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Introduction and acknowledgements. Consider a cover ¢: X — P} of the
Riemann sphere (uniformized by x) by a projective nonsingular curve X with
r > 2 branch points. Assume that both the curves and the map are defined over
Q. Generalizing Serre [Se] we consider not necessarily Galois covers with any
number r of branch points (not necessarily in R). We show how to compute the
action of complex conjugation on the fiber in X over a real value of x,€ P}. It
is an “exceptional cover” for which all of the residue class fields above x, are
real. The group of the Galois closure of such an exceptional cover must be
a quotient of a universal group generated by elements of order 2.

Serre was interested primarily in applications to groups as Galois groups,
so he considered only the case that x, is not equal to a branch point of the
cover. Siegel's theorem [S] gives explicit necessary conditions for an affine
curve to have infinitely many integral points. As motivation for allowing x, to
be a branch point we give immediate application to a converse of Siegel’s
theorem phrased in terms of “complete Siegel families”.

SprindZzuk too was often motivated by Siegel’s theorem. His papers were
not similar in style to ours, but both authors were influenced in the direction of
the topics here by [Sp]. Finally, we would like to acknowledge that there are
a number of papers in the literature in addition to [Se] that have considered
the continuous action of complex conjugation on paths (e.g., [KN]). It is
inevitable therefore that some of our results repeat older observations.

Acknowledgements. In addition to the correction of a considerable number
of typos, we thank the referee for pointing out that similar versions of the
formulas of §2.1, with a different arrangement of the branch points, appear in

H].

§0. Framework for the main results

Consider the rational function field C(x) in one variable and a fixed copy
of the complex plane with a point at co uniformized by a variable x. Denote
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the latter by P.. From Riemann’s existence theorem, degree n extensions E of
C(x) ramified over r places x,, ...,x, are in one-one correspondence —up to
a natural equivalence —with the degree n connected covers of Pi\{x,, ...,x,}.
These are in turn in one-one correspondence with equivalence classes of
transitive permutation representations T: n, — S, on the set {1, 2, ...,n} where
7, denotes the fundamental group of PI\{x,,...,x,}.

The Galois group of the normal closure of the extension E/C(x) is
identified with the monodromy group of the cover, the group G = T(n,). If
a Galois cover X — P2 is known to be defined over @, then its monodromy
group can be realized as a Galois group over Q; by application of Hilbert’s
irreducibility theorem G is the Galois group of some residue class field
extension E, /Q with x, a rational specialization of x. For nonsolvable groups,
this idea has been an essential part of any success on the inverse Galois theory
problem. In this paper we investigate the real embeddings of these residue class
fields. In particular, when are they totally real? In terms of covers this would be
asking when such a cover can have fibers consisting of only real points.

Generalization of Serre’s observations. This work originated with a ques-
tion of Serre [Sel. A given group G is easily realized as the monodromy group
of a cover. Indeed, since =, is isomorphic to a free group on r— 1 generators (cf.
§1.1), for sufficiently large r, G is T (rn,). But the problem is to get the cover
corresponding to the permutation representation to be defined over Q, the
purpose of “rigidity theory”. After discussing the rigidity assumptions, Serre
asks about local properties (over R and @) of the residue class extensions
provided by a rigid situation. He shows for example that for 3 real branch
points and G # S, these extensions cannot be totally real.

We consider any number r = r, +2r, of branch points with r; of them real
and 2r, of them in complex conjugate pairs. Then we give necessary conditions
(§1) on a group G for there to be a cover with monodromy group G to have
totally real fibers (Theorem 1.1). For the statement of the following simplified
version we recall that a conjugacy class of a group is said to be rational if it is
closed under putting elements to powers relatively prime to the orders of
elements in the class.

THeorReM 0.0. Assume that a cover X — PL and each of its r branch points
are defined over Q. Consider xoe P\{x,, ..., x,}. If the fiber consists of just real
points, then the monodromy group G is generated by r—1 elements a,, ..., &,y
of order 2. Furthermore, if the Galois closure X — P! is also defined over Q (i.e.,
the smallest Galois cover factoring through X — P}, and X is irreducible over the
closure of Q) the elements a,at,, 03, ..., 0 28,1 are in rational conjugacy
classes of G.

Other examples and corollaries of §1: if a group of odd order is the Galois
group of a regular extension E/Q (x), then the extension has no real branch points.
Also, Theorem 2.4 (§2.3) shows the effect of complex conjugation on the fiber of
a cover over a real point in the general case: condition (1.3) of Theorem 1.1.
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The proof of Theorem 1.1 (as a combination of Theorem 2.4 and of §2.4)
appears in §2. Here two aspects of complex conjugation are considered: action
on the points in a fiber of a cover defined over R; and through its action on =,
as an automorphism of G. The simple formulation of Theorem 0.0 comes
through some miraculous group theoretic manipulations. The “branch cycle
argument” from [Fr 1] concludes the proof (§2.4). Below we will denote the
element that gives this action by ¢, =c.

“Rigidity”’ and exceptions to Theorem 1.1 for r = 4. No rigidity assump-
tions are involved in the first part of the paper. These come up in §3 to study
the converse of Theorem 1.1. That is, when can we actually realize a group
satisfying the necessary conditions of Theorem 1.1 as a Galois group of
a totally real extension of Q?

We have been suppressing the dependence of all statements on data given
by a collection of r conjugacy classes, C = (C,, ..., C,), of the group G which
contain respective inertia group generators corresponding to the points
Xy, ..., X, for the Galois closures of one of the covers under investigation. In
§3.2 we state generalizations of the classical “rigidity assumption” (as discussed
in [Se]). All of the results of this paper and the “rigidity results” depend on
C = (C,, ...,C,). But this brings up the difficulty that also appears in [FrT]. In
addition to the new rigidity assumption on C, transitivity of the straight
Hurwitz monodromy group on straight Nielsen classes (Prop. 3.3), one needs
a Q-point on a certain algebraic variety # (C) associated to G (and C). In the
case r = 3 this is a rational variety, and so it has lots of Q-points.

In the case r = 3 there is just one centerless group, S,, that has conjugacy
classes C that satisfy the necessary conditions of Theorem 1.1 (Prop. 1.2). In
contrast to this, Proposition 3.6 and Theorem 3.7 show that all of the groups S,
and A4,, n >4 are exceptions to Theorem 1.1 in the case that r =4 in the
following weak sense. To each of these groups G there is an associated C with
this property: there is a curve cover Y;— Pl ramified over {0, 1, oo} and
defined over Q such that the totally real field conclusion holds for C if and only
if there is a Q-point me Y, not lying over of the branch points of the cover.

When n=4 (G=S§,) and 5 (G = §;) the curve Y; is of genus 0, and we
show that it has infinitely many rational points (Theorem 3.7). Thus S, (resp.,
S,) is achieved as a Galois group of a regular extension of Q(t) with infinitely
many totally real specializations giving S, (resp., Ss) as a totally real extension
of Q. Actually, this is true for all n between 4 and 9. But showing that Y is of
genus 0 in the respective cases takes up some space. For other values of n, the
genus of the curve exceeds 0. (Indeed, for values of n that are prime, the genus
of Y; is a quadratic function of n.) This happens, also, when you modify the
initial set of o’s. Since we cannot devine the existence of rational points on these
curves unless they are of genus 0, this is a serious obstruction when r = 4 to
getting all S,’s as Galois groups of regular extensions with infinitely many real
specializations. Finding real points on these curves, however, is another matter.
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The theory of §2 shows exactly how to describe such real points. This is
a special case of our next topic.

Real points on J# (C). The formulas that are satisfied by the element ¢y,
that plays the role of complex conjugation on the data for a cover X — P! in
Theorem 2.4 can be inspected without having the cover defined over R. In fact,
the existence of cx, is an if and only if condition for the corresponding cover to
be defined over R. This shows dramatically in terms of the parameter space
#(C) and its presentation as a cover of P* minus the standard discriminant
locus D, (§3.3).

THeoreM 0.1 (Theorem 4.4 of §4.2). There is a constructive partition
H,,...,#, of the points of #(C) lying over P'(R\D, with the following
property: each of the # /s, as a set of complex valued points on the manifold
# (C) is connected; and for each me 3 we may apply Theorem 2.4 to explicitly
test for the existence of a collection of c’s playing the role of complex conjugation
on the fibers of the cover—up to equivalence—that corresponds to m. This test
does not depend on the choice of base point that we use to apply Theorem 2.4, and
X, passes this test if and only if all of the points of X, correspond to covers
defined over R. ’

Nonexistence of a Q, analog. This brings up the problem of Q, analogues
of these results for rational primes p. There are tools: Neukirch [N] has
checked local behavior for Galois extensions K/Q whose groups are of odd
order; and Grothendieck’s lifting theorems (for tamely ramified covers [Gro])
consider the primes relatively prime to the order of the group. But in a later
paper we will show there is no naive Q, analogue for these results; this uses
that there is no nontrivial Hecke operator theory for the curves associated to
the upper half plane by a noncongruence subgroup (cf. §3.6 prior to Theorem
3.7) of SL,(Z) due to Atkin [A]

Application to a converse of Siegel’s theorem. We conclude by considering
residue class fields of points over the branch points x,, ..., X, of the cover. The
effect of complex conjugation here is a corollary of Theorem 2.4 together with
data from markings on the disjoint cycles of a branch cycle attached to the
specific ramified point of interest (Theorem 4.2).

A version of Siegel’s theorem [S] says that an affine curve X defined over
Q has infinitely many integral points only if the curve is of genus 0 and it has
either one point or two real conjugate points at infinity. The above gives an

" explicit criterion for the “general” real member of a family of affine covers to
satisfy the “real conjugate points” condition. This is the source of the definition
of Siegel families in §4.3. For “complete” Siegel families we then discuss criteria
for a natural converse of Siegel's theorem. The families themselves and the
criteria for the converse are put in terms of combinatorial data that goes along
with Riemann’s existence theorem. We conclude with examples that display
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relevant properties of Siegel families. For example, for families over Q, as
a corollary to Theorem 1.1, §4.3 gives a computation for whether the residue
class field over the point at oo in a cover from a Siegel family is constant as
a function of the family parameters.

§). Covers with real fibers

§1.1. Notations and background tools. Let ¢: X — P! be a finite cover of
the projective line of degree n by an irreducible projective nonsingular curve.
This cover is ramified over a finite set of points x,, ...,x, called the branch
points of the cover. For xo¢{x;,...,x,} consider a labeling of the points
Pis s Pn Of @7 1(x,). There is a natural transitive action T: m,—S,, called
the monodromy action, of the fundamental group =, of P!\{x,,...,x,} on
{1, 2, ...,n} identified respectively with the p’s given as follows.

For [y] the homotopy class of a path y based at x,,, T ([y]) is the element
of S, that maps i to j where p; is the terminal point of the unique lift of
7 (through ¢) which has initial point p,, ie{1, 2, ...,n}. Up to conjugation by
an element of S, this action is independent of the choices of x,, the
representative of [y] and the labeling of the p’s.

The group G = T (n,) is called the monodromy group of the cover. Consider
m, : it is the free group on r generators [y,], ...,[y,] with the one relation
[y.1...[y.] =1 where y,,...,7, can be taken as “loops” around x,,...,x,
based at x, with special properties (as in the Figures of §2.1 and §2.2).
Therefore the homomorphic image G is generated by r elements
o, = T([y]))eS,, i=1, ...,r, that satisfy g, ... 6, = 1. The r-tuple (o, ...,0,)
is called a branch cycle description of the cover.

Galois action on branch points. Let K < C be a field of definition of the
(gyfr ¢: X - PL. The cover is said to be g-regular over K if the Galois closure
K (X) of the function ﬁ/ej& extension K (X)/K(x) is a regular extension of
K(PY) = K(x) (ie.,, if K(X)nK = K). Informally we say that there is no
extension/gf constants. More generally, however, we must deal with the group
G =/(ESK (X)/K (x)). This is also a subgroup of S,. It contains G identified as

- 5 AN
G(K (X)/K (x)), with K the algebraic closure of K in K(X).
We also need a group theoretic definition extending the definition of
rational conjugacy class of a group (see Main Results, above).

DEerFINITION. Let G be a group and let C; be the conjugacy class of
7,i=1,...,r. Denote the order of 7, by ¢, i=1,...,r. Denote the least
common multiple of the e;s by N. The set {C,, ...,C,} is said to be a rational
set of conjugacy classes of G if

(1.1)  the set |) C; contains all powers tf,i=1,...,r
i=1
and k relatively prime to N.

2 — Acta Arithmetica LV1.4
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Note that unions of rational sets of conjugacy classes are also rational sets
of conjugacy classes. An alternative statement to (1.1) is the following:

(1.2) for ke(Z/N)*, there exists €S, such that tfeCgyp, i=1,...,r.

Consider the orbits of the action of G(K/K) on the branch points
Xy, ..., X, of the cover. We denote the orbit of x; by O (i), where the notation
implies that we use the integer subscripts in place of the points themselves.
Below we need to conmsider the union U jeow C; of the conjugacy classes
attached to this orbit of the branch points. Denote this by 0(C)), the orbit of C,
under G(K/K).

§1.2. Necessary conditions for real residue classes. Consider a cover
¢: X —P. as in §1.1. When convenient we denote P} by P!. From now on
assume that this cover is defined over R. Then the branch points x,, ..., x,
consist of r, real points and r, pairs of complex conjugate points with
r=r,+2r;.

We now inspect the possibility that a fiber of this cover will consist only of
real points. For simplicity we assume that r, # 0. Modification for tl'!e cdse
r, =0 appears in a remark after Theorem 1.1. Of course it is possible to
rephrase Theorem 1.1 entirely in terms of function fields (examples of §1.3).
Denote the normalizer of G in S, by Nj, (G).

THEOREM 1.1. Assume in addition to the above that for some real point
xo € P (R), not a branch point, the fiber ¢~ 1(x,) consists of n real points. Then
r, > 2 and the monodromy group G can be generated by ry+r,—1 elements
Oy ees Oy =15 Tys ooy Try With the following properties:

(13) the «s are each of order 2 and therefore o, 0 0;, 2%;, ...
vevsOpy =2 8y —1, O, —1, Fespectively denoted o, ...,0,,, are each distinct
from 1 and each is conjugate to its inverse in G.

Denote the respective conjugacy classes in G of the elements 0y, ...,0,,
Tyyeees Ty, @nd T4, 0T, " by the set
§={C,,....Crs Dy, ..., Dy, DT, ..., D5}
If, further, the cover is g-regular over Q, then in addition to (1.3)
(1.4)  each G(Q/Q) orbit of S is a rational set of (nontrivial) conjugacy classes.

Remark. (a) Theorem 0.0. Theorem 0.0 in the prior discussion of results is
the special case r =r; (r, = 0) and the assumption that the branch points are
rational (the G(Q/Q) orbits of the conjugacy classes are each of length 1).

(b) Dropping the g-regular assumption. In the last statement of the theorem
we have only to replace the list of conjugacy classes in G by the same list of

conjugacy classes in G = G(Q/(:f )/Q(x)). Note that G  Ns_(G). Proposition
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2.6 gives a necessary condition for g-regularity in terms of an explicit subgroup
G of Ng, (G). This is also a sufficiency test for the g-regular assumption if in
addition, G = G [Fr1; p. 33, Prop. 2].

(c) If r; = 0. Then condition (1.3) is empty. The rest remains the same.

§1.3. Examples and corollaries. First we consider the special case of r = 3.
This example is considered by Serre [Se], in a “rigid” situation (cf. § 3) and with
the extra hypothesis r = r,. Here we complement his work by not assuming

any “rigidity” hypotheses hold. In particular, unlike Serre, we allow that G has
a center.

PrOPOSITION 1.2. Let G be a group different from any of Z/nx*Z/2 with
n=2,3,4 or 6. Suppose that E/Q (x) is a regular Galois extension with group
G and r = 3 branch points. Then the residue class field extensions E. /Q with
group G and x,€ Q cannot be totally real. The only centerless group among the
exceptions is for n=13 (ie., §;).

Proof. Since r = 3 is odd, r, which is at least 2 from Theorem 1.1, must
be 3. The branch points are real and the group G is generated by two elements
o, and «, of order 2. A group generated by two elements of order two must be
the dihedral group of degree the order of the product of the two elements
(denoted ¢,). Thus 2-ord(c;) = |G|.

From (1.4), the powers o% (identified with (k; 0)eZ/nx*Z/2) with
(k, n) =1 should either be conjugate to «,, o, or o, =a, (respectively
identified with (0; 1), (1; 0) and (1; 1)). Since the two elements on the end are of
order 2, this implies that k= +1. Thus ¢(n) <3 where ¢ is the Euler
phi-function. This won’t be true unless the dihedral group is of degree at most 6.
The only possibilities are n = 2, 3, 4 or 6, thereby giving the very groups that
were excluded. =

In §3.3 and § 3.4 there is an extensive discussion of some of the many more
exceptions to the conclusion of Proposition 1.2 in the case r = 4. In particular,
S, and A, are exceptions to versions of Serre’s example for each n > 4. We
conclude this subsection with a discussion of condition (1.3). First note that it
forces the group to be of even order.

COROLLARY 1.3. The Galois group of a regular Galois extension E/Q (x) with
at least one real branch point is of even cardinality.

Proof. Choose a rational number x, for which the Galois group
G(E,,/Q) of the residue class field is isomorphic to G (i.e., apply Hilbert’s
irreducibility theorem). If E., is totally real, since r, # 0, Theorem 1.1 implies
that r, = 2. From (1.3) there is at least one element of order 2. Thus G is even.
If E,, is not totally real, then complex conjugation is an element of order 2 of
G(Es)/Q). w

Now assume that all branch points are real: r = r,. Then (1.3) is fairly
restrictive:

(1.5) G is generated by r—1 elements «,,...,o,-; of order 2.
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PrOPOSITION 1.4. Condition (1.5) is equivalent to the following statement.
The group G contains a subgroup H of index at most 2 where H is generated
by r—2 elements B,, ...,B,—, with this property:

(1.6)  there exists B, of order 2 such that BB B =B k=1,...,r=2.

Proof First assume that (1.5) holds. Let f, be «, and let f§; be
a4y, i=1,...,r—2. Since (8, f,)*> = 1, conclude that (1.6) holds. Further-
more G = H u Ha, because the group generated by the s, i # 0, f:ontajns all
of the products ;a;, 1 < i, j < r—1. The converse is clear by defining a, to be
B, and o, to be Bofi-y, i=2,....,r—1. = _

Remark. There are two possibilities corresponding to (1.6): either foe H
and G=H or B,¢H and G = Hx*{f,).

" There is another easy characterization of (1.5). Denote the free group on
generators by, ..., b,—, by F(b). Let J be the automorphism of F (b) defined by
J(b)=bi', k=1,...,r—2. This provides an action of Z/2 on F(b) by
regarding J as the generator of Z/2. Denote the semidirect product F {b).x AP
by D, The groups generated by r—1 elements of order 2 are the quotients of
D

§2. Proof and generalization of Theorem 1.1

The notations are those of § 1, especially § 1.1. Consider a cover ¢: X — P,:,
with r branch points x,, ...,x, defined over R. As there abbreviate P; to P
when there can be no confusion.

§2.1. Complex conjugation on fundamental groups. Complex conjugat'!on
provides a topological automorphism of the points of X that extends the action
of complex conjugation on P*. We use this in our openjng lemma. In the proof
E will denote the function field of X over R, and E the Galois closure of
E/R(x).

LemMMA 2.1. Let y be a path in P*\{x,, ...,x,} based at x,e RU co. Label
the points of X above x, as p,, ..., p,. Denote the usual representation associar_ed
to the cover by T: m,— S, where we have identified the integers {1, ...,n} with
the points of the fiber X ... Then complex conjugation induces an automorphism
¢y, =c¢ of X.,. This satisfies

(2.1) cT(y)e=T(H).
Proof. Suppose that f, and f; are bi-continuous maps that render the
following diagram commutative:
x5 %
(2.2) 1e le
et L op!
It is a standard deduction that if f; fixes x,, then T(fioy) =fuoTH)of!
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where f, denotes the action induced by f, on the fiber over x,. We apply this to
the case where both f; and f, are given by complex conjugation to get the
desired formula.

Alternative proof. (Using Puiseux expansions) The branch cycles
relative to a given set of paths are computed by their actions on the points
Pis .- P, through liftings of the paths that start at the various points. We,
however, wish to identify the effect of complex conjugation in a residue class
field with a process related to analytic continuation. It is perhaps safer to see
this on the level of functions. :

Consider functions f;, ..., f, of E where the f’s are a complete set of
conjugates (under G (E/R (x))) and such that f, is a local uniformizing parameter
at each place of E above x,. In particular, f; (p;) generates the residue class field
of the point p; over R(x,). With no loss identify f; = f; (x; X,) with a Puiseux
expansion about x,. The conjugates of f, are therefore the complete set of
Puiseux expansions that result from analytically continuing f, around the lifts
to X of closed paths on P}\{x,, ...,x,} that are based at x,. Since x, is real,
the effect of complex conjugation in the residue class field is obtained by acting
on the coefficients of the Puiseux expansions of the f’s. This gives c,,.

The process of analytic continuation is given by rearrangement of power
series, an essentially algebraic process. Denote the path around x; by
?;,j=1,...,r. Suppose that when you continue f, around 2, the result is f].
Then, when you continue f; around £, the result is f]. This is what the formula
says. m

Remark. From Lemma 2.1 it is immediate that c,, is an element of
N5, (G), the normalizer of G in S,.

Real branch points. This is the start of a discussion in which we give
specific generators of n, and we study how complex conjugation acts on them.
Since there is a considerable distinction between the effect on the generators
that go around real branch points and those that go around complex (not real)
branch points, we start with the case where X — P} and the branch points
Xy, ..., X, of the cover are both defined over R. Assume that these are arranged
in order on the “circle” Ru 0. Then a point x,e R U oo lies in one of the
segments

(xl’ xz): (xZ! xs)s b :(xr-—ls x,), (xr’ xl)-

Let g; be a counterclockwise rectangle about x; as shown in Figure 1,
i=1,...,r

b
X X, X X, c % at ...

Fig. 1. Convenient paths in the case of real branch points (u, = abc and g, = u ")



300 M. D. Fried and P. Debes

Define closed paths based at x, as follows using the us—top counter-
clockwise halves of g's whose respective initial-end points are on the
x-axis—of Figure 1:

Vr=8 Vr-1= urQr—I(ur)_i! Vo—2 = Uy ty_1 Q-2 (U thy—1)"",
v V2=t U@, ux)”h, yy = (uy) " 0y u.

Note that in expressing y, we have used that w,u,_;...u,, which is
homotopic on the r-punctured sphere to the top of the band, is also homotopic
there to the trivial path based at x,. Then the y,’s are generators of n, which
satisfy y, ...y, = 1. Denote the effect of applying complex conjugation to each
point of a path y by 7.

LemMma 2.2. The paths¥,, 7,5, ..., ¥p-2, Fr—1, 7, are respectively homotopic to
ity @) 293 (3007
e Qe W) 00017 @) 0y W
Proof. Clearly 7, = y;*! and 7, =y, *. Throughout use that
(2.3) . Gi=e' and warl=g, i=1,...,r

Apply conjugation to y,-y = u,@,-1 4, * to get §,-; = 4,@,-1 % '. With the
help of (2.3) we get the desired expression for y,—;. The procedure is the same
to compute '

T’r—! =U U,y Er—z(urur—l)_l
except to note that u,u,_,(u,u,—4)" " is u,@,—, % *, which is hdmotopic to
Yr=1Y- ®

Remark 2.3. In the case that x; is in the interval (x;, x;,,) the statement
of Lemma 2.2 would go through with (y,, ...,7,) replaced by

i1 Pitzs woor e Yao - os VD)
Now define a; to be T'(y),i=1,...,r, so that (o,, ...,0,)e S} is a branch
cycle description of the cover X — P}. Lemmas 2.1 and 2.2 give us an element
¢y, = c€Ns, (G) such that

(24) co,c=o01!, co,c=(05...0) " 071(0,...0),

ey €O,—1c=(0) 0,0, co,c=0t.

§2.2. Adjustments for complex branch points. For a cover defined over
R some of the branch points are real and the remainder occur in complex
conjugate pairs. Exactly as in §2.1 we get the existence of c., = ¢ playing the
role of complex conjugation. It is defined in terms of its effect on branch cycles.

We follow the notation of § 1.1 with r; the number of real points (including
the possibility of oco) among the r branch points. As in §2.1 it is convenient to
label the real branch points x,, ..., x,,, from left to right (as in Figure 2) in
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such a way that x, falls between x,, and x,. Of course, this may mean that we
must relabel the conjugacy classes also (cf. Hurwitz monodromy action, §3.1).
We have also chosen to use an idealized picture in which the pairs of complex
conjugate points, X, 4+ 1, Xpy 415 +++9 Xpy 4735 %, 41, are placed left to right in the
band of rectangles (the barred points below the real circle) with the rectangles
surrounding them composing part of the band. It will be clear from the
comments below that is goes through mutatis mutandis with the complex points
anywhere so long as the paths for the complex conjugate pairs of points are
chosen symmetrically with respect to the real circle and so that the order of the
paths is the same as that of our idealized picture.
Consider any description

o= (01, '"’ol'l'ﬂl'l+l.l’an""l.2!'-':ar|+r3.l: ar|+r;,2)

of the branch cycles for a cover ¢: X — P! defined over R and having the x’s
above as branch points, where the subscript labeling has been chosen to
indicate that the entries correspond in order to the given branch points.

] ¥ b
Moo v o1 s
ry iy 2 o -=1 X“_ e » a
d
%‘.p—;.‘z ves e o1 gl ass)
5 ' >3 Ay

Fig. 2. A band about P;(R) containing x,, ..., X, (@, +1.1 = abed and g, 412 =d 'efp)

In Figure 2, x,, is the intersection of the left side of the rectangle around x,
with the x-axis (where the surrounding band is sufficient to encompass the
complex conjugate points, labeled with r, +1, ...,r; these start from the right
and continue around to the left). Use the u’s along the top of the band, and g,
(resp., ¢,,; and g, ;) the counterclockwise path around the rectangle surround-
ing x,,i=1,...,r, (resp, x, and X, i =r,+1,...,r,+r1,) to form y’s as was
done with Figure 1 in §2.1. '

Consider the paths

YisooosPrps Prota,00 Vro k1,250 003 Pry#ra,ts Yrytra2s

chosen in this order so that product is homotopic to 1, given by

Upybry ooo Uyag Qj(thpy 4,y - u1+1)_l =y Jj=1,...,r,
Uy brgee Upa1 Q51 (ur|+r:°°°“j+l)-l = Y51
Uryrrgeo Upr1 @p2 Uy drg e ye1) ™ =752, J=ri+ 1,04,

Denotc Y5172 BY %5, j=ry+1,...,7,+r,; and denote the product
Yri+1,.+++Pri+rs,. DY 7.. As in Lemma 2.2 of §2.1, applying complex con-
jugation to the y’s gives these results: 7,,...,7,, are respectively
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homotopic to

(252)  yit s V1) Y @a e YY),
ooy B ) Y avnys Y ientys

and ¥, 41,00 Frst1.2s vees Fortoats ?r|.+r;,2 are respectively homotopic to
(2.5b) Gritze-Pritra) P b 1.2 Orit 2o Pritra)s

Otz Prten) Pt 1a O Patra)s oo

Yrs l+r1,2’ Yre irz.l .

Now define ¢’s in the notation above to be T(y)’s, to get a branch cycle
description of the cover X — P}. Similarly to the above notation denote ¢, 7;,,
by g;.,j=ry+1,...,ry+r,; and denote the product ¢,,+1,....0,,+,,. by 0; .

Application of Lemma 2.1 and the computation above gives (in analogy
with Lemma 2.2) an element ¢,, = ce N5, (G) such that

(26a) co,c=07', co,c=(05...0,0) o5 (0,...0,,0),
=1 ==1 s %
vy €O, -1€=(0,0) "0,2,0,0, co,c=0""0," 0,
and

(2.6b) €O +1,0€ = (O 42,0+ Or4r0,) 100 31,2000 42,00 Ory 42 )s
€0p 41,26 =(0r,42, - Oriinn) 100411000420 O i)y ey

=1 g1
COpi4+r2,0C = Opy+r2,25 COry4+r3,2C = Opy 431

§2.3. The main theorem and condition (1.3). We now state our main

theorem. In particular it includes the statement of (1.3) of Theorem 1.1.

THEOREM 2.4. Consider a cover ¢: X —PL defined over R and having
Xg,..-,%X,€CU 00 as its branch points. With the choices of ordering on the
branch points x,,...,x,,€ R made above and with respect to the paths of

Figure 2, let (¢, ...,0,) be the description of the branch cycles of the cover given
above. Denote the Galois closure of the function field extension R(X)/R(x) by E,
and the Galois group G(E/R(x)) by G dj@,. It is a subgroup of N, (G). For each
value of x,eP'(R) different from x,,...,x,, there is an element
¢ = ¢, €G(E/R(x)) such that c can be identified with the action of complex
conjugation in the residue class field of a prime of E above x, and thereby with an
element of N, (G). In the induced action of complex conjugation on the points of
X this element is determined by the formulas of (2.6) up to an involution in the
center of N (G).

Furthermore, if ¢ is the identity (i.e., the fiber ¢~ (x,) consists only of real

points), o; = Oy 0 is of order 2, i=1,...,r;—1.

Proof. The first paragraph is an immediate consequence of Lemmas 2.1
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and 2.2. The element c is identified with a generator of the decomposition
group of a place of the function field E that lies over x,. In particular, it must
be an element of G. Our next task is to show that the formulas that result from
(2.6) in the case that ¢ = 1 give the result on the o’s. We inductively deduce this
from (2.6): i=1 is already in (2.6). The rest of the argument is mere
combinatorics from (2.6) and from the formula o, ...0, = 1. Since the last 2r,
of the ¢’s, being paired up next to their inverses, disappear from the formula
0,...0, =1, with no loss we may assume in the rest of our calculations that
r=r,. From the product of the ¢'s equal to 1, (¢, 0,)"! = 0,...0,. Plug this
into the relation ¢5...0,=0;'(y...0,)0;'. This immediately gives
(940,)* = 1. The induction continues quite easily on the same principles. w

Note. Special case. Assume that r = 3 and that two of the branch points
are complex conjugate. Let ¢ be a description of the branch cycles of
¢: X — Py relative to the paths of Figure 2. The effect of complex conjuga-
tion on the residue class fields of the points above x, is given by
¢ =c¢,,€G c Ng, (G) with these properties:

coi'c=0, and co5;'c=o0,.

In particular, if ¢ =1, then 6f =1 and 0,05 = 1. But this gives o, =1,
contrary to our assumptions. Thus, in the case that two of the branch points
are complex conjugate, c is different from 1. =

§2.4. The branch cycle argument and (1.3) and (1.4). We now explain the
extra conditions that are forced on the conjugacy classes C under the
assumption that the Galois closure of a cover associated to them is defined over
R (resp., Q). Again, we use the notation that the coordinate entries of C are
conjugacy classes of the transitive subgroup G of S, defined by a description
o of the branch cycles of a cover. As in §1.1 let N denote the least common
multiple of the orders of .the elements in the conjugacy classes C,, i =1, ...,r.
For each ke(Z/N)* we define a unique conjugacy class Cf of G by putting each
element of C, to the power k. Put each coordinate of C to the power k to
consider a new r-tuple C* of conjugacy classes of G. Let g€, act on C by
permuting the coordinates. Denote the result by °C. Recall that Ng_(G) acts by
conjugation on C to give a new r-tuple of conjugacy classes. Also,
Cmod Nj, (G) denotes the ordered collections of r-tuples of conjugacy classes
¥Cy~!, yeNs, (G).

Suppose that the cover X — P!, defined over a field K has a description of
its branch cycles associated to C. Retain the association of x, with the
conjugacy class C;, i = 1, ...,r. Regard G(K (x)/K) as a subgroup of S, through
the action of its elements on the r-tuple x = (x,,...,x,). Similarly, regard
G(K ({y)/K) as a subgroup of (Z/N)*. Here {, is a primitive Nth root of 1. As
earlier denote the Galois closure of the field extension K (X)/K (x) by E and its
Galois group by G. The elements y of G satisfy yCy~! = °C* for some o€ S, and
ke(Z/N)*. More precisely, consider the group
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27 G ={yeNs, (G yCy~* =°C* (o, k)eS,x(Z/N)* and there exists
1eC (K/K) with TIK(x) = G, TR = k},

Then G = G [Fr1; p. 33, Prop. 2].

DEFINITION 2.5. The branch points x and the conjugacy classes C are said
to be Galois compatible (over K) if for each te G(K/K), if  permutes the x;’s as
€S, then for k = k, the image of t in G(K((y)/K),

(28) Ct=9Cyey~* for some yeG (independent of i), i=1,...,r.

The next result is a rephrasing of the branch cycle argument of [Fr1;
p- 61]. b

PROPOSITION 2.6. Suppose that the cover X —P' has a description of its
branch cycles associated to C. Then Galois compatibility of x and C (over K) is
a necessary condition that the field of definition of the cover actually be K.
Furthermore, if the cover is g-regular (§ 1.1), then for each ke(Z/N)*, there exists
oceG(K(x)/K) (< S,) such that C* =°C.

With this we show that we have completed the necessary ingredients !‘or
the proof for Theorem 1.1. The proof of Theorem 2.4 gives (1.3) by applying
complex conjugation as given by —1. In order to get (1.4) note that 'tﬁe
g-regularity assumption just means that G = G. Thus we choose any k relative-
ly prime to N and consider whether O(C,) contains C}. For any 7€ G(K/K)
apply (2.8) to conclude that this is so. Since this works for any k with the stated
properties, we are done. .

This section concludes with an example that will appear again in §4.l. Itis
‘a warmup, too, to the definition of Nielsen class in the next section.

EXAMPLE 2.7. Comparison of all real branch points with complex conjugate
branch points. As in § 1.1, consider covers ¢: X — P* which have associated to
them a description of the branch cycles ¢ with r =3, group G = 4,, and
conjugacy classes C given as follows: C, is the conjugacy class of a 3-cycle_; C,is
the conjugacy class of elements inverse to those of C,; and C, the conjugacy
class of a product of two 2-cycles. Inside of 4, the 3-cycles form two conjugacy
classes: a 3-cycle and its inverse are in different oonjuga(:}" classes: These are
permuted by the action of N, (G) = S4. Thus from Proposition 2.6, if our cover
is defined over R (resp., Q), and if it has real branch points (since R(x) = R),
then its Galois closure must contain C (resp, be defined over Q({),
{3= 92"/"_”3)- .

Suppose that C, is represented by (124). Compute the complete ].IS'I. of
possible branch cycle descriptions, up to equivalence, that have representatives
in the respective order of C,, C,, C,. In §3.1 this will be called an absolute
straight Nielsen class. This list consists of exactly one element represented by

o =((124), (123), (13)(24)).

It is easy to see that there is a natural family of covers defined over
Q containing exactly once a representative cover of each equivalence class of
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covers. Indeed, these are parametrized by the covering of P3\D, = #* which
has function field F equal to the fixed field in Q(x,, X,, x;) of the automor-
phism that switches x; and x,: F = Q(x, x,, X, +X,, x3). Any Q-rational point
of thi$ rational variety gives us one of the desired covers ¢: X — P.. Because it
suits applications in §4.3 so well, we intend to consider such a cover where x,,
the branch point corresponding to C;, is co. For the rest of the example
consider the two possibilities for the placement of the other branch points.

Case 1. x, and x, are real. We compute c,, = ¢ according to Theorem 2.4.
There are 3 cases depending on the interval in which we choose x,. But in each
case these are determined by the property that ¢ conjugates a pair of elements
from the entries of ¢ to their inverses. This gives these possibilities for c:

(24) for x5e(o0, x4); (12) for x,€(x,, x,); and (13) for x,e(x,, ).

Case 2. x, and x, are complex conjugate. From Theorem 2.4 there is only
one possibility for c. It conjugates each of (124) and (1 2 3) to the inverse of the
other, and it conjugates (13)(24) to itself. Thus ¢ =(12)(34). m

§3. Rigidity and a converse to Theorem 1.1

If in Theorem 2.4 for some choice of x,, the element c is the identity (i.e.,
complex conjugation acts trivially on the fiber of the cover) we refer to the
cover, and its associated group G, in Theorem 2.4 as exceptional. We have
already listed what happens in the case when r = 3 in § 1.3. There are results for
each of the fields K = R and K = Q in Theorem 2.4. Denote the exceptional list
of groups having associated C for which ¢,, comes out to be 1 satisfying
condition (1.3) (resp., also, (1.4)) by &g, (resp. £,,). For example, Proposition
1.2 shows that there are just four groups in &g 3.

The problems that we consider in this section start with describing some of
the groups (with associated conjugacy classes C) that appear in &g 4 (r = 4). In
particular, £g 4 contains S, and A, for each n > 4. Then we want to consider
some of these examples for whether there are actual covers ¢: X — P!
associated to this data that are defined over Q that satisfy the hypotheses of

~ Theorem 1.1. In this case we would realize the given group as a totally real

Galois extension of Q. For simplicity we consider only the case where the cover
has all of its branch points real (ie, r, =r in §2). Our special case of
concentration is Sy in the case r = 4. Here is a reminder of the conditions in
terms of generators.

For covers and branch points over R the following hold for exceptional a:
(3.1a) G is generated by a;,,i=1,...,r—1, all of order 2; and
[3.Ib) 0'1=c:,_1n:‘,1'=2,...,r—1, and O, = 0,_;.

For covers and branch points over Q, there would be one further
condition:

(3.1c)  0,is in a rational conjugacy class of G, i = 1,...,r (and 0} = 6% = 1).
Of necessity we must now recall some basics related to the problem.
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§3.1. Nielsen classes and Hurwitz monodromy groups. This is the classical
discussion of maps of degree n from curves of genus g to projective 1-space. It
gives us more discrete data for a cover, called a Nielsen class, that we shall
regard as being fixed in the consideration of any family of covers. Suppose that
{xy, ..., X,} consists of distinct points of P;. For any element g €S denote the
group generated by its coordinate entries by G (s).

Consider ¢: X — P2, ramified only over x, up to the relation that regards
¢: X—P. and ¢': X'~ P} as equivalent if there exists a homeomorphism
A: X=X’ such that ¢’oAd = ¢. These equivalence classes are in one-one
correspondence with

{6 =(0,,...,0,)€8) 0,...0,=1, G(o) is a transitive subgroup of S,}

modulo the relation that regards ¢ and ¢’ as equivalent if yoy ™" = ¢’ for some

. y€S8,. This correspondence goes under the heading of Riemann’s existence
theorem [Gro]. (In most practical situations we shall mean that there truly is
ramification over each of the branch points x,,i=1,...,r.)

Riemann’s existence theorem generalizes through a combinatorial group
situation to consider the covers above, not one at a time, but as topologized
collections of families: the branch points x run over the set (P3)"\4, with 4, the
r-tuples with two or more coordinates equal. The key definition is of a Nielsen
class. This is part and parcel of the formulations of “rational rigidity” and its
generalizations (§3.2).

Suppose that T: G— 8§, is any faithful transitive permutation represen-
tation of a group G. Let C = (C,, ...,C,) be an r-tuple of conjugacy classes
from G. It is understood in our next definition that we have fixed the group
G before introducing conjugacy classes from it. Denote the subgroup of S, that
permutes the entries of C (a subgroup of the normalizer of G) by Ny, (C).

DerFINITION 3.1. The Nielsen class of C is
{reG’| G(v) = G, there exists f€S, with 14 C, |
i=1,...,r and 7,...7, =1}.

Denote this by Ni(C). The straight Nielsen class is defined the same way,
except that it does not include the permutation of the conjugacy classes:

SNI(C) = {zeG'| G(x) =G, 1,eC,i=1,....,r and 1,...1,=1}.

The quotient of Ni(C) by Ns,(C) is denoted Ni(C)y", and it is called the
absolute Nielsen class of C. Similarly there are absolute straight Nielsen classes
by replacing Ns (C) by the appropriate subgroup.

Consider canonical generators 7,,...,7, of the fundamental group
n, (PL—x, X,) (e.g., those used in the proof of Lemma 2.2). We say that a cover
ramified only over x is in Ni(C) if the classical representation of the
fundamental group sends the respective canonical generators to an r-tuple
oeNi(C).
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The Hurwitz monodromy group H,. Generators Q,, ...,Q,_; of H, satisfy
the following relations:

(32a) Q;0i+19;=Qi+1Q:iQi+y, i=1,...,7-2;
(B2 0,0;...0,-10,—1...0, = 1.

Relations (3.2a) and (3.2b) alone give the Artin braid group B,. It is
relation (3.2c) that indicates involvement with projective algebraic geometry.
The Artin braid group is the fundamental group of A"— D, while the Hurwitz
monodromy group is the fundamental group of P'—D,. Here D, is the classical
discriminant logus in the respective spaces. The natural embedding of A" in P"
gives the natural surjective homomorphism from the braid group to the
monodromy group. This all fits together in a commutative diagram of
fundamental groups induced from a geometric commutative diagram:

AN4, ~ (P')\4,
3.3) ¥ e
A\D, » P\D,

where the map ¥, can be regarded as the quotient action of S, acting as
permutations on the coordinates of (P')". The respective fundamental groups in
the upper row of (3.3) will be called here the straight Artin braid and Hurwitz
monodromy groups:

(34) SH, =, ((P*)\4,, x,) is the kernel of the homomorphism ¥}: H,—S,
that maps Q, to (i i+1),i=1,...,r—1.

Production of a moduli space. In our final topic we consider how Hurwitz
monodromy action on Nielsen classes defines a moduli space. From the
relations we compute that H, acts on the absolute Nielsen classes by extension

.of the following formula:

(3‘5) (tly “-1tr)Q[ = {fl‘l . "’r‘_lirlti‘i‘l f‘_l,f', Ti+2s “‘!Tr)'
In the notation above we say that ¢,: X— P! is in the absolute Nielsen class
Ni(C). )

EXerCiSE. Let ¢ =(0,,...,0,) be an r-tuple of elements of G with
g,...0, = 1. There exists Q € SH, such that the r-tuple given by applying Q to

the r-tuple (o7’, ...,0,!) is the r-tuple with entries the right hand terms in
formula (2.4) of §2.1.

Solution. Take Q for example to be
(Qr-10r-2...0)(Qr-1Q:-2.--Q3) ... (2-10,-2) Q. =

Any permutation representation of a fundamental group defines a cover of
the space. Denote the cover corresponding to the action of H, on Ni(C)%¥® by

(3.6) ¥(C): #(C)r—P\D,.
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That is, an absolute Nielsen class Ni (C)y® defines a moduli space # (C), of covers
¢r: X, — P! of degree equal to deg(T) in that Nielsen class [Fr 1; §4]. For each
point me ) (C), choose a point xE(P‘}"\A such that x* = ¥ _(x) = ¥ (C)(m).
The cardinality of ¥ (C) ™! (x*) is |[Ni(C)3®]. Thus m corresponds to exactly one
equivalence class of covers of Ni(C)}®. A representative cover ¢_: X, — P2 has
coordinates xe(P')" for its branch points. We often drop the decorative
subscript T.

PROPOSITION 3.2. The algebraic set # (C)y is irreducible if and only if it is
connected, and this holds if and only if H, is transitive on Ni(C)j.

Proof Since ¥(C) is unramified and P'\D, is nonsingular, so is ) (C);.
Thus it is irreducible as an algebraic set (i.e., an open subset of some projective
variety which is defined by a prime ideal in the ring of polynomials in the
ambient projective space) if and only if it is connected. From the theory of
. fundamental groups this last property is equivalent to the transitivity of the
permutation representation. m

§3.2. Generalizations of rigidity. The topic is how to check if there are
covers in a given Nielsen class that are actually defined over Q (or R). Although
the results that we state here are essentially in [Fr 1], it is the attention drawn
to the special case of r =3 by [T] that brought their significance to the
mathematical public. There is a technically valuable game that compares the
Galois and non-Galois situations. Even if ultimate interest is in Galois
extensions, it can be better to start with a non-Galois cover and go to the Galois
closure. The strong “rigidity” conditions may be harder to satisfy in the
non-Galois situation. But if they do hold, this implies the vanishing of an
obstruction for the field of definition that is not easily checked from the Galois
situation.

The point of the Hurwitz monodromy actions is this ([Fr 1,3,4] or [DFr]
for details). Suppose that SH, acts transitively on the straight Nielsen classes
(§3.1), that Ceng, (G) is trivial, and that each of the conjugacy classes of C is
rational. Then the cover (3.6), with the total space of representing covers for
points of # (C),, is defined over Q.

Q-points on Hurwitz spaces. In particular, existence of covers in the
Nielsen class Ni(C)}® defined over Q is equivalent to existence of Q-points on
the Hurwitz space 2 (C). Two special assumptions appear in the next
proposition (the first implies the second):

(3.7a) for each ke(Z/N)*, C* = C mod Ny, (G);
(3.7b)  for each ke(Z/N)*, there exists o €S, such that C* = °C mod Ng, (G).

Note that (3.7b) is a consequence of Galms oompaub:llty of x and C over Q as
in (2.8).

PROPOSITION 3.3. Suppose that the cover X — P. corresponds to the point
me X (C); (as in Prop. 3.2). Assume that SH, is transitive on the absolute
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straight Nielsen classes SNi(C)y defined by C (§ 1.2). Assume also that one of the
Jollowing holds: either G is in its regular representation and G has no center; or

(% ’ the centralizer Ceng, (G) of G in S, is trivial.

Then (3.7b) holds if and only if the intersection of all fields of definition of all
covers X — Py in the Nielsen class Ni(C) is Q. In the case that (3.7a) holds, the
cover (3.6) is defined over Q and the field of definition of the cover X — P is Q (m).

§33. 5, and A, are in &g 4. We discuss groups generated by elements of
order 2,

DermaiTioN 3.4. A finite group G is said to be (m,, ..., m,)-generated if it is
generated by elements {«,, ...,a,} with ord(a) =m,, i=1, ...,t. We shorten
this expression to m'-generated if the m;s are a constant function of i.

In seeking to find the exceptional groups in Theorem 2.4 we apply this
definition to consider groups that are 2"~ !-generated for suitably small values
of r. Of course all noncyclic simple groups are 2"~ '-generated for suitable
values of r, but it is not exactly clear what value this would be; nor given
a small value of r for which it is so, is it clear that we can find suitable
generators a;, i=1,...,r—1 so that (3.1c) holds. Proposition 3.6 says that
r =4 works for S, and for 4,. The referee suggested [F] for a proof of the
following result,

LEMMA 3.5. Consider an element o € A, with n > 2. Suppose that the disjoint
cycle decomposition of o has the shape (s,)...(s,) (counting the cycles of
length 1) with s, < s, <...<s,.If's; = 5,44 for some i, or if one of the ss is odd,
then the conjugacy class of ¢ is rational. Note that it may be rational even if
neither is satisfied.

PROPOSITION 3.6. For n > 4, S, and A, are both 23-generated, and both are
in £g4.

Proof. We chose S, and 4, because in the former case all conjugacy
classes are rational, and in the latter case Lemma 3.5 shows nearly all of them
to be so. Suppose that we have obtained the dihedral group D,_, of order
2(n—1) as a subgroup of S,_,. Since D,_, has an (n—1)-cycle in S,_,, the
group (D,-,(1n)) must be §,: it is a doubly transitive group containing
a 2-cycle. There are two cases to deal with here: n odd and n even. In the former
case use

@, =(12)(34)...(n—=2 n—1) and a,=(23)45(67)...(n—3 n—2)
as generators of D,—;; and in the latter case use
@y =(12)(34)...(n—=3 n—=2) and «a,=(23)45)(67)...(n—2 n—1).

This finishes our discussion of S, by taking a, = (2 n) in (3.1).
The modified principle for 4, is based on the lemma that a primitive
subgroup of 4, containing a 3-cycle must be all of A, (e.g., [Car; p. 163 % 15]).
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We consider separately each of the residue classes of n modulo 4, with the most
difficult of these, n = 0 mod 4, coming last. The o’s here are as in (3.1).

Case 1. n=1 mod 4. Take the «’s as follows:
a, =(12)(34)... n—2 n—1),
(3.8) o, =(12)45)...(n—1 n),
oy =1(23)(45)... (n—1 n).
We will repeatedly use a simple principle: if @ and «' are of order 2,
ind (®)+ind () = m—1 and {«, &') is transitive on m integers, then xo’ is an
m-cycle on these integers. Apply this to (3.8) to conclude that «, a, is an n-cycle;
a, @, is an (n—2)-cycle (on {3, ...,n}); and a,a; is the 3-cycle (132). Let
G = G(a) be the group generated by the a’s. .
Note that conjugation of (132) by ayx, gives (135). Also, a,a, is an
(n—3)-cycle on {3, ...,n}. Thus the subgroup of G that stabilizes 2 is transitive
on the remainder of the integers. In particular, G is doubly transitive, and
therefore primitive: G = A,. To conclude that 4, e £g 4 we check that «, a, and

a, e, are rational conjugacy classes. But both have repeated 1-cycles. Lemma
3.5 concludes this case.

Case 2. n =3 mod 4. This case has a twist that shows in our choice of

o’s:

o, =(12)(34)...(n—4 n—3),
(3.9) o, = (23)(45)...(n—5 n—4)(n—3 n—1),

oy =(n—3n-2)(n—1n).
Here a,a, (resp, (¢,23)®) is an (n—2)cycle (resp, 3-cycle) on
{1,2,...,n—3,n—1} (resp., {n—4,n—3,n—2}). As in Case 1, G is doubly
transitive and therefore equal to A,€84.4.

Case 3.n =2 mod 4. This is even easier than the previous cases with the
o’s as follows:

a0, =(12)(34)...n=3 n—2),
(3.10) #, =(n—4 n—3)(n—1n),
%y =(23)(45)...(1—4 n—3)(n—2 n—1).

Here a, a, is an (n—1)-cycle on {1, 2,...,n—1}, and (a,a3)* is a 3-cycle on
{n—2,n—1, n}. Conclude as previously. 3

Case 4.n = 0 mod 4. Here we take the o’s in a slightly more complicated

way:
o, =(12)(34)...(a—1 n),
nn
(3.11) o, =(23)(4 5)...(5 i+ l),

n n n n
5 =(§+1 i+3)(i+4 §+5)...{n 1).
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Since (&, a,)* is the 3-cycle (g g+1 ;+ 3) = A, our main difficulty is to show
that the group G generated by the o’s is primitive.
Suppose that

{1, .o =Vu..ul

is a partition of the integers from 1, ...,n into a system of imprimitivity for G:
this is a disjoint union, and G acts as permutations of V;, ..., V.. Here is the
principle we need for our next computation. If t € G is the 3-cycle (a, a, a,), then
{a,, a,, a,} = V. for some integer i. Indeed, because 7 is transitive on the a's,
the set of a’s must consist of a union of any of the Vs that it actually moves
together with a subset of one of the ¥’s. If  moves any V, the cardinality of the
a’s would have to be at least 4. Thus the only other possibility is that t moves
none of the V’s,We use this principle by conjugating A by various of the o’s to
get 3-cycles that show that one of the V’s contains all of the integers.
Consider these elements in G, with o;; =a,a;, i=2,3:

n n n nn n n
oy,2 —.(1 35...5—1 §+1 5+2 55—2 ...4 2)(5+3 5"‘4)...("—1 n),

n n n n n n n
Oy,3 = (34}(‘5—1 5)(5"‘1 5+2 5+3 5+5 ..n—112nn-2... 5"'4)
Note that the square of a, 5 (resp., a, ») fixes n/2 (resp., n/2+3) and has n/2+1
and n/2+43 (resp., n/2 and n/2+1) next to each other in a cycle

n n n n n
(2+l 2+3 2+? O S 2+l(}2+6)
with a = 1 or 2 depending on whether n/4 is congruent to 0 modulo 2 (resp.,
(...nf2—7 n/2—3 n/2+1 n/2 n/2—4...)). Thus, repeated conjugates of 1 by
these cycles show that all of these integers are in the same V. This by itself gives
n/2+1 integers in V.

Thus the group is primitive and since it contains a 3-cycleitis all of A,. »

In Proposition 3.6 there are groups that would be exceptions to the
general situation excluded by Theorem 2.4 under the condition that they arise
as the geometric monodromy groups of Galois covers over K (K = R or Q)
with appropriate branch cycle conditions. Suppose that G is one of these
groups with appropriate branch cycle generators ¢. In §3.4 (Theorem 3.7) we
apply this to explicit cases of Proposition 3.6. The reader will note that the
theory is not restricted to R or Q, but for simplicity we stick to these cases.

§3.4. Exceptional covers in Proposition 3.6. Take «,, o, a3 from the first
paragraph of the proof of Proposition 3.6. Here G = S,. Let

Gy =0y, O,=0,08,, O3=0,0, and o,=a,,

as we already have done. The representatives of the Nielsen class have the
property that if a cover X — P} (of degree n) in this Nielsen class is defined over
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Q, then there would be (lots of) points x,e PL(R) distinct from the branch
points of the cover such that the points of X over x, are all real. Because the
group is S,, it is immediate that the Galois closure X — P! is geometrically
irreducible and has group S,,. Thus it would realize this Nielsen class with r = 4
as an exception over Q to the general complex residue class property of
Theorem 24.

What we will see is that all of the example Nielsen classes of Proposition
3.6 are tantalizingly close to being exceptions over Q. The obstruction to
completing this, for each n, lies in finding Q-rational points on a curve ¥, for
which we have a great deal of information about its presentation as a 3-branch
point cover of the sphere defined over Q (Theorem 3.7). Indeed, the curve can
be described as a quotient of the upper half plane by a “noncongruence
subgroup” of SL(2, Z), similar to the examples of [Fr4; Theorems 5.6 and
5.9]. What we demonstrate is that for n =4 and 5 the curve Y, is a genus
0 curve. The values of n for which this curve is of genus 0 are 4 < n < 9 (cf. §0).

Suppose that o (C)y is the parameter space of covers in this Nielsen class
(Part 3 below). We show that the group SH, acts transitively on the absolute
straight Nielsen classes. With this, the cover X —+ P} above is defined over
Q (m) with me 5 (C); the point corresponding to the equivalence class of the
cover. Thus we are reduced to finding a (any) rational point on # (C);.

Our first task is to conveniently display the straight absolute Nielsen
classes when n = 5. The following chscussnon has three parts leading up to
Theorem 3.7.

Part 1. Preparation for the listing. Multiplications of elements in left-right
notation tend to be more transparent if the shapes of the first elements being
multiplied are easily visualized. Although the notation of Proposition 3.6 has
them in a different order, we therefore choose representatives of the Nielsen
class to have o, a 4-cycle, o, a 2-cycle, o, a 3-cycle, and o, a product of two
2-cycles. For example, replace the o’s above in the given order by

-1
6,060,064 ,G4, 03,03,

Now let us look at any 4-tuple 7 in the straight Nielsen class. Conjugating
by an element of S, allows us to assume that 7, = (1234). If we follow this by
conjugation by a power of 7, we may assume that 7, = (1 a) with the choices
for a divided into the case a =5 and the cases a=2 or 3.

Consider the values of a # 5, all of which turn out to give representatives.
First: 1,7, =(12...a=1)(aa+1...4) and 7,1, is the inverse of this. If
5 disappears from tbc product of 13 and 74, then 5 appears in 7, in the
3-cycle.

Forthecasea=3,1,=(521)and 7, =(2 5)(34). For a = 2 we consider
the appearance of 1 in 75 or t,. If it appears in the 3-cycle of 75, then by
conjugation by (234) we may assume that the 3rd integer in the 3-cycle is 2.
Wherever it is, 7, 7, is forced to send 1 to 2 or to send 2 to 1, contrary to what
1, 7, does.

Part 2. Notation for the display. For a moment exclude the case a = 5. In
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the display below there is a leader notation L, ,(for a = 2 or 3). This indicates
that we are displaying a representative for the values of 7, and 7, that goes along
with the corresponding values of 7, and 7,. Recall that since the product of all
of the 7’s is 1, the product of 7, and 7, is the inverse of (1...a—1)(a...4). From
the combinatorics above, we obtain the complete list of possibilities for 7, and
74 that should appear in the line L., by conjugating (just) 7, and 7, by

{1...a=1y(a...4y'| reZ/(a—1) and seZ/(5—a)}.

For the case a = 5 the conjugation is by the powers of (1234 5), but there
is also an additional notation in place of the ¢ for a parameter b, which is
just 3 in the case n = 5.

Part 3. Quotation of [Fr4] (or [FrT]). We briefly review the results of
§4.1 of [Fr4] (or §3.2 of [FrT]). The 4 conjugacy classes defining the Nielsen
class of S5 with which we deal are all distinct. This simplifies considerably the
theory of such families of covers. In particular, transitivity of SH, on the list
described by Part 2 above is equivalent to transitivity of the subgroup
generated by the following set of elements (§3.1):

(312) ay.=0} a,;=07'0} Q1 61.4=07'0:'0} 0,0;.

If we show transitivity of the group generated by these elements, then
Proposition 3.3 implies that any cover X — P! in this Nielsen class is defined
over Q(m) where m is the point of the Hurwitz space (# (C); of Proposi-
tion 3.2) that corresponds to the cover. Furthermore, there is a cover

¥, Y,—P., ramified over just 0, 1, o0
defined over Q such that # (C);(Q) is nonempty if and only if
(3.13) % (@)~ {¥a* (0), ¥i (1), ¥ (@)}
is nonempty. Finally, this cover has these further properties:
(3.14a) it can be identified with the projective normalization of the upper
half plane modulo a subgroup (of finite index) of PSL(2, Z); and
(3.14b) - a description of the branch cycles of the cover is given by the

collection a, 4, i = 2, 3, 4 in their permutation action on the straight
Nielsen classes described by Part 3.

In particular (3.14b) allows us to explicitly compute the genus of ¥, from
the Riemann-Hurwitz formula. Of course, as already explained, we will do this
only for the cases n = 4 and 5. In another paper we will explicitly list all of the
Nielsen classes and show that the action of SH,, on the straight Nielsen classes
described by Part 3 is transitive. In the next result we state this tentatively.

THEOREM 3.7, If the action of SH, on-the straight Nielsen classes is
transitive, then the curve cover \,: Y, — P: defined over Q with properties (3.13)
and (3.14) exists. For any n for which expression (3.13) is nonempty, S, is the
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Galois group of a regular extension of P} over Q with the branch cycles given by
the proof of Proposition 3.6. In particular this cover has many totally real
specializations (i.e., is an exception to the conclusion of Proposition 3.6). In the
case that n = 4, the cover Y, Y, - P} is of degree 6 and Y, is isomorphic to P*
over Q. In particular (3.13) is nonempty. The cover 5: Ys— P (i.e,n="5)is of
degree 10 and it has a description of its branch cycles given by the following
elements in Sio:

(123)45(678910), (176)(243)(59) and (149100853 7)".
Thus Y is also of genus 0 and again (3.13) is nonempty.

Proof. We need only find the action of ay ;, j = 2, 3 and 4 on represen-
tatives of the list of straight Nielsen classes as described in Part 3 to reduce the
theorem to a computation. Since the a’s are a description of the branch cycles
of a cover, we compute a,  as the inverse of the product of a, ; and a, ;. First:
n =15 following the notation of Part 2. .

Here is an expansion of the list of absolute Nielsen classes, including the
actual results of conjugating the pairs (3, 74): ;

Ly 13=(523),1,=(25034); 15=(534),7,=(35)(24);
13 =(542), 7, = (43)(23);

Lis: 13=(521), 7, =(25(4); 13=(512),7,=(15(4;

Las: ts=(153), 1, = B4(12); 15 =(214), 7, = (45)23);
1,=(325), 7, =(15(34); 7, =(431),7,=(12)(45);
3 = (542), 1, = (23)(51).

Denote the elements under L, , by x;,i = 1,2, 3, in the order of their
listing; under L, 5 by x, and x,; and those under L; s by x;, i =6, ..., 10. For
each of these denate (x)Q7* by y;,i=1,...,10. The essential part of the
computation is the effect of Q2 (resp., 03) on the x’s (resp., y’s). For example, the
practical effect of previous comments is that

0F = (xy X, X3) (x4 Xs) (X X7 Xg X9 X10)-
Here are the y’s: '
Y1 ((1 2),(2134),(523), (25)(43)) y3: ((1 2),(2134),(534),(3 5)(42))
Ya: ((l 2),(2134),(542),(45)(2 3)) Ya ((l 3),(3214),(521),(25(34))
ys: ((13),(3214),(512),(15)(03 4) Ye: ((15),(5234),(153),(39(1 2))
y2: ((15),(5234),(214),(45)(23)  ys: ((15),(5234), (325), (15)(34)) -
yo: ((15),(5234),(431),(12)(4 5)  yio: ((15),(5234),(542),(23)(1 5)

Apply Q3%: y, goes to ((12),2, (2134)(523)(2134)™", (25)(4 3)); which has
(54 1) in the 3rd position; and conjugation by (254 1)~ gives y,. Continue in
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this way to get
03 = (1YY (V2 ¥4¥3) s Ys)-

Translate this back to the x’s to get that the cover y,: Y;—P. has
a description of its branch cycles given by

a1,z = (123)(45)(678910),
a3 =(176)(243)(59),
ay4=((14910)(7853)).

From the Riemann—Hurwitz formula, the genus of Y; is 0. Since each of
the disjoint cycles of a,, i = 1, 2, 3 is of a distinct length, the points above the
branch points—all of them—are rational. This shows that Y; has a lot of
rational points. From the renown Hilbert-Hurwitz observation, Y; is isomor-
phic to P'.

Finally, we quickly traverse the similar calculations for the case n = 4 by
displaying the analogs of the calculations above for (z5, 7,). There are just two'
listings:

Lya: t3=(432),7,=(34); 15=(423),7,=(24); and
Ly t13=(432), 7, =(14); 13=(321),7,=(43);
13=(214),7,=(32); 13=(143),1,=(21).

Denote the elements under L, ; by x,, i = 1, 2, in the order of their listing;
under L, by x,,i=3,...,6. For each of these denote (x)Q:' by y,
i=1,...,6. As above the essential part of the computation is the effect of
Q% (resp., Q%) on the x’s (resp., y's). We easily compute that -

01 = (x4 X5) (x5 X6 X5 X,).
Here are the y’s:
et ((13),(123),(432), (34) 52 ((13),(123), (423), 24))
ys: ((34),(123),(432),(14)  y,: ((34),(123),(321), 43)
ys: ((34),(123),(214),(32) ye: ((34),(123),(143),(21)

The effect of @2 on the y’s is (¥, ¥s y5). Translate this back to the x’s to get that
the cover y,: Y,—P; has a description of its branch cycles given by

a;,=(12)(3654), a,3=(153), and a,,=(1254(36)".

The genus of Y, is therefore 0 by the Riemann-Hurwitz formula, and (as in
the case of n = 5) all of the points above the three branch points are rational.
Thus the curve is isomorphic to P!. w

§4. Points on  (C) giving R-covers and Siegel families

Consider a collection of conjugacy classes C of a group G (with
a permutation representation T G—S,) and the associated Nielsen classes
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Ni(C){®. In §4.1 and §4.2 we give general results that show the following

things: ;

(4.1a) How to effectively compute the effect of complex conjugation on the
points of a fiber ¢ ~*(x,) of a cover ¢: X — P% where x; is one of the
branch points of the cover;

(4.1b) How to effectively locate all of the points on the parameter space
X (C) which correspond to covers over R in the Nielsen class
associated to a group G.

Siegel’s theorem. The remainder of the paper applies the results of §4.1-4.2
to consider a converse to the following version of Siegel's Theorem [S]. Let
¢: X - P! be a cover of projective nonsingular curves with both X and the
graph of ¢ defined over Q. Suppose that & is a fractional ideal of Q. If there
are infinitely many Q points of X that lie over the points o/ < P!, then

(42a) X is of genus 0 and it has 1 or 2 points over x = co; and
(4.2b)  if there are two points over co, they are real conjugates over Q.

If there is just one point over o in (4.2), a rough converse to Siegel's
theorem is obvious. But if option (4.2b) holds there are serious questions for
this. Our goal is to use Theorem 2.4 to consider properties of all complete
families of curve covers of genus 0 for which there is some possibility that
members of the family will have property (4.2b). We reduce this to a com-
putational test with Hurwitz monodromy action —illustrated by two examples.
This combined with a sufficient condition for the family to be defined over
Q gives the necessary ingredients for a reasonable definition of Siegel family of
covers over Q (with r > 3 branch points). In particular, if ¢ is the parameter
space for such a family, it is guaranteed that the natural degree 2 cover
o ., — X defined by the points over infinity in the covers of the family has the
following property: for a real point me ), the (two) points of #  above m are
defined over a real quadratic extension of Q (m). We have left it to the examples
to illustrate how the following subtle computation would be checked:

QuEesTiON 4.1. In the above notation, when is it true that for “general” regl
me ¥, the (two) points of & above m are conjugate over a real quadratic

extension of Q(m)?

The fullest converse would show how to guarantee the existence of

a member of a Q-Siegel family that affirmatively satisfies the questions of list
(4.7). For (4.7a) and (4.7b) our computations are instructive. Therefore it is
primarily in dealing with question (4.7c) that the remaining problems arise in
giving a converse to Siegel’s theorem.

§4.1. Real points on fibers over branch points. Use the notation of the

previous sections for a cover (as general as previously) ¢: X — p! thgt is
defined over R and has the usual notation x,, ..., x, for its list of branch points.
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Assume that G and the Nielsen class (associated to C) are fixed for the
discussion. We now state an analogue of Theorem 2.4 that tells us the effect (as
a permutation) of complex conjugation on the points of the fiber ¢~ 1(x).
Again, compatible with the ingredients for Theorem 2.4, we assume a naming
of the branch points so that x,, ...,x,, are the real points, and these appear in
clockwise order- around the “circle” P'(R). Recall that the Hurwitz mono-
dromy action (§ 3.1) allows us to reorder the entries in C without changing the
Nielsen class that is involved in the definition. _

Also, for simplicity, as in the proof of Theorem 2.4, we assume that we
have chosen a point x, € P'(R) that lies between x, and x,, and that we have
Cxo = €€ N3, (G) so as to satisfy the formulas of (2.6). It is the action of complex
conjugation on the fiber ¢~ '(x,,) that we now describe. Write out ¢, as
a product of disjoint cycles: 4, 4,...4,. These disjoint cycles are in one-one
correspondence with the points of the fiber ¢ ~!(x,,) in the following sense.
Consider a path y,, homotopic to the path that gives the branch cycle a,,, with
7r, Of the form pdg ™' where d surrounds a (suitably small) closed disc D about
x,, and g is along the real line. A point pe ¢~ *(x,,) corresponds to the disjoint
cycle 4, whose entries represent exactly the points above x, for which the
unique lift of y, starting at such a point meets the unique connected
component of ¢~ !(D) containing p (e.g., [Fr2; p.146)).

THEOREM 4.2. In the association described above label the points of ¢~ * (x,,)
by yi, ..., y, so that y, corresponds to the disjoint cycle A, i = 1, ...,s. Consider
the action of complex conjugation given by (2.6): ca,,c = a,;'. This implies that
¢ maps the set of integers that appear in a disjoint cycle A, to the set of integers
that appear in another disjoint cycle A,. Thus c induces a permutation of the
integers y,, ..., y, which we denote by c,. It is c, that gives the action of complex
conjugation on the points y,, ..., y,.

Proof. The action of complex conjugation on the points y,,...,¥,
extends naturally (and compatibly) to the connected components of ¢ ~* (D). It
also extends to the lifts of y,, (as it maps y,, to its inverse). It is now clear that
the lifts of the paths that meet a specific connected component Vof ¢ ~* (D) are
taken by complex conjugation to the lifts of paths that meet the effect of
complex conjugation on V. When translated in terms of the points of y,, ..., »,,
this is what the theorem says. m

ExampPLE 4.3. (Example 2.7 continued) In Example 2.7 we had the
following data: r = 3, G = A,, and C, is the conjugacy class of a 3-cycle; C, is
the conjugacy class of elements inverse to those of C, ; and C, the conjugacy
class of a product of two 2-cycles. Assume that a cover ¢: X — P! is in this
Nielsen class, and that x,, is co and that it corresponds to the conjugacy class
labeled as C,. We want to check the effect of complex conjugation on the (two)
points of the cover over co. First in the case that all 3 branch points are real
(Case 1 of Example 2.7); if we assume that x, € (0, x,), the computations were
that conjugation by c gives (24). Thus it does not move the two disjoint cycles
in a representative of the Nielsen class, so the points are real.
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But in Case 2 of Example 2.7, under the assumption that the other two
branch points are complex conjugate, the two disjoint cycles were permuted.
Indeed the representative for C, was (1 3)(24) and ¢ turned out to be (12)(34).
That is, the points over oo in the cover under these hypotheses are complex
conjugate. A moment’s reflection reveals that this in particular implies that the
residue class fields of the points over co in this Nielsen class are nonconstant as
a function of the parameter space. =

§4.2. Points on the Hurwitz space that give R-covers. Continue the
notation from §4.1. Consider x,e€P!(R)\{x,,...,x,}. Here we explicitly use
that the existence of c,, = ce N, (G) satisfying formulas (2.6) is a necessary
condition for the cover ¢: X — P! to be defined over R. Under the hypotheses
of Proposition 3.3 (cf. [DFr; Theorem 1.7]) the latter is equivalent to having
me # (C) corresponding to this cover defined over R (ie., with real coor-
dinates). What we show here is that existence of ¢ is also a sufficient condition
for the cover to be defined over R, and therefore that the corresponding point
of the Hurwitz space is real. This gives a satisfying combinatorial description of
the real points of # (R). Thus it is a shame that there are no Q, versions (cf. §0)
in light of the seriousness of checking if # (R) has rational points (e.g., as in
§3.4). :

THEOREM 4.4. We assume that the hypothesis (=) of Proposition 3.3 holds.
Suppose that a cover ¢: X —P* has only real and complex conjugate pairs of
branch points as in §2. Let o be a branch cycle description relative to a set of
paths given as in Figure 2. Now we may ask (relative to a point xo € P (R)) if there
exists ¢y, = € N5 (G) that satisfies formula (2.6). Then ¢: X — P* is defined over
R if and only if such a ¢ exists, and this does not depend on the choice of x,.

There is a constructive partition X ,, ..., 3, of the points of # (C) over
P’ (R)\D, with the following property: each of the X s, as a set of complex valued
points on the manifold # (C), is connected; each of the 5 's corresponds to one
element of the Nielsen class; and each me 3, corresponds to a cover in the
Nielsen class defined over R if and only if the element of the Nielsen class that
corresponds to ¥, has a corresponding ¢ that satisfies (2.6).

Proof. Since (*) holds, Proposition 3.3 says that the cover of the first
paragraph of the introduction has a minimal field of definition K that makes
K a field of moduli for the cover. That is, if 7€ Aut(C/Q) and if ¢*: X"~ P is
equivalent to ¢: X — P! as a cover, then 7 is fixed on K. (An application of
Weil’s cocycle condition; beginning of the proof of [Fr 1; Theorem 5.1].) Here
the superscript © indicates the effect of applying z to the coefficients of the
equations describing these curves.

If K is contained in R then Theorem 2.4 shows the existence of c. Suppose
conversely that ¢ exists satisfying (2.6). The proof of Theorem 2.4 actually
shows that the left side of (2.6) consists of a branch cycle description of the
cover obtained by applying complex conjugation to the coefficients of
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¢: X — P! (as well as to the points over x,) relative to paths homotopic to the
original paths with which the branch cycles were computed to be the right side
of (2.6). Two covers with equivalent branch cycle descriptions with respect to
the same homotopy classes of paths are equivalent covers. Thus ¢: X — P! is
equivalent to ¢°: X°— P'. But this contradicts the field of moduli property of
the field of definition K of the cover, unless ¢ is fixed on K. That is the cover is
defined over R. Since being defined over R has nothing to do with the base
point x, with which we started the inspection of (2.6), the result does not
depend on this choice. Nevertheless, it would be instructive for the reader to
check that if c,, exists for x, selected in one of the intervals of P*\{x,, ..., x,} it
exists as well for x, selected in any other of these intervals. _

Now we come to the description of the partition 5¢,, ..., . Let I be all
of the ways to write r as a sum of the form r, +2r,. We use I to consider first
a partition of a subset of (P')'\4, = 4, (§3.1). For (r,, r,)€ I denote the subset
of 4, consisting of r, real points and 2r, pairs of complex conjugate points by
%,,r,- Let V be one of the finite number of connected components of %, ,.
Denote the image of ¥ under ¥, in P"\D, by W. Now consider the connected
components 3 (C) that lies over W. For any one of these, the setup for
expression (2.6) gives a specific representing Nielsen class relative to the paths
considered for Theorem 2.4. Thus we may check for this Nielsen class if there is
a ¢ that works in (2.6). If there is, then all points of the component of 3 (C) that
lies over W consists of real points. We are now reduced to running over all pairs
(ry, ry)€l, all choices and orderings of the coordinates associated with the r,
real points, and all representatives of the Nielsen class, to check for the
existence of ¢ in each of these cases. This concludes the algorithm for labeling
the real points of #(C). =

§4.3. Definition of Siegel families. We will be fixing the ramification type
over oo of our covers X — P;. In particular, our concern is with covers with two
peints over co, both ramified over their images of order an integer m. Thus the
cover is of degree 2m =n. We call such a cover an (m, m)-cover thereby
reserving the right to generalize to other situations without having to
drastically change notation. Suppose that C =(C,, ...,C,) is a collection of
conjugacy classes in a group G for which the covers X — P! in the Nielsen class

Ni(C)3® are of genus 0 and for which C, is the conjugacy class of an element o,
in G S, with -

(43) o, is a product of two disjoint m-cycles (of (m, m)-type).

We consider just the subspace of the Hurwitz space > (C) consisting of
representatives of the covers X — P! which happen to be (m, m)-covers. For
most examples —just a few simple exceptions are excluded—C, # C, for i # r.
In this case there can be no confusion about which branch point has the
(m, m)-type of branching. The space representing just the (m, m)-type covers
will be denoted 2 (C_). We refer to a representative of the conjugacy class C,
as a Siegel cycle.
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Consider the set

@4) Ni(C,)={zeG| G(®) =G, ,=a,, with BeS,_; so that
T(n’ECi,i= 1, vangly Tpee T = l}

Also, denote the subgroup of the normalizer of G in S, that centralizes o, and
that permutes the conjugacy classes Cy, ...,C,—; by N(C,). From [D};‘r; §14]
X (C,) is naturally a cover of A" of degree equal to the quotient of Ni(C,) by
the natural conjugating action of N (C_). Denote this set by Ni (C_)3°. Below
denote this family by &(C,).

DEFINITION 4.5. Consider a family & (C_) of covers of (m, m)-type (of
genus 0). It is said to be a Siegel family (of covers) if the following properties
hold:

(4.5a) &(C,) is defined over R;

(4.5b) a Zariski dense subset ¥ of # (C,) has associated covers defined
over R;

(4.5¢) for a Zariski dense subset of me ¥  a cover representing m has the
property that the two points over co are both real; and

(4.5d) C, is rational in the smallest group containing G and N(C,_).

The main point that we make here is that Theorems 4.2 and 4.4 give an
explicit test for a given Nielsen class (with a choice of conjuga_cy class as _C,.)
whether the corresponding family of covers is a Siegel family. Just being
a Siegel family is not sufficient to provide us with curves that gi_ve a converse to
Siegel’s theorem stated in the introduction. The next definition adds to the
properties of Definition 4.5 to further this goal.

DEeFINITION 4.6. Suppose that &(C,) is a family of Siegel covers of
(m, m)-type. We say that it is a Q-Siegel family if the following properties hold:

(4.6a) &(C,.) is defined over Q;
(4.6b) #(C,) has a Zariski dense set of Q points; and

(4.6c) for a Zariski dense subset of me# (C,)(Q) a cover ¢,: X, P}
representing m has the property that the two points over co are real
conjugates over Q.

§4.4. Examples and questions about Siegel families._ Those .families t_ha'at
satisfy the generalized “rigidity condition” (of Prop. 3.3) will be said to be rigid
Siegel families. For these families we can be certain that they are defined over Q,
and thus members of them are part of a potential converse to Siegel’s theorem.
Such rigid Q-families include those given by Example 4.3 and the main example of

Rigidity and real residue class fields 321

[DFr]. But we have left one of the most exciting problems untouched by
restricting consideration to just the rigid families.

The list of Siegel families is sufficiently explicit to allow serious con-
sideration of the following questions about the parameter space # of one of
the families:

(4.72) Is #(Q) Zariski dense in H#7;

(4.7b)  If the answer to a) is positive, for sufficiently general me »# (Q) and
®m: X~ P% the corresponding cover, is X (Q) nonempty?; and

(4.7c)  If the answer to b) is positive, for &/ any fractional ideal of Q, is
¢! (o) infinite?

It is only for rigid Siegel families that we would expect effective answers to
these at this time. The main example of [DFr] passed all these tests
affirmatively. But as yet no general procedure tests a specific Siegel family for
property (4.7c) even if (4.7a) and (4.7b) hold.

We conclude the paper with an example. For this family we will show that

questions (4.7a) and (4.7b) are answered affirmatively. As already discussed (cf.
[DFr]) (4.7¢c) is tougher.

EXAMPLE 4.7. A Q-Siegel family with r = 4. The point of this example is to
show Theorems 4.2'and 4.4 in action. We take G to be S,,r =4 and the
Nielsen class has a representative given by the following 4-tuple:

(4.8) (0, =(12), 0, =(23), 05 =(214), o, = (13)(24).

Then a cover X — P}, given with this branch cycle description is of genus 0, and
we assume that the element o, indicates the ramification structure over co. We
assume the setup exactly as around formula (2.6). We have a family of covers
Z(C,) of (2,2)-type, as given by (4.3). First note that there is no c that satisfies
formula (2.6). In this case such a ¢ would conjugate the 4-tuple of (4.8) to

(4.9) (0, =(12), 03 =(13), o5 =(234), o, = (13)(29)).
But, such a ¢ would commute with the group generated by ¢, and o,.

Therefore ¢ would by either the identity or (12)(34): a clear contradiction.
Representatives of the straight Nielsen classes consist of just 3 elements:

(4.10) the two elements above and ((13), (12), (214), (13)(24)).

As in the proof of Theorem 3.7, we establish the basic properties of this
family by computing the effect of a, , and a, ; on these absolute straight
Nielsen classes. Labeled in this order the effect of Q, on them is (132). Thus
Q1 is (123). Now Q3 has the effect of (12). Compute easily that the curve Y that
corresponds to this cover, in the discussion around (3.13) is of genus 0 and it has lots
of Q-points. Finally, if we try to find c relative to the Nielsen class representative
listed in (4.10) we get that ¢ exists and is equal to 1. Conclusion, this is a Siegel
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family according to Definition 4.5, but only some of the regions described in
Theorem 4.4 correspond to real points. Furthermore, we have verified all of the
properties of (4.6) for it to be a Q-Siegel family, except for (4.6¢c). This is
similar —read, just as tricky —as the analogous question was for Example 4.3.

Consider the Hurwitz monodromy group action on the straight Nielsen
class representatives given in (4.8)-(4.10) together with the conjugates of these
by (12)(34). We equivalence two of these elements only if one comes from the
other by conjugation by an element that is in the group of centralizers of o,
that do not permute the two orbits of g,. A check shows that the Hurwitz
monodromy action is transitive on these 6 classes, and we conclude as in
Example 4.3. n

Editorial Note: The paper was originally intended for the SprindZuk’s
memorial volume, but has been delayed in the refereeing process.
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