). Let also

\[
\sigma_1(n) \overset{\text{def}}{=} \sum_{q \in \mathcal{B}} \frac{L(q)}{L(P(a_n))}, \quad \sigma_2(n) \overset{\text{def}}{=} \sum_{q \in \mathcal{B}} \frac{L(q)}{L(P(a_n))}.
\]

It is clear that

\[
u_n \leq \sigma_1(n) + \sigma_2(n).
\]

Let \(n \in \mathcal{A} \). Since \(q | b_n \) implies that \(q < P(a_n) x^{-\varepsilon} \), by Lemma 3, we have
Finally, we estimate \(\text{card}(\mathfrak{A}) \). If \(n \in \mathfrak{A} \), then either \(P(a_n) \leq x^4 \), or there exist \(q_1, q_2, q_3 \) such that \(q_1 q_2 q_3 \leq x^3 \leq q_1 < q_2 < q_1 x^3 \). So, by our assumptions (5.3) and (5.4), we have
\[
\limsup T_n = c(\beta/2) + d(e, \delta/2).
\]
We first let \(e \) tend to 0, and then we let \(\delta \) tend to 0. It follows that
\[
\limsup T_n = 0.
\]
Since this is true for every \(\zeta > 0 \), our theorem follows.

Remark 6. One can easily check that the conditions hold for \(\mathfrak{A} = N \).

6. Iterations of the totient function.

Theorem 3. Let \(\mathfrak{A} = \{\varphi_\mathcal{F}(n): n = 1, 2, \ldots\} \), where \(\varphi_\mathcal{F}(n) \) is the \(t \)-fold iterate of the Euler totient function. Then the conditions of Theorem 2 are satisfied. Consequently, if \((\mathcal{F}_\mathcal{A}) \) is satisfied for every 0 < \(\Delta < 1 \), then
\[
u(\varphi_\mathcal{F}(n)) \to 0 \quad (n \to \infty)
\]
for almost all \(n \).

Proof. Let \(R_0(n) = n \), \(R_1(n) = \varphi_\mathcal{F}(n) R_{-1}(n) \), i.e., \(R_i(n) = n \varphi_\mathcal{F}(n) \cdots \varphi_\mathcal{F}(n) \). In order to prove our claim, we only need to prove that the conditions of Theorem 2 hold for
\[
\mathfrak{A}^\mathcal{F}_t = \{R_i(n): n = 1, 2, \ldots\}.
\]
We proceed by induction on \(t \). If \(t = 0 \), then \(\mathfrak{A}^\mathcal{F}_0 = N \), and consequently the conditions of Theorem 2 hold. Assume now that \(t \geq 1 \). We shall proceed in three major steps:

1. Let \(\mathcal{A}_t = \{p_1, p_2, \ldots, p_k\} \) be an arbitrary set of primes \(p_i \leq x \). Define \(\mathcal{A}_{t+1} \) as follows. \(\mathcal{A}_{t+1} \) is the set of those primes \(q \leq x \) for which there exists \(p \in \mathcal{A}_t \) such that \(pq = q \). If \(\mathcal{A}_{t+1} \) is defined, then \(\mathcal{A}_{t+2} \) is the set of those primes \(q \leq x \) for which there exists \(p \in \mathcal{A}_{t+1} \) such that \(pq = q \).

2. For an arbitrary subset \(\mathcal{S} \) of primes, let
\[
A_t(\mathcal{S}) = \# \{n \leq x: (R_i(n), \mathcal{S}) > 1\}.
\]
Here \((R_i(n), \mathcal{S}) > 1 \) means that there exists \(q \in \mathcal{S} \) for which \(q R_i(n) \). Hence if we let
\[
E_t(\mathcal{S}) = \# \{n \leq x: (R_i(n), \mathcal{S}) > 1 \text{ and } (R_{t+1}(n), \mathcal{S}) = 1\},
\]
it follows that
\[
A_t(\mathcal{S}) = \sum_{j=0}^{t} E_j(\mathcal{S}).
\]
Letting
\[
s(\mathcal{S}) = \sum_{p \in \mathcal{S}} 1/p,
\]
we have
\[
A_t(\mathcal{S}) = s(\mathcal{S}) + \sum_{j=0}^{t-1} E_j(\mathcal{S}).
\]
we clearly have
\[(6.4) \quad E_0(x|\mathcal{D}) \leq x_0(\omega),\]
for every choice of \mathcal{D}. Furthermore, if $\mathcal{D} = \mathcal{D}$ and n is counted in $E_1(x|\mathcal{D})$, then n is counted in $E_{r_1-1}(x|\mathcal{D}_{-1})$ as well. Indeed, let $r_1-1 = r_1^{t_1} \cdots r_l^{t_l}$ and assume that $(R_{r_1-1}(n), \mathcal{D}) = 1$, $(R_r(n), \mathcal{D}) > 1$. Since there exists $p \mid (n) = \prod_{i=1}^l r_i^{-1}(r_i - 1)$, $p \in \mathcal{D}$ and $(p, R_{r_1-1}(n)) = 1$, it follows that $r_i - 1 = 0$ (mod p) for some $r_i \in \mathcal{D}_{-1}$. So we have
\[(6.5) \quad E_1(x|\mathcal{D}) \leq E_{r_1-1}(x|\mathcal{D}_{-1}).\]
Now let δ be a small positive number and assume that all the elements of \mathcal{D} are larger than x^δ. Then the elements of \mathcal{D}_j are larger than x^4 for $0 \leq j < t$, as well.

Further, let η be a small positive number that may depend on δ. We shall choose it later explicitly in such a way that it will allow us to estimate $s(\mathcal{D}_j)$ from $s(\mathcal{D}_{t-1})$.

First we observe that
\[s(\mathcal{D}) \leq \sum_{p \in \mathcal{D}_{t-1}} \sum_{q \equiv 1 \pmod{p}} 1/q = \sum_{p \in \mathcal{D}_{t-1}} (U_1(p) + U_2(p)),\]
where in $U_1(p)$ we sum over those q for which $q < p^{1+\delta}$, while in $U_2(p)$ we sum over those q such that $q > p^{1+\delta}$.

Let $M_0 = p^{1+\delta}$, $M_v = e^v M_{v-1}$, $v = 1, 2, \ldots$. Starting from the inequality
\[\pi(2M_v, p, 1) \leq \frac{c M_v}{p \log (M_v/p)},\]
valid with an absolute constant c (see (2.6)), we obtain
\[U_2(p) = \sum_{M_v < s \leq p(M_v M_{v-1})} \frac{1}{q} \leq \frac{c}{p} \sum_{v = 0}^{\infty} \sum_{v+\eta \log p},\]
where v runs over the nonnegative integers satisfying $M_v \leq x$. Hence we have
\[U_2(p) \leq \frac{c}{p} \log \frac{1}{p^\eta};\]
therefore
\[\sum_{p \in \mathcal{D}_{t-1}} U_2(p) \leq A s(\mathcal{D}_{t-1}),\]
where
\[A = c \log \frac{1}{1/\eta^\delta}.\]

We now proceed to estimate
\[(6.7) \quad \sum_{p \in \mathcal{D}_{t-1}} U_1(p).\]
If p, q are two primes occurring in (6.7), then $q - 1 = ap$, where $1 \leq a \leq p^4$. Therefore the sum (6.7) is not greater than $\sum_{p \leq \eta \log M_{t-1}} 1/q$, where the summation is extended over all solutions of the equation $q - 1 = ap$, $1 \leq a \leq p^4$ in primes p, q satisfying $x^\delta < p < q \leq x$. To estimate it, we shall use the Corollary stated in Section 2.5. We split the interval $[x^\delta, x]$ into intervals of the type $[M_v, M_{v+1}]$, where $M_0 = x^\delta$, $M_v = 2^v M_0$. Since for every fixed a, the number of solutions of $q - 1 = ap$, where $q \in [M_v, M_{v+1}]$ is
\[\ll M_v^2 (\eta \log M_v)^2 M_v,\]
assuming that $\eta < 1/2$, say, and since clearly $\sum 1/q (a) \ll \log M_v$, we obtain, after some calculations,
\[\sum_{p \in \mathcal{D}_{t-1}} U_1(p) \leq c_1 \eta \log (1/\delta).\]
Hence we proved that
\[(6.8) \quad s(\mathcal{D}) \leq A s(\mathcal{D}_{t-1}) + B,\]
where
\[(6.9) \quad B = c_1 \eta \log (1/\delta).\]

Inequality (6.8) implies that
\[s(\mathcal{D}_0) \leq A s(\mathcal{D}_0) + s(\mathcal{D}_{t-1}) + (1 + A + A^2 + \ldots + A^t - 1).\]
Therefore, using (6.5) and (6.4), we obtain
\[(6.10) \quad \frac{1}{x(\log x)^t} \sum_{p \in \mathcal{D}_t} \frac{1}{p} \leq A s(\mathcal{D}_0) + B (1 + A + A^2 + \ldots + A^t),\]
and so by (6.2) we obtain
\[(6.11) \quad \frac{1}{x(\log x)^t} \sum_{p \in \mathcal{D}_t} \frac{1}{p} \leq A s(\mathcal{D}_0) + B (1 + A + \ldots + A^t + A^t).\]

2. We are now in a position to prove that (5.2) is satisfied. Hence let
\[\lim_{x \to \infty} \frac{1}{x} \# \{ n \leq x : P(\mathcal{D}_j(n)) < x^{2^j} \} = e_j(\delta) \quad (j = 0, 1, \ldots, t).\]
Assume that $e_j(\delta) \to 0$ as $\delta \to 0$ has been proved for $j \leq t - 1$. We shall prove it is also true for $j = t$.

Let $\varepsilon > 0$ be an arbitrary small number. Let us choose δ_j so that $e_{j-1}(\delta_j) < \varepsilon/2$ is satisfied. Let \mathcal{D} be the set of those integers $n \leq x$ for which $P(\mathcal{D}(n)) < x^{2^j}$. Write $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$, where $P(\mathcal{D}_1(-1)(n)) < x^{2^j}$ in \mathcal{D}_1, and $P(\mathcal{D}_2(-1)(n)) \geq x^{2^j}$ in \mathcal{D}_2. Because of the hypothesis of induction, we have
\[\text{card} (\mathcal{D}_1) \leq x e_{j-1}(\delta_j) + o(x) < ax\]
if \(x \) is large enough. It remains to estimate \(\text{card}\, (\mathcal{A}_2) \). If \(n \in \mathcal{A}_2 \), there exists a prime \(q > x^{\frac{1}{2}} - 1 \), \(q \big| R_{-1}(n) \), \(P(q-1) < x^{\frac{1}{2}} \). We shall now make use of the result of part 1. We define \(\mathcal{A}_{-1} \) as the set of the primes \(q \in [x^{\frac{1}{2}} - 1, x] \) for which \(P(q-1) < x^{\frac{1}{2}} \). Then
\[
(6.12) \quad s(\mathcal{A}_{-1}) = \sum_{x^{\frac{1}{2}} - 1 < q < x; P(q-1) < x^{\frac{1}{2}}} 1/q.
\]
It is clear that
\[
\text{card}\, (\mathcal{A}_2) \leq A_{-1}(x|\mathcal{A}_{-1}).
\]
We now substitute \(\delta_{-1} \) in the place of \(\delta \) in (6.6) and (6.9). Further, let \(\eta \) be so small that \(B(\sum_{r=1}^{1}(t-j)A^r) < \epsilon/2 \). Hence it follows, using (6.11), that
\[
\text{card}\, (\mathcal{A}_2)/x \leq A_{-1}^{-1}s(\mathcal{A}_{-1}) + \epsilon/2.
\]
Collecting our estimates, we obtain
\[
e(x, \delta) \leq A_{-1}^{-1}s(\mathcal{A}_{-1}) + \epsilon.
\]
It then follows from Section 2.8 that
\[
\limsup_{x \to \infty} e(x, \delta) \leq \epsilon.
\]
Since \(\epsilon \) can be taken arbitrarily small, our result follows.

3. It remains to prove that (5.4) is satisfied. For this we assume that (5.4) is true for \(\mathcal{A}_{-1}^n \), \(\mathcal{A}^*_{-1} \). We show that this fact implies that it is true for \(\mathcal{A}_{-1}^n \). Let \(0 < \epsilon < \delta \) be fixed and let \(\mathcal{A} \) be the set of those prime pairs \((q_1, q_2)\) for which \(q_1/q_2 < x^n, x^n \leq q_1, q_1, q_2 \leq x \). Let \(\eta \) be small (depending on \(\epsilon \)), \(M_\eta \) be the set of those integers \(n \leq x \) for which \(\bigcap_{r \leq n} R_r(n) \) and \(p \in D_n \). Here \(D_n \) is the set of primes \(p \in [x^n, x] \) such that \(p-1 \) does not have prime divisors in the interval \([x^n, x^{1/2}]\); \(E_n \) is the set of prime divisors of \(p \in [x^n, x] \) such that \(p-1 \) contains two prime divisors satisfying \(q_1 < q_2 > x^{1/2}, x^{1/2} > q_1 \). By using parts 1 and 2 above, one can show that
\[
\limsup_{x \to \infty} \frac{A_n(x|D_n)}{x} = 0, \quad \limsup_{x \to \infty} \frac{A_n(x|E_n)}{x} = 0.
\]
To see this, it is enough to observe that
\[
\limsup_{x \to \infty} \left(\sum_{p \in D_n} \frac{1}{p} \right) = 0, \quad \limsup_{x \to \infty} \left(\sum_{p \in E_n} \frac{1}{p} \right) = 0,
\]
estimates which follow easily from known sieve results. Thus we have
\[
\text{card}\, (\mathcal{A}_2) \leq (\tau(\eta) + \epsilon_2(\eta)) x
\]
where \(\tau(\eta) \to 0 \) as \(\eta \to 0 \). Let \(\mathcal{N}_\eta = \{1, 2, \ldots, [x]\} \setminus \mathcal{M}_\eta \). Let \(H_j(x|\mathcal{A}) \) be the number of integers \(n \in \mathcal{N}_\eta \) for which there exists \((q_1, q_2) \in \mathcal{A} \) satisfying \(q_1, q_2 \big| R_{-1}(n) \), but for which there exists no pair \((q_3, q_4) \in \mathcal{A} \) such that \(q_1 q_2 \big| R_{-1}(n) \). Let
\[
K_j(x|\mathcal{A}) = \sum_{j=0}^{t} H_j(x|\mathcal{A}).
\]
We shall prove that
\[
(6.13) \quad \limsup_{x \to \infty} \frac{K_j(x|\mathcal{A})}{x} = 0.
\]
This will imply (5.4) and end the proof of the theorem.

We have
\[
H_0(x|\mathcal{A}) \leq x \sum_{(q_1, q_2) \in \mathcal{A}} \frac{1}{q_1 q_2} \leq x \sum_{q_1 \in \mathcal{Q}} \frac{1}{q_1} \left(\sum_{q_2 \in \mathcal{Q}} \frac{1}{q_2} \right)
\]
\[
\leq x \log \frac{1}{1-\epsilon/\delta} \log \frac{1}{1-\epsilon} + o(x),
\]
which proves that
\[
\limsup_{x \to \infty} \frac{H_0(x|\mathcal{A})}{x} = 0.
\]
Let now \(1 \leq j \leq t \) and consider \(H_j(x|\mathcal{A}) \). Let \(n \) be counted in \(H_j(x|\mathcal{A}) \). Then \(q_1 q_2 \) such for a suitable choice of \((q_1, q_2) \in \mathcal{A} \), but there exist no \((q_3, q_4) \in \mathcal{A} \) such that \(q_3 q_4 \big| R_{-1}(n) \). Let us fix \((q_1, q_2) \in \mathcal{A} \). Then the following cases can occur:
(a) \(q_1 R_{-1}(n) \), \(q_1 R_{-1}(n) \),
(b) \(q_2 R_{-1}(n) \), \(q_2 R_{-1}(n) \),
(c) \(q_1 R_{-1}(n) \), \(q_1 R_{-1}(n) \).

We split the sum \(H_j(x|\mathcal{A}) = H_j^{(0)}(x|\mathcal{A}) + H_j^{(1)}(x|\mathcal{A}) + H_j^{(2)}(x|\mathcal{A}) \), according to these three cases.

We first consider the case (a). Let \(U_{j-1}(1) \) be the set of primes \(\{r_0^{(0)}, r_1^{(0)}, \ldots\} \) for which \(q_1 r_0^{(0)} \) for every positive integer \(v \) and which come up as divisors of \(R_{j-2}(n) \) for at least one \(n \in \mathcal{N}_\eta \). Assume that \(t < \eta \). Then \(U_{j-1}(1) \cap U_{j-1}(1) = \emptyset \). Indeed, if \(v \) were an element of the intersection, then it would imply that \(q_1 r_0^{(0)} \). But then \(r \in \mathcal{M}_\eta \), which is impossible because \(n \in \mathcal{N}_\eta \). So there exist \(r_0^{(0)} \in U_{j-1}(1), r_0^{(1)} \in U_{j-1}(1), r_0^{(2)} \in U_{j-1}(1), r_0^{(1)} r_0^{(2)} \in R_{j-2}(n) \). Furthermore, it is clear that \(r_0^{(2)} \big| R_{j-2}(n) \). Starting now from the set \(X_{j-1} = U_{j-1}(1) \), define \(X_{j-2} \) as the set of those primes \(p \in [x^n, x] \), for which there exist \(r \in X_{j-1}, r \big| r_1^{(2)}, \) which do not belong to \(\mathcal{N}_\eta \). Now let \(Y_{j-1} = Y_{j-1}(1) \) and \(Y_{j-2} \) be defined by \(Y_{j-1} \) exactly in the same way as \(X_{j-2} \) was defined from \(U_{j-1}(1) \). Further, let \(Z_{j-2} = X_{j-2} \cap Y_{j-2} \), \(X_{j-2} = X_{j-2} \cap Z_{j-2} \), \(Y_{j-2} = Y_{j-2} \cap Z_{j-2} \). Let \(X_{j-1}, \ldots, X_0, Y_{j-1}, \ldots, Y_0, Z_{j-1}, \ldots, Z_0 \) be defined by the same process.

If \(n \) is counted, then the following cases can occur:
(1) there exist \(p \in X_0, q \in Y_0 \) such that \(pq \big| n \),
Since there is essentially no difference between the treatment of the cases (a) and (b), we will only consider case (b). So let \(q_1 \) and \(q_2 \) be fixed. Let \(s \) be the smallest integer such that \(q_1 R_s(n), 0 \leq s \leq j-1 \). Let \(W_{j-1} \) be the set of those primes \(r \not| D_n \) such that \(q_1 r - 1, r \leq x \). Let \(W_{j-2} \) be the set of those primes \(u \not| x \) such that \(r u - 1 \) for some \(r \in W_{j-2}, u \not| D_n \). Continuing this process, we define \(W_{j-3}, \ldots, W_1 \). If \(n \) is counted, then there exists \(r^{(n)} \in W_1 \) such that \(r^{(n)} | R_s(n), q_2 R_s(n) \) and such that \(r^{(n)} - 1 \not| R_{s-1}(n), q_2 R_{s-1}(n) \). It follows that the estimation

\[
\left\{ n \in \mathcal{N}_n : r^{(n)} | R_s(n), \text{case (c)} \right\} \leq B^{2s/(q_2 r^{(n)})}
\]

can be deduced as earlier. Moreover, since

\[
\sum_{r^{(n)} \in W_s} 1/r^{(n)} < B^{-s}/q_1,
\]

we have

\[
\lim \sup_{x \to \infty} \frac{1}{x} H^{(n)}(x, \mathcal{S}) = 0.
\]

Similarly we can deduce that

\[
\lim \sup_{x \to \infty} \frac{1}{x} H^{(n)}(x, \mathcal{S}) = 0.
\]

Summing up for \(j \leq t \), we see that for \(d(e, \delta) \) defined in (5.3),

\[
\lim \sup_{e \to 0, \delta \to 0} \frac{1}{x} H^{(n)}(x, \mathcal{S}) = 0.
\]

But since this is true for every \(\eta > 0 \) and \(\tau(\eta) \to 0 \) as \(\eta \to 0 \), it follows that (5.4) is true.

This ends the proof of Theorem 3.

7. Further applications. There are other cases in which we can apply Theorem 2 successfully. The following results, which we state as theorems, can be obtained by using the theorem mentioned in 2.5 and from other known sieve results.

Theorem 4. Let \(\mathcal{A}_1 = \{ p + 1 : p \text{ is prime} \} \) be the set of shifted primes. Then, if \(l \neq 0 \), the conditions of Theorem 2 hold. Consequently, if \((\mathcal{A}_1) \) is true for \(0 < A < 1 \), then \(u(p + 1) \to 0 \) as \(p \to \infty \) for almost all \(p \).

Theorem 5. Let \(k \geq 3 \), \((0 < l_1 < l_2 < \ldots < l_s < \eta k) \) be integers, coprime to \(k \), \((l_j, k) = 1 \) \((j = 1, \ldots, s) \). Let \(\mathcal{B} \) be the set of those integers \(q \) for which all the prime divisors belong to the union of the sets \(\{ p : p \equiv l_j \pmod{k} \} \). Let \(\mathcal{A}_1 = \mathcal{B} + 1 = \{ n + 1 : n \in \mathcal{B} \} \). Then the conditions of Theorem 2 are satisfied for \(\mathcal{A} = \mathcal{A}_1 \) \((l = 0, \pm 1, \pm 2, \ldots) \).
THEOREM 6. Let \(K(x) \) be a polynomial with rational roots, taking on positive integer values for every \(n > n_0 \). Let \(\mathcal{A} = \{ K(n) : n > n_0 \} \). Then the conditions of Theorem 2 hold.

Remark 7. We are unable to prove (5.4) if \(\mathcal{A} = \{ n^3 + 1 : n = 1, 2, \ldots \} \).

9. The distribution of the large values of \(f(n)/L(\sigma(n)) \). Let

\[
\nu(n) = u(n) + 1 = \frac{f(n)}{L(\sigma(n))} = \sum_{q \in \mathcal{Q}} \frac{L(q)}{\Omega(q)}
\]

(8.1)

and

\[
Q(K) = \limsup_{x \to \infty} \frac{1}{x} \# \{ n \leq x : \nu(n) \geq K \}.
\]

(8.2)

In this section we shall give necessary and sufficient conditions for \(L \) which guarantee the fulfillment of

\[
\lim_{K \to \infty} Q(K) = 0.
\]

(8.3)

We first define a function which will play an important role, namely

\[
a(x) = \sum_{q \in \mathcal{Q}} L(q)/q.
\]

(8.4)

Using the Turán–Kubilius inequality (stated in (2.7)), we obtain

\[
\sum_{n \leq x} \left(\frac{f(n)}{L(x)} - \frac{a(x)}{L(x)} \right)^2 < cx \sum_{q \leq x} \left(\frac{L(q)}{L(x)} \right)^2.
\]

(8.5)

Since \(L(q)/L(x) \leq 1 \), the right-hand side of (8.5) is less than \(cx a(x)/L(x) \), hence we have

\[
\# \left\{ n \leq x : \frac{f(n)}{L(x)} < \frac{1}{2} \frac{a(x)}{L(x)} \right\} < 4cx \frac{L(x)}{a(x)}.
\]

(8.6)

Since \(f(n)/L(x) \leq \nu(n) \), we obtain

\[
\# \left\{ n \leq x : \nu(n) < \frac{1}{2} \frac{a(n)}{L(x)} \right\} < 4cx \frac{L(x)}{a(x)}.
\]

(8.7)

If \(a(x)/L(x) \) is not bounded and \(x_v \to \infty \) is a sequence of real numbers such that

\[
z_v = a(x_v)/L(x_v) \to \infty, \quad \text{as } v \to \infty,
\]

then, from (8.7), we obtain

\[
\# \left\{ n \leq x_v : \nu(n) \geq z_v/2 \right\} > (1-\varepsilon)x_v,
\]

for every \(\varepsilon > 0 \), provided \(\nu \) is large enough.

Thus the condition

\[
a(x) \leq cL(x)
\]

is necessary to guarantee (8.3). Now assume that it holds and let \(0 < \eta < 1 \) be a constant. Then

\[
a(x) \geq \sum_{x^\eta \leq q \leq x} \frac{L(q)}{q} \geq L(x^\eta) \left(\log \frac{1}{\eta} + O\left(\frac{1}{\eta \log x} \right) \right).
\]

(8.9)

From (8.8) and (8.9) we infer that

\[
L(x^\eta)/L(x) \leq 1/2 \quad \text{if } \eta \text{ is small and } x > x_0.
\]

(8.10)

Let \(\eta \) be fixed. Using (8.10) and repeating the arguments used in the proofs of Lemmas 2 and 3, it follows that there exists a suitable positive \(\kappa \), depending only on \(\eta \), such that

\[
\frac{L(y)}{L(x)} \leq \left(\frac{\log y}{\log x} \right)^\kappa \quad \text{whenever } x_0 \leq y \leq x^\eta.
\]

(8.11)

Finally, note that it is easy to prove that (8.8) is equivalent to

\[
\int_{\eta}^{x} \frac{x}{u \log u} \, du \leq c_1 L(x),
\]

(8.12)

where \(c_1 \) is a suitable positive constant.

THEOREM 7. Relation (8.3) holds if and only if (8.12) is satisfied. Moreover, if (8.12) is satisfied, then, for every \(a > 0 \),

\[
\sum_{n \leq x} e^{a n} = O(x).
\]

(8.13)

Consequently, there exists a positive constant \(C = C(a) \) such that

\[
Q(K) \leq C e^{-Ku},
\]

(8.14)

Proof. We have already shown above that \("(8.3) \Rightarrow (8.12)" \). So assume that (8.12) holds, that is, that (8.8) is true. To prove (8.13), we may ignore the integers \(n \leq x \) such that \(P(n) \leq \exp(\sqrt[3]{\log x}) \), since their contribution to (8.13) is \(o(x) \). Let \(x_0, \eta, \kappa \) be determined from (8.11). Further, let

\[
v(n) = v_1(n) + v_2(n) + v_3(n),
\]

where in their definitions (see (8.1)), we sum over \(q \leq x_0, x_0 < q \leq P(n)^\eta \), \(P(n)^\eta < q \leq P(n) \), respectively. It is clear that \(v_1(n) \) tends to 0 uniformly.

Therefore, using the Cauchy–Schwarz inequality, it is enough to prove that both the estimates

\[
\sum_{n \leq x} e^{2\alpha y_j n} = O(x) \quad (j = 2, 3)
\]

hold.
For \(j = 2 \), we split the sum (8.12) into subsums according to the largest prime factor belonging to \(l_k := \lceil x^{1/2^{k+1}} \rceil \), \(k = 1, 2, \ldots \)

and so

\[
\Sigma_k \triangleq \sum_{n \leq x} e^{2\pi i \alpha_k n} \leq x \prod_{q \leq x^{1/2^{k+1}}} \left(1 + \frac{e^{2\pi i \alpha_k n} \log(q) \log(x)^n}{q} \right) - 1.
\]

Using (2.4), we observe that the product on the right-hand side is bounded by a constant that depends on \(\alpha \) but not on \(k \).

Furthermore, by the Cauchy–Schwarz inequality combined with the inequality

\[
\Psi(x, x^{1/2^{k+1}}) \leq x \exp(-c2^{k-1}),
\]

we deduce that

\[
\sum_{n \leq x} e^{2\pi i \alpha_k n} \leq \sum_{k \in \mathbb{N}} \frac{1}{k!} e^{2\pi i \alpha_k n} \sum_{n \leq x} \Psi(x, x^{1/2^{k+1}})^{1/2} \leq \sum_{k \in \mathbb{N}} \Psi(x, x^{1/2^{k+1}})^{1/2} \ll x \sum_{k \in \mathbb{N}} \exp(-c2^{k-1}) \ll x.
\]

It remains to consider the case \(j = 3 \).

If \(n \) contains exactly \(r \) distinct prime factors \(q_1, \ldots, q_r \) in the interval \(p^2 \leq q_j < p \), then \(v_j(n) \leq r \). Therefore the left-hand side of (8.14), in the case \(j = 3 \), is bounded by

\[
\sum_{n \leq x} e^{2\pi i \alpha} R_n(x),
\]

where

\[
R_n(x) \leq \sum_{p} \Psi\left(\frac{x}{pq_1 \cdots q_r}, p \right).
\]

Now \(pq_1 \cdots q_r > \sqrt{x} \) implies that \(p > x^{1/(r+1)} \); furthermore \(p^{r+1} \leq pq_1 \cdots q_r < x \), and so \(p < x^{1/(r+1)} \). Therefore the contribution of the terms satisfying \(\sqrt{x} < pq_1 \cdots q_r \) is less than

\[
\frac{x}{r!} \sum_{p < x^{1/(r+1)}} \left(\sum_{p < x^{1/(r+1)}} \Psi\left(\frac{x}{pq_1 \cdots q_r}, p \right) \right) \leq \frac{(2 \log(1/n))^{r+1}}{r!} \sum_{p < x^{1/(r+1)}} \Psi\left(\frac{x}{pq_1 \cdots q_r}, p \right) \leq 2 \left(\frac{2 \log(1/n))^{r+1}}{r!} \right) x.
\]

For the other terms we have

\[
\Psi\left(\frac{x}{pq_1 \cdots q_r}, p \right) \leq \frac{x}{pq_1 \cdots q_r} \exp\left(-c \log(x) \frac{2 \log(1/n)}{\log(p)} \right).
\]

Summing first for \(q_1, \ldots, q_r \) and after for \(p \), we get

\[
R_n(x) \lesssim \frac{(A+B)^{2 \log(1/n))^{r+1}}}{r!} x,
\]

where \(A = 2 \log(2/\eta) \), and \(B \) is a number such that

\[
\sum_{p \in \mathbb{N}} \exp\left(-c \log(x) \frac{2 \log(1/n)}{\log(p)} \right) \lesssim B.
\]

Substituting this inequality in (8.16), we obtain (8.14) in the case \(j = 2 \). This ends the proof.

Remark 8. It is interesting to note that Theorem 7 remains true if we replace the whole set of integers by the set of values of an arbitrary polynomial or by the set of shifted primes.

9. On the limit distribution of \(v(n) \). Let

\[
F(x) \triangleq \frac{1}{x} \# \{ n \leq x \colon v(n) < y \},
\]

where \(v(n) \) is defined in (8.1). We say that \(v \) has a limit distribution if

\[
\lim_{x \to \infty} F(x) = F(y)
\]

exists for almost all \(y \), and \(F \) is a distribution function.

It would be nice if one could characterize those functions \(F \) for which \(v \) has a limit distribution. We are unable to solve this problem in general.

We shall nevertheless discuss what happens when \(v \) has a limit distribution. First of all, in that case, (8.3) is true, and hence the conditions of Theorem 7 are satisfied. Thus (8.13) is true, and so by (9.2) we have \(1 - F(y) = O(e^{-y}) \) as \(y \to \infty \). From this we can deduce that

\[
\lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} v(n)^k = c_k
\]

exists for every \(k = 1, 2, \ldots \). Indeed, if \(A > 0 \), we have

\[
\frac{1}{x} \sum_{n \leq x, v(n) < y} v(n)^k = \frac{1}{x} \sum_{n \leq x, v(n) < y} v(n)^k dF_n(y) = \frac{1}{x} \sum_{n \leq x, v(n) < y} v(n)^k dF_n(y) + o_k(1).
\]

Furthermore,

\[
\frac{1}{x} \sum_{n \leq x, v(n) < y} v(n)^k \leq \frac{1}{x} \sum_{n \leq x, v(n) < y} d_{2k} \leq \frac{d_{2k}}{A^k},
\]

for a suitable constant \(d_{2k} \), and \(\int_1^x y^k dF(y) \to 0 \) as \(A \to \infty \). Combining these, (9.3) follows immediately. Taking into account the fact that

\[
\sum_{j=0}^{k} \frac{\alpha v(n)^j}{j!} \leq e^{\alpha v(n)},
\]

we find that

\[
\sum_{j=0}^{k} \frac{\alpha v(n)^j}{j!} \leq e^{\alpha v(n)},
\]

5 — Acta Arithmetica LXXIII.
we find, using Theorem 7, that \(\sum_{n \leq x} c_n^{\alpha} n^j \) is convergent. But, as is well known, in this case the existence of all moments given in (9.3) is sufficient for the existence of the limit distribution.

On the other hand, it is clear that

\[
\sum_{n \leq x} v(n) = [x] + \sum_{q < x} \frac{L(q)}{L(p)} \varphi \left(\frac{x}{pq} \right).
\]

Taking into account (2.2), for every fixed 0 < \(\lambda < 1 \), we have

\[
\varphi \left(\frac{x}{pq} \right) = (1 + o(1)) \frac{x}{pq} \left(\frac{\log x - \log p - \log q}{\log p} \right)
\]

uniformly for \(p > (x/(pq))^3 \). Furthermore, the contribution of the terms \(q < p < x^{\lambda} \) in the sum on the right-hand side of (9.4) is \(\ll Q(\lambda_1) \), where \(Q(\lambda_1) \to 0 \) as \(\lambda_1 \to 0 \). Hence, from the existence of (9.3) for \(k = 1 \), we can deduce that

\[
\sum_{q < p < x} \frac{L(q)}{L(p)} \varphi \left(\frac{x}{pq} \right) \to c_1 - 1 \quad \text{as} \quad x \to \infty.
\]

Clearly (9.5) is equivalent to

\[
\sum_{1 < \xi \leq x} \frac{L(\xi)}{\zeta(\xi)} \left(\frac{\log x - \log \xi - \eta}{\xi} \right) \frac{d\zeta}{\eta} \to c_1 - 1 \quad \text{as} \quad x \to \infty.
\]

It is clear that (9.6) implies (9.3) in the case \(k = 1 \).

Note that the relations (9.3) for an arbitrary integer \(k > 1 \) can be expressed by relations equivalent to (9.6), but these become very complicated for large values of \(k \), and it becomes very difficult to characterize the functions \(L \) which satisfy them.

In the next section, we consider a somewhat easier problem.

10. On the distribution of \(f(n)/L(x) \).

Let

\[
v_x(n) \overset{\text{def}}{=} f(n)/L(x)
\]

and

\[
F_x(y) \overset{\text{def}}{=} \frac{1}{x} \# \{ n \leq x : v_x(n) < y \}.
\]

We say that \(v_x(n) \) has a limit distribution \(F \) if

\[
F(y) = \lim_{x \to \infty} F_x(y)
\]

exists for almost all \(y \).

Using the standard theory of limit distributions for additive functions, as presented in Chapters 16–18 of Elliott [4], one can obtain necessary and sufficient conditions for the existence of the limit distribution \(F(y) \). More precisely, one can prove that the existence of the limit

\[
\lim_{x \to \infty} \frac{a(x)}{L(x)} = A,
\]

where \(a(x) \) is defined in (8.4) with

\[
A = \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} v_x(n) \geq 0
\]

is a necessary condition for the fulfillment of (10.2).

On the other hand, if (10.3) holds with \(A = 0 \), then \(F(y) \) exists and has a maximal jump at \(y = 0 \), that is,

\[
F(y) = \begin{cases} 0 & \text{if} \quad y \leq 0, \\ 1 & \text{if} \quad y > 0. \\ \end{cases}
\]

Finally, if (10.3) holds with \(A > 0 \), then it is easy to see that

\[
a(x) = (1 + o(1)) \int \frac{L(u)}{2 \pi u \log u} du
\]

and thus, using Lemma 1, that

\[
L(x) = (\log x)^{1/4} H(x),
\]

where \(H \) is a very slowly oscillating function.

Therefore, with \(L(x) \) as in (10.6) (set \(\alpha = 1/A > 0 \)) and introducing the following functions:

\[
k(n) \overset{\text{def}}{=} \sum_{\delta < p} L(q), \quad K_\alpha(n) \overset{\text{def}}{=} k(n)/L(x),
\]

\[
V_\alpha(n) \overset{\text{def}}{=} \sum_{\delta < p} \left(\frac{L(q)}{L(p)} \right)^{\alpha}, \quad t(n) \overset{\text{def}}{=} k(n)/L(P(n)),
\]

\[
T(n) \overset{\text{def}}{=} \frac{1}{\log L(p)} \sum_{\delta < p} (\log q)^{\alpha} \quad (n \geq 2),
\]

one can prove, using Theorems 18.1 and 18.2 (along with Lemma 1.4) of Elliott [4], the following results:

Theorem 8. Assuming the conditions stated above, \(K_\alpha(n) \) has a limit distribution \(F \), that is,

\[
F(y) = \lim_{x \to \infty} \frac{1}{x} \# \{ n \leq x : K_\alpha(n) < y \}
\]

for almost all \(y \). Furthermore, \(F \) does not depend on \(H \), so \(K_\alpha(n) \) is distributed as \(V_\alpha(n) \).
THEOREM 9. Under the conditions stated in Theorem 8,

$$\lim_{x \to \infty} \frac{1}{x} \# \{n \leq x : t(n) < y\} = G(y)$$

exists for almost all \(y\), furthermore, \(G\) is a distribution function and it does not
depend on \(H\). The same result holds when replacing \(t(n)\) by \(T(n)\).

Acknowledgement. The authors wish to thank the referee for some helpful comments.

References

Jean-Marie De Koninck
DÉPARTEMENT DE MATHEMATIQUES ET DE STATISTIQUES
UNIVERSITÉ LAVAL
Québec, G1K 7P4
Canada

Imre Kátai
BÖTÖVOS LORÁND UNIVERSITY
COMPUTER CENTER
1117 Budapest, Bogátsy u. 10/B
Hungary

Arens Mercier
DÉPARTEMENT DE MATHEMATIQUES
UNIVERSITÉ DU QUÉBEC
Chicoutimi, G7H 2B1
Canada

Received on 18.4.1989
and in revised form on 8.8.1989

ACTA ARITHMETICA
LVII (1991)

Suites de \(G_q\)-orbite finie

par

CHRISTIAN MAUDUIT et BRIGITTE MOSSÉ (Marseille)

1. Introduction. Pour démontrer l’existence de géodésiques récurrentes non périodiques sur certaines surfaces de courbure négative, M. Morse a introduit
la suite \(u = (u_n)_{n \in \mathbb{N}}\) à valeurs dans \(\{a, b\}\) définie par \(u_n = a\) (resp. \(b\)) si la somme
des chiffres de \(n\) écrit en base 2 est paire (resp. impaire). Depuis, cette suite est
réapparue lors de la résolution de nombreux problèmes de combinatoire,
da l’algèbre, à l’arithmétique, à l’analyse harmonique, à physique théorique, etc...
(on pourra consulter à ce sujet [18]). Les procédés de construction de la suite
de Morse ont été généralisés par divers auteurs, et notamment par S. Kakutani
et M. Keane qui ont étudié les systèmes dynamiques symboliques obtenus ainsi
(cf. [5], [6], [9]-[13], [17], [23], [27]).

Par ailleurs, J. Coquet et B. Mossé ont défini dans [3], [21], [22] un
décalage \(q\)-adique des suites dont ils ont étudié les propriétés harmoniques et
arithmétiques. Les systèmes dynamiques les plus simples associés à ce décalage
sont évidemment ceux obtenus pour les suites d’orbite finie; il est donc utile de
pouvoir les caractériser.

Une famille de telles suites a été étudiée dans [19]. L’objet de ce travail est de
les décrire toutes et d’établir leurs liens avec les suites de Morse généralisées
au sens de M. Keane. Nous étudions ensuite une propriété de disjonction
spectrale de certaines de ces suites, complétant ainsi les résultats concernant la
somme des chiffres obtenus dans [1], [7], [8], [16], [25].

2. Rappels et définitions. Soit \(q\) un entier au moins égal à 2. Tout entier
naturel \(n\) s’écrit de façon unique

\[n = \sum_{r=0}^{q-1} e_r(n) q^r, \]

où \(e_r(n) \in \{0, \ldots, q-1\}\) est le \(r\)-ième chiffre du développement de \(n\) en base \(q\).

Définition 1. On appelle addition \(q\)-adique de deux entiers \(n\) et \(n'\)
l’opération notée \(\oplus_q\) (ou \(\oplus\) si aucune confusion n’est possible) et définie par

\[\forall r \in \mathbb{N}, \quad e_r(n \oplus_q n') = e_r(n) + e_r(n') \mod q. \]

Nous désignerons par \(G_q\) le groupe commutatif \((\mathbb{N}, \oplus_q)\).