On numbers of type $x^{2}+N y^{2}$

by
Toyokazu Hiramatsu (Göttingen) and Yoshio Mimura (Kobe)

1. Introduction. Let N be a positive integer and consider the problem when a natural number n can be represented in the form $n=x^{2}+N y^{2}$ with $x, y \in Z$. This problem is of interest from the point of view of history. For $N=1$, the answer is the two-square theorem of Fermat. Fermat and Euler considered the cases $N=2,3$ (Weil [8]). In Section 2, we shall treat the case of single class in each genus. Section 3 is devoted to the study of class number 2 case through some examples.

Remark 1. For $N<100000$, there are 65 values of N such that the class number of $x^{2}+N y^{2}$ is equal to 1 (Dickson [2]). Such numbers are called idoneal. In general, it is conjecturable that there are exactly 65 idoneal numbers.

2. The case of one class per genus.

Theorem. Let N be a positive integer and suppose that the class number of the genus of quadratic forms in which $x^{2}+N y^{2}$ lies, is equal to 1 . Let n be a natural number which is coprime with N and satisfies the following conditions:
(1) n is a quadratic residue $\bmod N$;
(2) $-N$ is a quadratic residue $\bmod n$;
(3) If $N \equiv 7 \bmod 8$, then n is odd.

Then, n has a primitive representation as $n=x^{2}+N y^{2}$ with $x, y \in \mathbf{Z}$.
Proof. By the condition (2), there exist integers b and $c(>0)$ such that $-N=b^{2}-n c$. We put

$$
\begin{aligned}
& Q(x, y)=[1,0, N]=x^{2}+N y^{2}, \\
& Q^{\prime}(x, y)=[n, b, c]=n x^{2}+2 b x y+c y^{2} .
\end{aligned}
$$

Then, as shown below, these two positive definite quadratic forms Q and Q^{\prime} are in the same genus. This means that Q and Q^{\prime} are in the same class by the assumption:

$$
Q^{\prime}(x, y)=Q(\alpha x+\beta y, \gamma x+\delta y)
$$

for some

$$
\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \in \mathrm{GL}(2, Z)
$$

In particular,

$$
n=Q^{\prime}(1,0)=Q(\alpha, \gamma)=\alpha^{2}+N \gamma^{2}, \quad(\alpha, \gamma)=1
$$

as contended in the theorem.
In the following, we shall confirm that Q and Q^{\prime} are in the same genus, i.e. that
(*)

$$
Q \cong Q^{\prime} \quad \text { for all primes } p
$$

It is clear that Q^{\prime} is primitive and its discriminant is equal to $-N$. The proof of (*) is divided into the following three cases.
(i) $p>2$ and $p \nmid N$. In general, it is known that

$$
Q^{\prime} \cong[1,0, N]=Q
$$

(ii) $p>2$ and $p \mid N$. By (1), there exists a unit ε in the p-adic integers Z_{p} such that $n=\varepsilon^{2}$. Therefore

$$
Q^{\prime}(x, y)=\left(\varepsilon x+\frac{b}{\varepsilon} y\right)^{2}+N\left(\frac{1}{\varepsilon} y\right)^{2}=Q\left(\varepsilon x+\frac{b}{\varepsilon} y, \frac{1}{\varepsilon} y\right)
$$

and

$$
\left[\begin{array}{cc}
\varepsilon & b / \varepsilon \\
0 & 1 / \varepsilon
\end{array}\right] \in \mathbf{G L}\left(2, Z_{p}\right)
$$

Hence we have $Q \cong Q^{\prime}$.
(iii) $p=2$. This case is an essential part of the proof. Let $Q^{\prime \prime}$ be a quadratic form of discriminant $-N$ and put $Q^{\prime \prime}=[A, B, C]$. Let p be any prime and define a symbol S_{p} by

$$
S_{p}\left(Q^{\prime \prime}\right)=\left(\frac{N,-1}{p}\right)\left(\frac{A,-N}{p}\right)
$$

where $\left(\frac{,}{p}\right)$ denotes the Hilbert norm-residue symbol. The symbol S_{p} is independent of the choice of A and has the following fundamental properties:

1. If $Q^{\prime \prime} \cong Q^{\prime \prime \prime}$, then $S_{p}\left(Q^{\prime \prime}\right)=S_{p}\left(Q^{\prime \prime}\right)$;
2. $\prod S_{p}\left(Q^{\prime \prime}\right)=1$.

Applying the above results to Q and Q^{\prime}, we have

$$
\begin{equation*}
S_{2}\left(Q^{\prime}\right)=S_{2}(Q)=\left(\frac{N,-1}{2}\right) \tag{2.1}
\end{equation*}
$$

If $8 \mid N$, then we have $Q \cong Q^{\prime}$ in the same way as in the proof of Case (ii). If 4 divides exactly N, then $n \equiv 1,5 \bmod 8$; hence $n=\varepsilon^{2}$ or $5 \varepsilon^{2}\left(\varepsilon, \in Z_{2}^{\times}\right)$. The proof of the case $n=\varepsilon^{2}$ is the same as in (ii). If $n=5 \varepsilon^{2}$, then

$$
Q^{\prime}(x, y)=5\left(\varepsilon x+\frac{b}{5 \varepsilon} y\right)^{2}+\frac{N}{5}\left(\frac{1}{\varepsilon} y\right)^{2} \simeq[5,0, N / 5]
$$

Denote by $Q^{\prime \prime}(x, y)$ the right-hand side of the above. Then

$$
Q^{\prime \prime}(x, x+y)=[5+N / 5, N / 5, N / 5]
$$

and $5+N / 5 \equiv 1 \bmod 8$ in Z_{2}, i.e. $5+N / 5=\eta^{2}\left(\eta \in \boldsymbol{Z}_{2}^{\times}\right)$. Next we consider the case that 2 divides exactly N. In this case,

$$
Q^{\prime}(x, y)=n\left(x+\frac{b}{n} y\right)^{2}+\frac{N}{n} y^{2} \frac{\sim}{2}[n, 0, N / n]
$$

with n odd. For $n \equiv 1 \bmod 8$ or $n \equiv 7 \bmod 8, Q \underset{\overline{2}}{\simeq} Q^{\prime}$ is trivial. If $n \equiv 3 \bmod 8$, then we have

$$
\left(\frac{N,-1}{2}\right)\left(\frac{3,-N}{2}\right)=\left(\frac{N,-1}{2}\right)
$$

hence $\left(\frac{3,-N}{2}\right)=1$, i.e. $N \equiv 2 \bmod 8$. Therefore, $3+N / 3 \equiv 1 \bmod 8$ in Z_{2}. If $n \equiv 5 \bmod 8$, then

$$
\left(\frac{N,-1}{2}\right)\left(\frac{5,-N}{2}\right)=-\left(\frac{N,-1}{2}\right) \neq\left(\frac{N,-1}{2}\right)
$$

which contradicts the relation (2.1). Finally, we treat the case $2 \nsim N$. The quadratic forms of discriminant $-N$ over Z_{2} can be classified to one of the following types: $[1,0, N],[3,0, N / 3],[5,0, N / 5],[7,0, N / 7],[2,1,2]$ and [$0,1,0$].

$$
1^{\circ} Q^{\prime} \simeq[3,0, N / 3] . \text { In this case }
$$

$$
\left(\frac{N,-1}{2}\right)\left(\frac{3,-N}{2}\right)=\left(\frac{N,-1}{2}\right)
$$

hence $\left(\frac{3,-N}{2}\right)=1$. Therefore, $N \equiv 3 \bmod 4$. If $N \equiv 3 \bmod 8$, then $N / 3 \equiv 1 \bmod 8$, i.e.

$$
Q^{\prime} \frac{\overline{2}}{2}[N / 3,0,3] \underset{\frac{1}{2}}{\sim} Q
$$

If $N \equiv 7 \bmod 8$, then $N / 3 \equiv 5 \bmod 8$:

$$
Q^{\prime} \simeq[N / 3,0,3] \simeq\left[\begin{array}{l}
\frac{\overline{2}}{2} \\
\end{array}\right.
$$

$2^{\circ} Q^{\prime} \underset{\frac{2}{2}}{\sim}[5,0, N / 5]$. We have

$$
Q^{\prime} \simeq\left[5+\frac{4}{5} N, \frac{2}{5} N, N / 5\right]
$$

and $5+\frac{4}{5} N \equiv 1 \bmod 8$.
$3^{\circ} Q^{\prime} \cong[7,0, N / 7]$. This case is similar to 1°.
$4^{\circ} Q^{\prime} \underset{\overline{2}}{\sim}[2,1,2]$. In this case, $N \equiv 3 \bmod 8$. Therefore

$$
\left(\frac{N,-1}{2}\right)\left(\frac{2,-N}{2}\right)=-\left(\frac{N,-1}{2}\right) \neq\left(\frac{N ;-1}{2}\right)
$$

which is a contradiction.
$5^{\circ} Q^{\prime} \cong[0,1,0]$. In this case, $N \equiv 7 \bmod 8$. Thus, by the condition (3), n is odd, namely Q^{\prime} is odd. But, $[0,1,0]$ is even. -
3. Examples of $h=2$. For an example, we put $N=41$. Then, the class number of $x^{2}+41 y^{2}$ is equal to 3 and its representative elements are given by

$$
x^{2}+41 y^{2}, \quad 2 x^{2}+2 x y+21 y^{2} \quad \text { and } \quad 5 x^{2}+4 x y+9 y^{2}
$$

Then, $n=1,5,21,42$ and 105 satisfy the conditions (1), (2) and (3), and are represented by the following:

$$
\begin{aligned}
1 & =x^{2}+41 y^{2}, \\
5 & =5 x^{2}+4 x y+9 y^{2}, \\
21 & =2 x^{2}+2 x y+21 y^{2}=5 X^{2}+4 X Y+9 Y^{2}, \\
42 & =x^{2}+41 y^{2}=5 X^{2}+4 X Y+9 Y^{2} \\
105 & =x^{2}+41 y^{2}=2 X^{2}+2 X Y+21 Y^{2}=5 t^{2}+4 t s+9 s^{2}
\end{aligned}
$$

Denote by h the class number of $x^{2}+N y^{2}$ and suppose $h \geqslant 2$. Then, as shown in the above example, we do not have enough information to judge whether n can be represented in the form $n=x^{2}+N y^{2}(x, y \in Z)$. Let $F_{d}(x, y)$ be a principal form of discriminant $d(<0)$:

$$
F_{d}(x, y)= \begin{cases}x^{2}-\frac{d}{4} y^{2}, & d \equiv 0 \bmod 4 \\ x^{2}+x y-\frac{d-1}{4} y^{2}, & d \equiv 1 \bmod 4\end{cases}
$$

where $d=d_{0} f^{2}$ for d_{0} the discriminant of the imaginary quadratic field $\boldsymbol{Q}\left(\sqrt{d_{0}}\right)$. Let K denote the so-called ring class field over \boldsymbol{Q}. Then, for a prime $p \nmid 2 d$,

$$
p=F_{d}(x, y) \Leftrightarrow p \text { splits in } K .
$$

This means that the ideal (p) factors into as many distinct ideal factors as $[K: Q]$, or all monic defining polynomials for K factor completely into distinct linear factors $\bmod p$ (Weber).

In the following, we shall consider the case $h=2$ through some examples. Let $Q \in\{1,2,3,4\}$. The Hecke group $G(\sqrt{Q})$ is the subgroup of $\mathrm{SL}_{2}(R)$ which is generated by the matrices

$$
\left[\begin{array}{rr}
1 & \sqrt{Q} \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Put

$$
\eta_{Q}(z)=\eta\left(\frac{z}{\sqrt{Q}}\right) \eta(\sqrt{Q} z)
$$

where $\eta(z)$ denotes the Dedekind eta function. Then, $\eta_{Q}(z)$ is a cusp form of weight 1 on $G(\sqrt{Q})$ whose multiplier v_{Q} is determined by

$$
v_{Q}\left(\left[\begin{array}{rr}
1 & \sqrt{Q} \\
0 & 1
\end{array}\right]\right)=e^{2 \pi i(Q+1) / 24}, \quad v_{Q}\left(\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\right)=-i
$$

Also we denote by $a_{Q}(n)$ the nth Fourier coefficient of $\eta_{Q}(z)$.
Example 1 (Köhler [6]). $N=3^{3}$. The class number of $x^{2}+3^{3} y^{2}$ equals 2 and its representatives are given by $x^{2}+3^{3} y^{2}$ and $4 x^{2}+2 x y+7 y^{2}$. For each prime p such that $p \equiv 1 \bmod 6$, we have

$$
p=x^{2}+27 y^{2} \Leftrightarrow a_{3}(p)=2
$$

Example 2 ([6]). $N=2^{2} \cdot 3^{2} . h=2$ and representatives: $x^{2}+2^{2} \cdot 3^{2} y$ and $4 x^{2}+9 y^{2}$. For prime p such that $p \equiv 1 \bmod 12$, we have

$$
p=x^{2}+36 y^{2} \Leftrightarrow a_{1}(p)=2
$$

Example 3 ([6]). $N=2^{5}$. In this case, $h=2$ and we may choose for the representatives: $x^{2}+2^{5} y^{2}, 4 x^{2}+4 x y+9 y^{2}$. Let p be any prime such that $p \equiv 1 \bmod 8$. Then,

$$
p=x^{2}+32 y^{2} \Leftrightarrow a_{2}(p)=2 \Leftrightarrow p=\operatorname{Norm}(\pi), \quad \pi \equiv 1 \bmod 4(1+i)
$$

Example 4 ([4], [5]). $N=2^{2} \cdot 3^{3} \cdot h=2$ and representatives: $x^{2}+2^{2} \cdot 3^{3} y^{2}$ and $9 x^{2}+6 x y+13 y^{2}$. We have

$$
p=x^{2}+108 y^{2} \Leftrightarrow b(p)=2
$$

where $b(p)$ denotes the p th Fourier coefficient of $\eta(18 z) \eta(6 z)$.
Example 5 ([3]). $N=2^{6} . \quad h=2$ and representatives: $x^{2}+2^{6} y^{2}$, $4 x^{2}+4 x y+17 y^{2}$. For each prime p such that $p \equiv 1 \bmod 8$, we have

$$
p=x^{2}+64 y^{2} \Leftrightarrow c(p)=2 \Leftrightarrow\left(\frac{2}{p}\right)_{4}=1
$$

The notations used here are defined as follows:

$$
\vartheta_{0}(z)=\sum_{m \in \mathbb{Z}}(-1)^{m} e^{\pi i m^{2} z}, \quad \vartheta_{2}(z)=\sum_{m \equiv 1 \bmod 2} e^{\pi i m^{2} z / 4} ;
$$

$c(p)$: the p th Fourier coefficient of $\vartheta_{0}(32 z) \vartheta_{2}(8 z)$;
$\left(\frac{r}{p}\right)_{4}: 1$ or -1 according as r is or is not a fourth-power residue $\bmod p$.
Remark 2. $N=2^{8}$. In this case, $h=3$ and Cohn ([1]) obtained the following:

$$
p=x^{2}+256 y^{2} \Leftrightarrow p \text { splits in } Q(i, \sqrt{1+\sqrt{2}} \sqrt[8]{2})
$$

We may ask the following question: Can one obtain a modular criterion for the problem when p can be written as $p=x^{2}+256 y^{2}$ with $x, y \in Z$? Remark 3 (Petersson [7]). Let N be a natural number and define

$$
\Gamma_{ง, 0}(N)=\Gamma_{\vartheta} \cap \Gamma_{0}(N)
$$

where

$$
\Gamma_{\vartheta}=\left\{L \in \operatorname{SL}(2, Z): L \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \bmod 2\right\} .
$$

Also we define the function $\vartheta_{3}(z)$ by

$$
\vartheta_{3}(z)=\sum_{m \in \mathbb{Z}} e^{\pi i m^{2} z}
$$

Then, the function $\vartheta_{3}(z) \vartheta_{3}(N z)$ is a cusp form of weight 1 on $\Gamma_{\vartheta, 0}(N)$ whose multiplier v_{N} is determined by

$$
v_{N}(L)= \begin{cases}\left(\frac{d}{N}\right) \xi_{4}^{(N+1)(d-1)}, & L=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \bmod 2, \\
\left(\frac{d}{N}\right) \xi_{4}^{-(N+1) c}, & L=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \bmod 2\end{cases}
$$

for $N \equiv 1 \bmod 2$, where $\xi_{4}=e^{\pi i / 4}$. Let $a(n)$ denote the nth Fourier coefficient of $\vartheta_{3}(z) \vartheta_{3}(N z)$. Then $a(n)$ is the number of integral representations of n by the quadratic form $x^{2}+N y^{2}$. Therefore, our problem is to find a condition ensuring that $a(n) \neq 0$.
[3] T. Hiramatsu, Higher reciprocity law and modular forms of weight one, Comment. Math. Univ. St. Pauli 31 (1982), 75-85.
[4] T. Hiramatsu, N. Ishii and Y. Mimura, On indefinite modular forms of weight one, J. Math. Soc. Japan 38 (1986), 67-83.
[5] T. Hiramatsu, Theory of automorphic forms of weight 1, Adv. Studies in Pure Math. 13, Investigations in Number Theory, 1988, 503-584.
[6] G. Köhler, Theta series on the Hecke groups $G(\sqrt{2})$ and $G(\sqrt{3})$, Math. Z. 197 (1988), 69-96.
[7] H. Petersson, Modulfunktionen und quadratische Formen, Springer-Verlag, 1982.
[8] A. Weil, Number Theory, Birkhäuser, 1983.

SONDERFORSCHUNGSBEREICH 170

MATHEMATISCHES INSTITUT
Bunsenstrasse 3-5 D-3400 Götting
Federal Republic
Current address: KOBE UNIVERSITY
Kobe 657, Japan
\qquad

