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The k-functions in multiplicative number theory, II
Uniform distribution of zeta zeros
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1. Introduction and statement of results. The uniform distribution (mod 1)
of imaginary parts of zeros of Riemann zeta and Dirichlet L-functions has been
considered by E. Hlawka, P. D. T. A. Elliott, A. Fujii, H. Rademacher and
others. The theory of k-functions, developed in the first part of this cycle of
papers, provides a useful tool for the study of this subject in an alternative way.
Instead of the classical uniform distribution (mod1) in H. Weyl sense we
consider one of its generalizations, more directly related to k-functions.

Let y(modg), g =1, denote a primitive Dirichlet character and let
0 <7y, <7, <... denote positive imaginary parts of non-trivial zeros of the -
corresponding Dirichlet L-function (each y = Img occurs in this sequence
according to the multiplicity of g). Let A = [a,,] denote the positive Toeplitz
matrix defined by

1 _
(1.1) G =g gt n>1, k=1,
where
1 = .
(1.2) S, = = Z e ey,
ng=1

This matrix defines a certain summation method and uniform distribution
(mod 1) (matrix method A and A-uniform distribution (mod 1) resp., cf. [7]),
which are the focus of attention in this paper.

THEOREM 1. If a bounded sequence (t,) of complex numbers has A-limit g,
then it is summable by arithmetic means to the value g. In particular, if (t;) is
A-uniformly distributed (mod 1) then it is also uniformly distributed (mod 1) in
H. Weyl sense.

Suppose S is a summation method. We say that S-uniform distribution
(mod 1) is of type © when for every 7' <7 and every S-uniformly distributed
(mod 1) sequence (t,), every sequence (f;) satisfying

2, 1«<N’ as N-ow

1€k<N
e #1k
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is S-uniformly distributed (mod 1) as well. Moreover,  is the maximal number
with this property. It can easily be seen that always 0 <7 < 1.

THEOREM 2. Weyl uniform distribution (mod 1) is of type 1, whereas
A-uniform distribution (mod 1) is of type 1/2.

By this theorem an A-uniformly distributed (mod 1) sequence (),
0<t, <1, has to be more “regular” than a sequence uniformly distributed
(mod 1) in the classical sense. In particular, not only any number N of its initial
terms, but also every subsequence (1), N <k < N+N'2*¢ have to fill
approximately uniformly the unit interval [0, 1). Theorem 2 implies also that
there exist uniformly distributed sequences which are not A-uniformly dist-
ributed. The general scheme of construction of such examples is provided by
the proof of Theorem 2 (see §6 below).

The basic theorem which justifies the introduction of A-uniform dist-
ribution mod 1 is the following.

Tueorem 3. For every non-zero real number x the sequence xy,,
k=1,2,3,..., is A-uniformly distributed (mod 1).

CoROLLARY. Every sequence xy,, k=1,2,3,...,x # 0, is uniformly” dist-
ributed (mod 1) in H. Weyl sense.

The assertion of this corollary has been first proved by H. Rademacher (cf.
[10]) in a special case (for the Riemann zeta function) and under the Riemann
hypothesis. The unéonditional result belongs to E. Hlawka [4] (cf. also A. Fujii
[2], [3], P. D. T. A. Elliott [1]).

Remarks on notation. Generally we keep the notation used in the first
part of this cycle [6].

Non-trivial zeros of L(s, ) lying in the upper half-plane are denoted by
o =P +in.k=1,2,3,... Wehave 0 < B, <land 0 <y, <y, <... N(T, )
denotes the number of g, satisfying y, < T.

(f(@)dz, 1=I(a,b), a,beR
1

denotes an integral taken along a smooth and simple curve lying on the upper
half-plane, joining a to b and such that fis regular on ! and also regular on the
open domain between [ and the real axis.

p always denotes a prime number.

2. k-functions. In order to make this paper as self-contained as possible,
we quote explicitly some basic facts on k-functions, proved (in more general
form) in [6).

LeMMA 1. For z=x+iy, y>0 and the primitive Dirichlet character
x(modg), g = 1, we define the k-function by the formula

(2.1) k(z, x) = xz e,
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It is holomorphic on the upper half-plane and can be continued analytically to
a meromorphic function on D, the complex plane with the slit (—ico, 0]. More
explicitly, for ze D, we have

€’E,(32)+e*E,(32)+H(z, d)

(22} Zm"k(z, X) = No(z! X)+ 1*—822 +h(Z, Z);
where
Am)xm) Amym) 1 n
2.3 N = p3z/2 —r AV z/2 —p—E2 =
@3) Nole, )=e ,.;z w7 (z—logn) T ¢ Lz tlogn) (28 logq’

1 L . _
24 h(z, x) = i _! E(S, nesds, 1=1(-1/2,3/2),
d denotes 0 or 1 so that y(—1)=(—1),
I 714 I
(2.5) H(z,0) = e** [ —(w)e*™ dw+e** [ —(w)e™ " dw,
nl sia T
r 9/4 [
(26} H(Z, l) = ¢¥ j -_(w) ez“"dw +e“2 I _(w}e—lwzdw,
Iz r 5/4 r

I, =1(—5/4, —1/4), I, = I(—3/4, 1/4), E, denotes that single-valued branch of
the modified integral exponential function —Ei(—z) which for y > 0 is given by

E,(z) = Ierw,

the path of integration being the half-line w = z+x, x > 0. Moreover, for ze D,
we have

_ 1 & A(p1
2.7) k(z, x)= z—ﬁe,“llogz+ﬁ,-;+ Wiz, x),
where W is meromorphic on C with simple poles at z = klogp, ke Z\ {0}, p¥q
and A(x) =log(2n/q)+ C—in/2, € is the Euler constant.

LEMMA 2. Let D, denote the region of the complex plane consisting of all
points z = x+iy satisfying |x| = 1/4, y> —1 or |x| <1/4, y> 1. Then the
inequality
(2.8) le™2k(z, y)| « 6~ *el
holds for ze D, whenever |z—mlogp| > & for all integers m, primes pXq and
a fixed positive §, 0 <é < 1. '

Proof. For zeD,, y > 1 the assertion is obvious since by (2.1) we have

o a0
le_"uk(z, X)| < Z ePr—1/2)x =y < elxli2 Z e M« el*li2,

k=1 k=1
Suppose |x| = 1/4, |y| < 1. Then
e+ ,-w z+2i ® p-Rew
E\@|=| §f —dw+E,(z+2i)| « [ e *ldw|+ | dw| < e~>.
z ¥ z b W

3 — Acta Arithmetica 56.3
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Hence
'e"'zEleZ)+83”'2E1(gz)l « ¥,
1—e?*
Also, by (2.3)+2.6)
logp - logp -1 ylx|
—-zj2 _eF @ N e« e,
le™**Nyo(z, Yl « e"): P2 (7 — m]ogpl Ep"""’|z+m]ogpl
P-rﬂ 2 (]

le™"h(z, Dl « e
and
e *2H |z, d)

« e,
l — eZ:

Gathering these estimates and using (2.2) we obtain (2.8), which ends the proof.

3. The sums P,(x). Let us put for real x and natural n

1 2 o g
Pn(x) = ﬂ! m kgl_ (QI’._ 1/2)”3“.‘ HEe +ﬂ.

LemMa 3. For |x| 2 1/2 we have

E x(p*)logp
VP (klog p—(x+D))+?

with an absolute d, > 1. For 0 < |x| < 1/2 we have

+0 (d5"e?™),

1
(3.1) P,(x)= ol

T
13 logp xl £1/8

(3.2) P (x)=0@d;"), d,>1,
where d, and the implied constant depend on x. Moreover,
(3.3) P,(0) = %Iog%g+ 0 (%) as n—co.

Proof. Let us observe that
1 i e 2k(z, y) 2
2mint+1 l‘{,.)(‘ﬂ:-—(x+i])"“ ’

where K(r) denotes the circle [z—(x+i)]=r, 0 <r<1.
Suppose, first, |x| = 1/2. One can find x, and a positive number b, such
that x+1/8 < x, < x+1/4 and |x, +logn| > b e ¥, [2x—x, +logn| > b, e~ 1!

for every natural n. Let us put R=./l1+(x—x,)>> 1. The function
e~ %2k (z, y) is meromorphic in the disc |z—(x+i)| < R and holomorphic on the

(3.4) P,(x)=
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circle K(R). Moreover,
le™2k(z, ) « e

for ze K(R) (for |x| > 3/2 we use Lemma 2; for 1/2 < |x| < 3/2 the estimate is
obvious). Hence

| 1 e ?k(z, y)

. dz| < IR,
[2mi+1 k®(z— (Jc+l)"IH

By Lemma 1, the integrand in (3.4) has inside K (R) simple poles at z = klo‘g P,
keZ, ptgq, |klogp—x| < x, —x with residues
1 (p*)logp
2mi,/pM(klog p—(x+i)"""

Hence, by the theorem of residues, we get

P)= -t 5 x@)logp

- ——~+0 (IR
i o . o™ (klogp—(x+i)) *
ogp—x]<x;—x

1 1(7*)logp 21l g
21 Z /M (klogp— (x+')]"+l+0(e b

|llogp—-x|$!.fﬂ

where d, = ./1+41/64; (3.1) therefore follows.
For 0 < |x| < 1/2 we can proceed analogously. In this case the integrand

in (34) is regular for |z—(x+i)| <d,, where d; =./1+a?, a=min(x|,

|x+log?2|, [x—log2|). By the Cauchy theorem, the integral (3.4) can be taken
round the circle K (d,). Since e~*?k(z, x) is bounded on K (d,), (3.2) follows.
Suppose x = 0. By (2.7) we can write for zeD,
11
e k(z, 1) = Wile, D+ 50 +f (logz+ 507,

where f is an entire function and W, is holomorphic for |z—i| < /1+log?2.
Hence, the integral (3.4) is split into four parts I, I,, I,, I, say. By the Cauchy

theorem I, can be taken round the circle [z—i| = R,, 1 < R, <./1 +log?2.
This yields ;

[yl = O(Ry") = O(1/n).

Similarly, by the theorem of residues,

I, = —-zl;log (2n/q)—C/2rn+i/4+ O (1/n),
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Again by the Cauchy theorem, I, can be taken round the contour consisting of
the imaginary axis from z = —id, d > 0,to z = —i(R,—1), the arc of z = R,
—n/2 < argz < 3n/2, the imaginary axis from —i(R,—1) to z = —id and the
arc of |z| = & back to the starting-point. The integral along |z| = J tends to 0 as
é—07, and that along |z] = R, is O(R;") = O(1/n). Hence

Rzl f(—it) ° ot 1
= A il B = — 4= =0(/n).
[5] I (t+l)"”d£+0(l/n) 0(£(t+1)"+'+n) (1/n)
Moreover,
1 14" (log:z 1 &1 i 1 C i 1
S B o i 0l =1
L= 21:"'”1:‘417."( )-i R IAr el me L (n
Therefore

3 1 qn 1
P,0) = -El I;= Elog-z-E+O(;),
which ends the proof.

4. The sums R, (x). Let for xeR, n> |,

4.1) R,(x) = % i e~ eyl glPr= 1/2)x giviex

k=1

LemMMA 4. We have

4.2) 1 (g —1/2)" @~ 12M=+D i
' n! e R n’
|ysc—nl> 24/nlogn
43 1 ~Pegm g Br— 1/20x| e' e
4.3) = 3 e "™ n
lyx—n|>2J/nlogn

Proof We prove (4.2) only; the proof of (4.3) is similar. The parts of (4.2)

corresponding to 0 < y, < n—2./nlogn or n+2./nlogn <y, < 2n contribute
at most

%e”"’ e "E2vmosn (9 /nlogn+1)'N (2n, %)

« ez \/;logn-exp{iz nlogn+ nlog(l F 2—""'1:”_1)}

« 2 _/nlognexp {—2logn} « e*/?/n.
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The estimate of the sum over the range 2n <y, <n* can be performed
similarly. The remaining part of the sum can be treated as follows:

e‘x"z

e“”zn Y e+l «en? ¥ oy«

ye>nt Yie>nt

The proof is complete.
LemMA 5. For S, given by (1.2) we have
S, < (logn)®* for n>2.
Proof. Lemma 4 yields
1

S=a %)

n! |y —n|<2/nlogn

«n”*2(N(n+2,/nlogn, y)— N (n—2,/nlogn, )+ 0(1/n) « (log n)*2.
LemMa 6. For xeR we have
4.9 P,(x) = R,(x)+0("*n"*?log?>n) as n—co.
Proof. By Lemmas 4 and 5,
| P, (x)— R, ()]

e~ ™y +0(1/n)

1 =112
K= b e Teyp el CXp{(ﬁ;.— 1/2)i+nlog(l —iﬂ / )}— !‘
B2 |yk—n| < 2ynlogn i
o (elxlﬂ)
x|f2 +
<« e'xlfzs loﬂ_‘_el_; & el-'“zn_lfz logzn, . n
"\ on n :
as required.

By Lemmas 3-6 we get the following result.
Lemma 7. For |x] = 1/2,

1 x(p")logp
(4 5) R-{x) Tl Z \/pT‘{klogp {x+i))'“

l*lnnp—xI‘ 1/8

+0(eX¥In=1210g2n).

For 0 < x| <1/2,
(4.6) R,(x) = O(n~'2log?n),
where the implied constant depends on x. In particular, for every x # 0, we have

R,(x) = O(1) as n— 0. Moreover,

1 qn o
4. = R (0) = —1 121002 n).
4.7) S, ()] 3 og 2ﬂ+0(n log*n)
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Let us remark here that the foregoing lemmas provide stronger estimates
than those needed just for the proofs of our theorems. They, however, will be
used in part III of this cycle.

5. Proof of Theorem 1. Let (g,) = A(t,), ie.

w
2. e ™Yl

9= s, A

Since g,—g as n— oo we have also

(5.1) a(T)—»g, as T— o0,
where .
1
ﬂ{ﬂ = gu'
Tng'."

Let us fix a positive ¢, 0 <e¢ < 1. By Lemma 7,
S = ;-:Elog T+0,(1) for eT<n<T
Hence

1 2 =
62 aM=7 ¥ 6400 =773 S0 T6+00)

l a
=N x):;,f (0 T n) 5, +0(e),

where

yl

f6.Tm=e7 ¥ L.
er<nsTh:

Since 0<f(y,T,m)<1 and for sufficiently large T, we have
N({(1+eT, x)—N((1—#T, x) < eN(T, x) and N (eeT, x) « eN (T, ), the terms
in the last sum of (5.2), corresponding to (1—¢) T <y, <(1+¢)Tor ¥, < eeT,
contribute at most O (g). For eeT < y, < (1—¢) T we have, by Taylor’s formula,

[;j. ?3_“Hmdu +0({/Texp(—¢T/2)

=140(/Texp(—&2T/2)) = 1+0e),
for sufficiently large T. For y, > (1+¢) T, T > T,(e), we have

%
[r!

SO Tm)=1-

, T, n) & Te ™ <w:
SO T, n) V;
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Thus for large T we get

1 1
T)=—r 140 A — 0 -2 0
“M N(T, X)urcnzc:u—e)r( " (a))tk-t-N(T, X)ru>(21:+s)r () +0()
] O .
NT, 2,2 0

which, together with (5.1), ends the proof.

6. Proof of Theorem 2. Let (t,) be uniformly distributed (mod 1) in the
sense of H. Weyl. Let us fix 7' <1 and let (z;) satisfy the condition

(6.1) Y 1«NY as N-oo.

nEN
th#ln

Hence we have for every integer m # 0

1 2rimt; 1 2nimt =1
— ) eMmh=_ % MMt Q(NT T =0(1),
NREN N ﬂ;ﬂ'
which, by Weyl’s criterion, means that (z,) is uniformly distributed (mod 1).
Since 7' < 1 was arbitrary this implies that Weyl’s uniform distribution is of
type 1.

Let now (t,) be A-uniformly distributed (mod 1). For every sequence (t,)
satisfying (6.1) with v’ < 1/2 we have, by (4.7) and Lemma 4,

1. .= oo 1 s 1
n!S,,);'l ¥ ﬂ!S,,l“_"lngm X n
od . v on 1
= Y. e~ Teype? im0 (n— e"‘n") +0 (—)
n!S, = n"./nlogn n
= o(1)

for every integer m # 0 and n— 0. Hence, by the generalized Weyl criterion
(cf. [7], Th. 7.11), the sequence (t,) is A-uniformly distributed (mod 1).

If now ' > 1/2, (t,) is A-uniformly distributed (mod 1) and the sequence
(t;) is defined by

. if [y,—M,| > MiflogM, for all M,,
* 0  otherwise,
where (M) is a sequence of natural numbers such that eM» < M,.,,forn > 1,
then
MY
1« =« N*
z ) logM

kSN MnS2yN n
it the
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and .
= YioyMn 52xilic
Misw 2 T
1

M, Sut,, (Mol < TU TR

This means that (t;) is not A-uniformly distributed (mod 1). Hence A-uniform
distribution is of type © = 1/2, and the result follows.

7. A density estimate. For real o, T, H satisfying 1/2<o<1, T>0,
0 < H < T let us denote by N (o, T, H, x) the number of zeros of L(s, x) such
that f=>o, y—T|<H._

LemMma 8. Let a denote a real number such that

T+G

(7.1) | ILG+it, pI*dt « Glog?’T for G > T***, > 0.
T-G -

e yM 4O (M; 1) = 140 (M; ).

Then for every T > e, H> T°** we have
(1.2) N(o, T, H, y) « H¥1-9/3-20) 607 T,

It is known that (7.1) is fulfilled for a = 1/3 (cf. [8]). For the Riemann zeta
function we can even take a = 35/108 (see [5]). For our purposes it is sufficient
to know that a < 1/2 (= the type of A-uniform distribution (mod 1)).

Proof. Since the method depends on Montgomery’s technique [9] and is
well known, we just indicate the main points. Let

Y=HYC72, M(s, 0= ) umxmn™.
n=H

For a (log T)™? proportion of zeros under consideration we have

ly=1>1 for y #£ 9 and

(13) | ¥ an7¢»(ogT)*
Usn=2U
or
y+cologT i
(74) yurme o |L(12+it, ) M(1/2+it, y)ldt > 1/10,
y—cqlog T

where |a,| < d(n), ¢, denotes an absolute constant and Ue[H, 2Ylog Y].
Squaring (7.3), summing over zeros and using the classical mean-value
inequality for Dirichlet polynomials it can easily be seen that the number of
zeros satisfying (7.3) is bounded by

qu —a) lOgs T= Hd-u —a)(3— 2¢)l°gs '1':

Next, summing (7.4) over zeros, using the Cauchy-Schwarz inequality, the
mean-value theorem for Dirichlet polynomials and (7.1) we see that the number
of zeros satisfying (7.4) is bounded by

Y2-Hlog*T = H““ —o)(3~2a) Vlog* T
and the result follows.
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8. Proof of Theorem 3. By the generalized Weyl criterion (cf. [7], Th. 7.11)
it is sufficient to prove that for every x # 0

Sa(x)
S,

(8.1) lim

n=+a

=0,

where

o0

1
5,(x) ==Y e ™y = § A(e).
nl, =
Let ¢ > 0. For fixed x # 0 we can write using, among others, Lemma 4,
1
(82)  |R,(X)—S,() <= 3 e Tyjlefx A g +1 car V+-l-,
n! 5, \/; n

where
={k=21:12< B, <1/2+¢},

V={k>1:|y,—n| < 2./nlogn, B, = 1/2+¢}.

For keU we have |exp((8,—1/2)ix])—1| = O(e); hence the sum in (8.2) is
O(eS,). By Lemma 8, the cardinality of V is at most

O ("(lll"s},l'(l "l)log?.s n);
hence the second summand on the right-hand side of (8.2) is bounded by
0 (ﬂ —ef(2(1—e)) log'J.S Pl).

Therefore, §,(x) = R,(x)+0(S,) as n tends to infinity. Since, by Lemma 7,
R, (x) = O0(1), we get S,(x) = o(S,), which is equivalent to (8.1). The proof is
complete.
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ACTA ARITHMETICA
LVI (1990)

I'unore3a Puvana B 3KcTpeMaibuble 3HaveHHs (yoxkumn Z(f)

S Moser (Bpatucnaea)

1. ®opmyHpoBKa OCHOBHBIX pesyibraToB. IlTycth {y}, y >0 — BO3pac-
TaIOIIasA MOoCAeA0BaTENLHOCTh KOpHeiH ypaBHeHns Z (f) = 0 (KpaTHOCTE KOpHSA
He YIHUTHIBaeTCH), TAE

Z(t) = OLG+in),
(1) 8() = —4tlnn+Im{InF G+4i} = 9,()+0(1/2),

9:(t) = 3tn(t/2m)— 41 —4m,
(cm. [11], cTp. 94, 383).

TIycts {to}, 1o > 0 — BO3pacTalollas NOCNEAOBATENLHOCTh KOPHEH Hee-
THOTO nopaaxa ypasreAHs Z'(t)=0, yAOBIETBOPSIOMHX YCJIOBHIO
Y <t,<Yy',TAeY,y" — COCERHME 4JEHBI OCIEOBATENbHOCTH {}}. 3HAYHT, £,
— TOYKa JIOKQJIbHOTO JKCTpeMyMa (yHEKuUMH Z (t), s koTopoi Z(ty) # 0.
ITocnenoBaTenbHOCTE {to} aBTOp Havan M3yuaTh B pabote [2] m npopmomxan
€¢ M3YYCHHE, B CBA3M C HEKOTOPHIMH MAaTeMAaTHYCCKHMH BONPOCAaMH pe-
NATHBHCTCKOM kocmornornu, B paborax [3], (4], [9].

B cBa3m ¢ amanmzoM kBappatypmoit dopmynsl II. JI. UebGwnuesa ot
1889 r. (cm. [12], cTp. 249, (12)), aBTOp MOMYYHN CleAYIOWMH pe3yabTaT.

TeoPEMA. ITo 2unomese Pumana:

()] Y 1Z(@) >2(l—a)HlnP, P—oo,
T<to<T+H n

20e P=./T/2n) u He{T" \4/5"— >0 <& pu ~ cxoav y200H0 Mansle uucaa).

3ameyanne l. SIBHO OTMETHM, 49TO B YCJIOBHSX TEOPEMBI BLICTYMAET
orpaamyenue H < ﬁ . CnipaseiMBOCTS ONEHKH (2) MOXHO pacluupws'h H Ha
3HaveHHs, ckaxeM, H e(f/? , TD. Jlocruraercs 3T0 nMpHMEHEHHEM METOIa
BaH nep KopnyTa ais OLEHOK TPUrOHOMETPHYECKHX CYMM, BCTPEYaloILMXCS
B JOKa3aTeJIbCTBE JIEMMHEL A.

I[oxaaamnbcmo TCOPEMBL ormpae"rcn Ha CJCAyHIHE BCOMOraTejib-

HLIE YTBEpPXIEHHS.
1.1. Mycre S(a, b) o6o3HagaeT 37EMEHTAPHYI®O TPHTOHOMETPHYECKYIO
CyMMYy.
S@, b= Y n', 1<a<b<2a b<./t/2n).

asnsh
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