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1. Introduction. Let N be a positive integer and consider the problem when
a natural number n can be represented in the form n = x2 + Ny? with x, ye Z.
This problem is of interest from the point of view of history. For N = 1, the
answer is the two-square theorem of Fermat. Fermat and Euler considered the
cases N = 2, 3 (Weil [8]). In Section 2, we shall treat the case of single class in
each genus. Section 3 is devoted to the study of class number 2 case through
some examples.

Remark 1. For N < 100000, there are 65 values of N such that the class
number of x2+ Ny? is equal to 1 (Dickson [2]). Such numbers are called
idoneal. In general, it is conjecturable that there are exactly 65 idoneal
numbers.

2. The case of one class per genus.

THEOREM. Let N be a positive integer and suppose that the class number of
the genus of quadratic forms in which x*+ Ny? lies, is equal to 1. Let n be
a natural number which is coprime with N and satisfies the following conditions:

(1) n is a quadratic residue mod N;

(2) —N is a quadratic residue mod n;

(3) If N=Tmod8, then n is odd.

" Then, n has a primitive representation as n = x>+ Ny? with x, yeZ.

Proof. By the condition (2), there exist integers b and ¢ (> 0) such that
—N = b%—nc. We put

Q(x, y)=[1,0, N] =x>+Ny?,
Q'(x, y) = [n, b, ] = nx*+2bxy+cy’.

Then, as shown below, these two positive definite quadratic forms Q and Q' are
in the same genus. This means that Q and Q' are in the same class by the
assumption:

Q'(x, y) = Q(ax+ By, yx+9dy)
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a B
[? ‘JEGL(Z,Z).

n=0Q(1,0=0(y=a®+Ny?, (x,7)=1,

as contended in the theorem.

In the following, we shall confirm that Q and Q' are in the same genus, i.e.
that

for some

In particular,

(%) Q = @' for all primes p.

It is clear that Q' is primitive and its discriminant is equal to —N. The
proof of (x) is divided into the following three cases.
(i) p>2 and p¥N. In general, it is known that

Qf%[LO!N]:Q

(i) p> 2 and p|N. By (1), there exists a unit ¢ in the p-adic integers Z a
such that n = ¢2. Therefore

_ b \? 1\? b 1
Q'(x, y) —(sx+;y) +N(E.V) = Q(Ex+;y, ;}’)

¢ bje
I:O 1/3]601‘(2’ z).

and

Hence we have Q = Q.

(iif) p= 2 This case is an essential part of the proof. Let Q" be a quadratic
form of discriminant —N and put Q" = [4, B, C). Let p be any prime and
define a symbol S, by

- (5252,

where (#) denotes the Hilbert norm-residue symbol. The symbol S, is

independent of the choice of 4 and has the following fundamental properties:
l' If Qﬂ % Q-‘H’ then SP(QH] e Sp(Qﬂ!);

Z n 5,(Q") = 1.
all
Appl;ing the above results to Q and Q', we have
N, -1
@1 $,(Q) = 5,(0) = (T)
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If 8| N, then we have Q = Q' in the same way as in the proof of Case (ii). If
4 divides exactly N, then n = 1, 5mod 8; hence n = & or 5¢* (e€ Z3). The proof
of the case n = &2 is the same as in (ii). If n = 5¢Z, then

Q(x,y) = S(sx+%:y)2 +~j§(%y)2 %[5, 0, N/5].
Denote by Q”(x, y) the right-hand side of the above. Then
| Q" (x, x+y) = [S+N/5, N/5, N/5]
and 5+N/5=1mod8 in Z,, ie. 5+ N/5 =n* (neZ3). Next we consider the
case that 2 divides exactly N. In this case,
Q'(x,y) = n(x+gy)2+{:-y2 % [, 0, N/n]

with n odd. For n = 1mod8 or n=7mod8, Q ¢’ is trivial. If n = 3 mod 38,

then we have
N, —-1\(3, —N\ (N, -1}
2 2 )\ 2 /)

hence (3’ Z_N) =1l ie. N= 2mod 8. Therefore, 3+N/3 =1mod8 in Z,. If

n E.S mod 8, then

() e () )

which contradicts the relation (2.1). Finally, we treat the case 2}/ N. The
quadratic forms of discriminant —N over Z, can be classified to one of the
following types: [1, 0, NJ, [3, 0, N/3], [5, 0, N/5], [7, 0, N/7], [2, 1, 2] and
[o, 1, 0].

1°Qz [3, 0, N/3]. In this case

N, —1\(3, =N\ _ (N, -1\,
2 2 )\ 2 )
3, —N '
hence (T) =1. Therefore, N=3mod4. If N =3mod8, then
N/3 =1mod8, ie.

0 3 [N/3,0,3130.
If N=7mod8, then N/3 = 5mod8:
Q x[N/3,0,3]1%[N/3+12,6,3]1 3 Q.
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2° Q = (5,0, N/5]. We have

(V= [5+%N,%N, N/5];
and 5+%N = 1modS8.
Q = [7,0, N/7]. This case is similar to 1°.

4 0'%[2,1,2]. In this case, N = 3mod8. Therefore

()25 (25

which is a contradiction.
5° Q' = [0, 1, 0]. In this case, N = 7mod 8. Thus, by the condition (3), n is
odd, namely Q' is odd. But, [0, 1, 0] is even. m

3. Examples of h = 2. For an example, we put N = 41. Then, the class
number of x*+41y” is equal to 3 and its representative elements are given by

x*+41y?,  2x*+2xy+21y> and  Sx2+4xy+9y°.

Then, n =1, 5, 21, 42 and 105 satisfy the conditions (1), (2) and (3), and are
represented by the following: .

1 =x%+41y?
5 = 5x% +4xy+9y?,
21 =2x?4+2xy+21y%? = 5X24+4XY +9Y2,
42 = x24+41y?> = 5X24+4XY +9Y?,
105 = x2+41y? = 2X2 4+ 2XY 4+ 21Y? = 512 + 4ts+9s2.

Denote by h the class number of x* + Ny? and suppose h > 2. Then, as shown
in the above example, we do not have enough information to judge whether
n can be represented in the form n=x2+Ny? (x, yeZ). Let F,(x, y) be
a principal form of discriminant 4 (< 0):
xz—fyz, d =0mod4,
4
F d(x) y ) = d‘_ 1
x2+xy——4~y2, d = 1mod 4,

where d =d,f? for d, the discriminant of the imaginary quadratic field
Q(de,). Let K denote the so-called ring class field over Q. Then, for a prime
pt2d,

p = F,(x, y)<>psplits in K.

This means that the ideal (p) factors into as many distinct ideal factors as

[K: @], or all monic defining polynomials for K factor completely into distinct
linear factors mod p (Weber).
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In the following, we shall consider the case h = 2 through some examples.
Let Qe{1, 2, 3, 4}. The Hecke group G(\/é) is the subgroup of SL,(R) which
is generated by the matrices

[ Y81 = [ 73]

no(2) = n(ﬁ) n(/Q2),

where 7 (z) denotes the Dedekind eta function. Then, 54(2) is a cusp form of
weight 1 on G(\/a) whose multiplier v, is determined by

R e

Also we denote by ay(n) the nth Fourier coefficient of ny(2).

Put

ExampLE 1 (Kohler [6]). N = 33. The class number of x?+3%y? equals
2 and its representatives are given by x2+33y? and 4x?+2xy+ 7y2 For each
prime p such that p=1mod6, we have

p=x2+27y*<sa,(p) = 2.

ExaMPLE 2 ([6]). N = 2%:3% h =2 and representatives: x*>+22-3%y and
4x24+9y* For prime p such that p = 1mod 12, we have

p = x?+36y*<>a,(p) = 2.

EXAMPLE 3 ([6]). N = 2°. In this case, h = 2 and we may choose for the
representatives: x*+2°y% 4x?+4xy+9y®. Let p be any prime such that
p=1mod8. Then,

p=x*+32y*<a,(p) =2<p=Norm(n), =n=1mod4(l+i).

ExAMPLE 4 ([4], [5]). N = 2%:3%. h = 2 and representatives: x*+22-3%y?
and 9x2+6xy+13y%. We have

p=x*+108y*><=b(p) = 2,

where b(p) denotes the pth Fourier coefficient of n(182)#(62).

ExampLE 5 ([3]). N =25 h=2 and representatives: x2+2%y?
4x%+4xy+17y%. For each prime p such that p = 1mod8, we have

p=x*+64y*<>c(p) = 2@(}2—1) =1.
4
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The notations used here are defined as follows:

9o(2) = z (— l)me’in’z‘f, 92(2} = E ezimlz,ut;

meZ m=1mod2

c(p): the pth Fourier coefficient of 9,(32z)39,(8z);

r ; ; : ;
(E) : 1 or —1 according as r is or is not a fourth-power residue mod p.
4

Remark 2. N =2% In this case, h =3 and Cohn ([1]) obtained the
following:

p = x*+256y% <> psplits in Q(i, ,/l+:;2\“/§}.

We may ask the following question: Can one obtain a modular criterion
for the problem when p can be written as p = x%+256y? with x, yeZ?

Remark 3 (Petersson [7]). Let N be a natural number and define
rs,n(N) = anro(N)s

10 0 —1
= {LESL(2,Z). L= [0 1:’ or [l Oj, modZ}.

Also we define the function 3,(z) by
9;3(2) = ) enm=,
meZ

where

Then, the function 9,(z)9,(Nz) is a cusp form of weight 1 on I'yo(N) whose
multiplier vy is determined by

{d ab 10

A (N+1)d—1) ry = d2,
(e e=[2 2= o i

d ab 0 —1

L) ez, = - d2
(e w=(2 o=l o =
for N = 1 mod 2, where £, = ¢™/4. Let a(n) denote the nth Fourier coefficient of
3.(2) 85 (Nz). Then a(n) is the number of integral representations of n by the
quadratic form x?+ Ny? Therefore, our problem is to find a condition
ensuring that a(n) # 0.

vy(L) =
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