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The metrical theory of complex continued fractions
by

HrrosHi NAKADA (Yokohama)

In the previous paper [2], the author constructed a transformation
T which is associated with A. Schmidt’s complex continued fractions over the
Gaussian field. As a result, we found some metrical properties of these complex
continued fractions. Schmidt had defined three sequences of convergents
{Pin/@in}, 1 =0, 1 and co, and we established in [2] the law of large numbers
for the number of solutions to the diophantine inequality |z—(p/q)| < c/lg|*,
¢ > 0, for these convergents. In the present paper, it is shown that the rate of
the growth of |g,,| is exponential for almost all z, and its explicit rate is given.
Furthermore, the rate of the convergence of p,,/q,, to z is determined.

MAIN THEOREM. For almost all complex numbers z and any 1 =0, 1 or o,
we have

@ S lim (log q)/n = E/r,
(ﬁ) lim (log |Z =y (pl.n/ql.n)l)/n = _ZEITH
where

(1!

E=
uz'x @k—1)*

We note that the method of the proof is quite different from the
well-known method used by Billingsley [1] to prove Lévy’s result for the case
of simple continued fractions. In [2], we use the ergodic theorem and here, we
combine this with the Borel-Cantelli lemma in an interesting way. This arises
naturally since the quantities must be compared. The probability space (X, 1)
includes complex numbers as a set of measure 0. However, T on X induces
a kind of contractive and expansive structure. This structure helps us to see
that the set of measure one, for which our property holds, includes a set of
relatively measure one of the complex numbers.

In Section 1, we recall some fundamental definitions and properties
from [2]. In Section 2, we show some essential properties of g, and p;, and in
Section 3 we give the proof of the Main Theorem.
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1. Let C and C* be two complex planes. For a 2x 2 matrix 4 = I::: 3]

with Gaussian integer coefficients and |det A| = 1, we consider g, the linear
fractional transformation defined by

az+b
cz+d

on (Cu{w}u(C*u{x}), where g, acts separately on each plane if
det A = +1, and interchanges the planes if det 4 = +i. (Here and henceforth,
we use the same symbol oo for the two points of infinity associated with the
two planes.)

We put

T, ={z=x,+x,i: x,20u{w}cC,
T ={z=x,4+x,i: 0<x, <1, x, > /x,—x}} u{0} = C*,
T.={z=x,—x,i: 0<x, < l,x;B\/W}U{m}CC’
T% ={z=x,—x,i: X, 20} U{o} = C*

and define partitions

g4(2) =

{718, (1=1,2,3),¢, {=}}
of T, (Fig. 1(i)) and |
{(¥#(=1,2,3),¢* {o}}

of T¥ (Fig. 1(ii)). The transformation T on X = (T_ x T,)u(T* x T?¥) is de-
fined by

Tzy, 23) = (9.4(21), 94(22))

with
Vit i z,eV VYl
_)EY if zed,
M h C™l if ze€uU¥*,
I if z,=o0;
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We also define Ton X = T, u T¥ (which is just a projected version of T)
by
T(2;) = galz,)
for z,eX with 4 in (1).
THEOREM 0 ([2]). The dynamical system (X, T) is ergodic with respect to the
invariant measure j defined by
' 2dx, dx, dx', dx

dii =
B x? |2, _zz“

with z, = x, +x,i and z, = X +x5i.
For (z,, z,)e X, we define for n> 0
t,=V, E, C or I

according to whether the second coordinate of T"(z,, z,) is in ¥, U¥¥,
8, € UE€* or {0}, respectively; for n <0, similarly we define

=V, E, C! or I

Thus we get a sequence of matrices ...t_zt_jtgt,t,...

It is easy to see that T corresponds to the shift operator on a subset of the
set of sequences of matrices. We may identify a complex number ze Z with
(00, z)€ X (in this sense, X is regarded as a set of measure 0 in X). We note that
for any (z,, z,) and (2}, z,)e X with T"z, #0, 1 or oo for n > 0, the distance
between the first coordinates of T"(z,, z,) and T"(z}, z,) tends to 0 as n goes
to +co. We will see in Section 3 that this decay rate is exponential (Lemma
3 and the Main Theorem).
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Now define @, 0 and 1 convergents pm.u/ Qo PO.»/‘ID.n and Pl.n/‘h

n=1,b «
n y [ m‘.]_(t . 1 Pon _ 1
F = 1-'-In—l) 0 ' I:QO,.]*“O“-.:'_'_I)[O],
i.n 1
-t}

that is, p1»/qin = (to..- ta-1) () for I = co, 0 and 1. (Here, we do not distinguish
0,1 in C from those in C*.) More generally, it is possible to define I-convergents
for any Gaussian integer [ in the same way. The particular advantage of the
choice /=00, 0 and 1 is shown by Theorem 2.5 of Schmidt [4]. Though
to...ty—y and p;,/q;, depend on z, we do not bother mentioning this unless it is
not clear from the context. We always assume that n is a positive integer.

2. From the definition (2), we have
(3) A R [pm,u pD.n] and [pl.n] - I:pun,n"' pD.n].
Qw.n Qo,. di.n q:n.u'i'QO.n
It is easy to see the following:
Lemma 1. () If t,= V,, E, or E,, then
pw.n+l =pm.ll or ipw.lu q«.a,n+l =q«>.|| or iqm.u‘

(i) If t, =V, E5 or E,, then

Pom+1=Pon OF iPons Gon+1=qou OF iqon.
(i) If t,= V3, E, or E,, then

Pin+1=Pin OF Py  Qyn+t =(qyn O igy,.
Moreover, we see the following:

LemMa 2.(i) If T"(2)e T, (or T"(2)e T?), then —qo n/qe.n AN —Po /P,
eT_ (or T*, respectively).
@) If T" '(z)eT¥ and t,_, = C, then —Qqon/qewm Gnd —Pon/Pon€{z:
lz—(1/2-i)l < 1/4} = T_, see Fig. 2.
0

1]

@

1

4

Fig. Z
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Proof. Since _qO.llIQtn.n - (‘0“"n—l)_l (w) and “'Po.u/Pw.u s (tO'"
o ly=1)"1(0) by (3), we have
Tl(w: Z) = (_q{).u/qcn.m T"(Z)) }ex
I Tu(o, Z) - (_Po.ufpm.m Tn(z)) ’

whenever z € X. This implies the assertion (i). The assertion (ii) follows from the
fact that

ge-(T%) = {z: lz2—(1/2—1) < 1/4} = C.

Let s=[0 -

1 _1]. It is easy to see that

-10/)
Furthermore it is possible to show that
t,(S(z) = St,(z)S~1.

@) s===s-1=['l 1] S(1)=5"1(0)=o and S(r:)=r§.

Thus we have

[p.o,. (S@) poa(S (Z))] _ S[pw..' @ Pon (2)] §-1
qm.n (S (z)) do.n (S (z)) Qo,n (Z) do.n (z)
and

Peon(5(2) = g1.(2),
) Pon(S(2) = —won(2),
Pin (S (?-)) = qon(2)-
THEOREM 1. (i) If either T"(z)¢ C* or t,eC, then
(qinesl 2 l@ial  and  \prasil Zipd  for I=00,0, and 1.

(i) If 1gin+1l <lqual (0r |Pin+1l < |pral) for some 1= 00,0 or 1, then
t,=C, T"(z)eC* and

9l < /20gtms1ls  1Peal < /21Pimsal-
In addition, if Pya+y/Qn+1r = -+ = Pia+k-1/Qin+k=1 % Pin+x/Qin+x, then

IGin+al > Mial  and  |ppasil > [Pial-

Proof. From the relation (5), we only need to show the assertion for
Qoo P 80d go . First we consider the case of | = 0. We put t, = V,, then
we have by (2) and (3)

I:Pm.n+l]=[Pw.¢ Po.{l[ 1 0][1]: [Pm.n"‘ipo.u].
dom+1 9o Gon]l —i 1[0 Qoo.n—iqo,n
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—&) and p——-m-"“=1+i(—-‘ﬂ’i).
By P P

(i)

' Qw.net 4 Go.net

Fw.n

Qeo,n

Fig. 3

From Lemma 2(i), it turns out that

l+i(.....qi"_) and l+:‘(—£-'3—'”-)5{z=x+"y‘x;l}’

Qeo.n P

see Fig.3(i). Thus we see

(6) qm,n+1 > l and lpm.n-l-l
Qm.n pm.u

(Equality holds if and only if p,, =0.) If t, = V,, then we have
I:pm.n+ l] - [(1 "'i)pm.u'_ipo.n]
Gom+1 (I _E)an.ll_iqwu

Goom+1 =(1—l')+l(-&), Pon+1 =(l—ﬂ+l("&),

Qo 00,, P, o,n,

=1

and
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Thus we have (6) again, see Fig. 3(ii). If ¢, = E, or C, then
dom+1 _ l-!-(—l-H')(—&), p:.rl-l - l+(—l+f)(—::u")-

@ ,.n N, - a,n,

Then we have (6) when T"(z) ¢ T}, see Fig. 3 (iii). Now if T"(z)e T¥ and t, = C,
then IQQJ+ I.I < qu:hll when

—don/deone{z: l2—(1/2+i-1/2) < 1//2},

see Fig. 4. In this case, it is easy to see that

'q«:.u+ 1 /q«:.nl = I/ﬁ

Z—1+(-1+/)z /

Furthermore, we see by Lemma 2 (ii) that
— Qo+ 1/dwn+1€{2z: l2—(1/2—0)| < 1/4}.
So if t,4+y # V,, E, or E,, in addition, then we have

don+2/9wns1l > ﬁ .

On the other hand, if t,+; = V;, E, or E,, then we also have the same
inequality for |ge+1/d0n+x-1) With k as in the assumption of the theorem.
The same holds for p,.,.

Next, let [ =0 and suppose t, = V;. We see that

[Po.n+ 1] - [ipm.u +Po.n]

Jon+1 '.Quo.n"' don
don+1/9om = lfi(_‘i'ou.l/‘il}.l)'

This corresponds to the case of Fig. 3 (ii) and we have

|90+ 1/G0d > 1.

and



286 ~ H. Nakada

In the same way, if ¢, = V;, then

) don+ 1/%.- - “ +i)_i(_q.n.n/‘.h.l)
and this is the case of Fig. 3 (i), and if t, = E, or C, then we have

9on+1/90n = i+(1—1)(—qo,n/q0,n)-
Similarly to the case of | = co, we get the assertion of the theorem.
3. In this section, we discuss the metrical theory of the convergents. We
put (w(z, n), z(n)) = T"(w, 2) for (w, z)eX.
LemMA 3. For any complex number z (# 0, 1) with (w,, z) and (w,, z)e X,
we have
Wy (2, 1) =w, (2, W)l = O (|ge0.sl ~?)
as n tends to + co0.
Proof. From (3), we have

Wy (2, 1) = (go.a W1 —Po. ) —domWy +Poo.n)s

W, (z,m)= (ql),n Wy “Po.-)/(‘-‘Im.-Wz + pan,n)-

Here we suppose that w, and w, are not both equal to co (this is not essential).
So we see that

[wy —w,|
IW (z: ”)""w (zs ")'l -
' * IQnu.n w, '_pnn.nl !QQ.R wz_Pm.ui
lwy —w,l

" ool W1~ ol N W3~ Pl
Since {Po.n/dw.a} cOnverges to z, we get the assertion of the lemma.
LeMMA 4. If we fix W= co, then we have for any ¢ > 0,
# {n: W(z, n)| > €*} < + 0,
#{n: Wiz, nl<e ™ < +oo,
#{n: Wz, n)—1l<e™} <+
for aa. zeX. _
Proof. For a fixed ¢ >0, we put

A, ={w, 2)eX: |w| > e*/2}.
Since ¥ ji(4,) < + o,
)] - #{n: T"(w, 2)eAd,} < +©
for a.a. (w, z)e X by the Borel-Cantelli lemma. Hence for a.a. ze X, there exists
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w such that (w, z) has the property (7). We choose such a point (w, z)€ X. From
Lemma 3, there exists a positive integer n, such that n > n, implies

lw(z, n)—w(z, n)| < /2.
So T"(z, w)¢ A, implies |W(z, n)| < " whenever n > n,. This shows
# {n: W(z, n) > &} < + 0.
By using the same method, we see that
# {n: |W(z, n)| >e*} < +o0
with w = 1. On the other ha_nd. it is easy to see that
(S(W(S~1(2), ), ST"S"1(2)) = T"(W, 2)
and
{w: w| > €™} =S{w: w—1| <e™™}.
Thus we have
#{n: Wiz, n—-1<e ™ <+
for a.a. z. Finally, by the equality
(%(S@), n), ST T"S(2)) = T"(W, 2)
with w = 0, it is possible to show that
#{n: Wiz, n<e™ < +0
for a.a. z. This completes the proof of the lemma.
LEMMA 5. For aa. zeX and any | and I' (= 0,0 or 1), we have
lim (log q1n/gral)/n = 0.

Proof. From Lemma 4, it is easy to see that

@ lim (108 10,/go.a)/r = 0

for aa. zeX, since W(z, n) = —qGo./qe.n. Moreover, since

10g|91,0/90.4l = 108 [14(q0,n/qc0,m)l>
we have

9 '}ijg{los 191,040 ml)/n =0

for a.a. zeX, by Lemma 4, again. The rest of the assertion follows from

(8) and (9).
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Now we can prove the Main Theorem:
Proof of the Main Theorem. We put

Ly = % {p/q: there exists | (= 00,0 or 1), and n, 1 <n <N, such that
P/4 = Pra/21n and |z—(p/q)l < 1/2lg1*)}.
From Theorem 2.5 of [4] and Theorem 1 of this paper, we have
Ly < # {p/g: lgl <N, lz—(@/9)l < 1/2lq/*), (p, @) = 1}+3

log N log N
Ly _ #{p/g: ld<N.|z—(@/g) < 1/2lal?), (p, @) = 1} — 3
logN logN

where N = max {|gal; [ = 0, 0, 1} and N = min {|g,n]; | = o, 0, 1}. From
[2] and [3], we_know

lim Ly/N = 3/4r
N—+o
and
;lln # {p/q: 14l < Q, lz—(p/9)| < 1/2lql*), (o, q) = 1}/log Q@

2 2

_ T _ FiY
T 8(-1(2) 8{QE

for a.a. z. Thus, by Lemma 5, we have
lim (log |gin)/N = (8{(2) E/x?)(3/4m) = E/n

N=+w

for aa. z.
To prove (ii), we note the following:

~ P/l = 1|l 12(M) = (2, n))).
Similarly to the proof of Lemma 4, we see that
lim (log [z (n)—W(z, n)|)/n =0

for a.a. z. Moreover, by using the symmetry of 0, 1 and co with respect to S, we
get the desired result.

Finally, we compute the entropy of T with respect to u. We denote by 4,
the Euclidean diameter of the circle (z,...t,—;)(T,) (if there exists k,
0 <k <n-—1, such that ¢, # V,, E, or E,, otherwise J, = o). Let {n(m)} be
a subsequence of {n} so that T"™(2)eT,.

ProrosITION. For a.a. ze X, we have
lim (log duem)/n(m) = —2E/x.
m= o
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Remark. By the Shannon-McMillan—Breiman theorem, it turns out that
the entropy h(T, p) is equal to 4E/r.

b
Proof If 4 = I:j ] |ad ~be| = 1, then the radius of g,(T,) is equal to

[{cc+dd+(c+d)(c+d)}> —2 {(cc)* +(dd)* +((c +d) (c +d))*}] /2
= —(cd—éd)~*.

From this, we have

= llllm Qwo,n ‘fo.ul = |Qoo.n|_2|lm("'q0.njq'm,u)|_1-
If T*"(z)eT,, then for ae. zeX, we see that .

—& < (log |Im (—qo,,/qw.n))/n < &

for sufficiently large n (by using the Borel-Cantelli lemma). This shows the
assertion of the Proposition.

Note. By using the same method, it is possible to get a similar result for
the transformation T'in [2]. Since the constant K’ of Theorem 7.5 in [2] is

equal to ((24/./15)(arccos(1/4))—2m)n/2, we see the explicit value of the
constant L. of problem 3 in [5]:

L= E/((24/,/15) (arccos(l/4)) 2n).

The author would like to thank Delft University of Technology, where tlns
paper was written, for its kind hospitality.
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