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The k-functions in multiplicative number theory, I
On complex explicit formulae
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1. Introduction. The celebrated explicit formula due to B. Riemann and H.
von Mangoldt states that if

V) =Y A0, Y=Y Am/mn, x>1,

n<x n<x

lo if n=p™, rime, m > 1,
Al = {0 ° otherwf:e or
and
Vo) =Y (x+0)+y (x=0),  Yolx) = 3 (x+0)+ ¥ (x—0)),
then
(L.1) Yolx) = x—g,x"fa—log (2m)—34log(1—x72),
(1.2) Yolx) = logx-i-;{l/:}o—C—J—lc—%logE,

where ¢ runs over all complex zeros of the Riemann zeta function, ), x%/g
denotes the limit of ) jmy<rx%e as T— oo and C is the Euler constant
(compare e.g. [5]). The generalizations of (1.1) and (1.2) have proved to be very
useful in the theory of primes. Generally speaking such formulae express the
values of a function depending on primes in terms of poles and zeros of zeta
functions. But we can look at (1.1) and (1.2) also in another way. Considering
the right-hand side of (1.1) as a given function f,

(1.3) f() = x-Y x%/g—log 2m)—4log(1—x"3), x> 1,
e
formula (1.1) proves that f(x) =0 for 1 < x <2 and f is a piecewise constant

function with discontinuities of size log p at the prime powers x = p™,m = 1. In
other words (1.1) describes the basic analytic properties of f. This function is
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defined in terms of non-trivial zeros of the zeta function but its “singularities”
have a sharply outlined arithmetic character and are closely related to prime
numbers. Similar remarks on (1.2) are also true. In the following we consider
expressions analogous to f in (1.3) and to the left-hand side of (1.2) which,
however, are functions of a complex variable. To make the results more
suitable for intended applications we do not restrict ourselves to the Riemann
zeta function, but, more generally, we consider L-functions corresponding to an
arbitrary primitive Dirichlet character y (mod g), g > 1. For a complex number
z from the upper half-plane H = {zeC: Imz > 0} let us define the functions
k and K as follows:

(1.4) ' k(z, x)= Y €%,
(1.5) K@iz =Y 12“’, zeH,
y>09

where the summation is over all non-trivial L(s, ) zeros @ = f+iy with
positive imaginary parts. It is easy to see that k and K are holomorphic on H.
Our principal aim is to describe the analytic character of these functions. We
show, in particular, that k can be continued analytically to a meromorphic
function on a Riemannian surface M of logarithmic type and it satisfies certain
functional equations (see § 3). From this the complete description of the basic
analytic properties of K follows easily. It turns out that these results can be
considered as a complex form of the well-known explicit formulae for
Chebyshev’s functions ¥ (x, ). We prove that the phrase “complex explicit
formulae” used in the title of this paper is fully justified, i.e. we show how the
formulae of Riemann-Mangoldt type in their classical form can be derived
from the just developed theory of k-functions.

The main results of this paper can be considered as a continuation of
works by H. Cramér [2] and P. Guinand [4].

The significance of k-functions lies in the fact that they permit the
presentation of a remarkable part of multiplicative theory of numbers in
a uniform way. A systematic study of these functions leads not only to the
refinements of the known results but it provides some new theorems as well.
The author intends to discuss some applications of k-functions in the
subsequent parts of this work which shall appear under the following subtitles.

Part II: Uniform distribution of zeta zeros;

Part III: Uniform distribution of zeta zeros, discrepancy;

Part IV: On a method of A. E. Ingham;

Part V: Changes of sign of some arithmetical error terms.

2. Notation. For a Dirichlet character y let g = g(x) denote its conductor
and let d = d(y) denote 0 or 1 so that y(—1)=(—1)"
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We write also

. if x = x, (principal character),
¢@W=10 otherwise;

_ 1 ifd=0, x# xo,
ey = 0 otherwis_c.

Moreover, for x > 1

Yx, 0= Amxm), Yolx, x) =3 (x+0, Y+¥(x—0, ),

n<x

v, 0= 2 M Folx, x) = 3(¥ (x+0, Y)+¥ (x—0, %))

nsx

p always denotes a prime number.

C =0.577... is the Euler constant.

Let D, denote the complex plane with the slit along the non-positive real
axis (— o0, 0]. For zeD, we define the function

© =W
El(z) = Iwa!

where the path of integration is the half-line w=2z+u, u > 0. E, is closely
related to the integral exponential function Ei (see [1]):
E,(z) = —Ei(—2) = —li(e™
and thus
(—1yz

nln

21) E (z) = —logz—C— )E

This formula gives analytic continuation of E; to a multi-valued analytic
function. Of course we can make it single-valued on the Riemannian surface of
the function log z. Let us denote this surface by M. As is well known, it consists
of infinite many complex planes cut along the half-line (—oo, 0] with the
following identifications of lower and upper edges of the slits. If we num be_r the
planes with integers then, for every n, we identify the upper edge of the slit on
the nth plane with the lower edge of the slit on the (n+1)th plane. We can
identify the zero plane with D,u {upper side of the slit (— oo, 0]}. Hence, the
argument on this plane varies between —= and = (n included). More generally
on the mth plane the argument lies between (2m—1)n and (2m+ 1)n. Every
point ze M can be uniquely written as

z=re", r>0, aeR,

ze H if and only if 0 < a < n. The following mappings play an important role
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.in this paper:
M3z =ré®—z* =ré® "eM,
Mgz=rg“HZ‘=T€_i’EM-

Since we have the natural projection M —C\ {0}, any meromorphic, single-
valued function F on C can be considered as a function on M. For such F we
have F(z*) = F(—z), F(z) = F(2); Z denotes the complex conjugation of z.
For any two real numbers a and b let us denote by [(a, b) a simple and
smooth curve 7: [0, 1]—C such that 7(0) =a, t(1) =b and Imz(t) > 0 for
te(a, b). Moreover, the notation
| f(2)dz
I{a.b)
for a meromorphic function f means that f is regular on the curve /(a, b) and
also regular in the open domain bounded by /(a, b) and the interval [a, b]. But,
of course, it can have poles in (g, b).
For zeC and de{0, 1} we define H(z, d) as follows:
r L)
22 H@E0)=e* [ —(Wedwte™ [ (e dw,

i(—5/4,~1/4) r 3/4
r 94
(2.3) Hiz )= [ —ZWwe*™dw+e* | F(w)e‘ 2wz gy,
(—3/4,1/4) 5/4

where I' denotes the Euler gamma function. Moreover, for a Dirichlet
character y we write

r
2.4 - h(zp= [ =(w, pe*aw,
1-1/2,3/2)
- B W
2.5) h™(z, 0= { I(W, x)ev dw.
3/2, -1/2)

Of course H, h and h~ are entire functions of 2.
We also need the following function defined for x > 0 and de{0, 1}:

Ylog(1—e ) ifd=0,

=1 .
1 ifd=1.
Hog 7

(2.6) R(x,d)=

We denote the generic L(s, x) zero by ¢ = f+iy. When it is necessary we’

add the subscript x: o, = B,+iy,. N(T) = N(T, %), T > 0, denotes the number
of ¢ = B+iy with 0 < § < 1, 0 <y < T. The only information about N needed

in this paper is the following almost trivial estimate:
N(T+1)—-N(T)«logT, T=2.
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3. Analytic character of k.

THEOREM 3.1. For ze H and a primitive Dirichlet cha
e, irichlet character y(modg), g > 1,

(1)  2mik(z, x) = No(z, 2)+ ¢E, 32 ”::%f?” +H, d)+h(z, 0

:r:f?:dﬂbc;nd h are defined by (2.2)42.4) and N o denotes the meromorphic function

A(n)x(n) Ay

(3.2) No (z, x) = eazfz B ¥ 7 + —zf2 (")x(") 1 -z/2 q

.2:, w2 (z—logn) " ..;; "R +logn) 2°  l°Bg:

g:ﬁ‘" ::‘;;3: continued analytically to the meromorphic function on M and for
e

e—1

where N, is meromorphic and single-valued on C.

':[‘I{EOREM 3.2. The function k (meromorphic on M) satisfies the following
Junctional equations:

1
(33) k(Z, X) = _2; Ing+N1(z! 1}3

(34 k(z, x)+e*k(z*, x) = D(z, y),

(3.5) k(z, )+k(z, x) = eD(~z, y),

where -

(3.6) D(z, x) =e(x)—e, (X)€" + €4z g2z _ 1)— Z efs.
=0

a?;};e ::;;rnation in (3.6) is taken over all non-trivial real zeros B of L(s, y) (if there

As a corollary to the foregoin : i
. g theorems we get the ¢
singularities of the k-function. y omplete st of

THEOREM 3.3. The only singularities of k (meromorphic on M) are simple
poles at the points:

3.7 z=klogp, argz=2mn, k>1, meZ, plq,
with residue -
1

(3.8) e 3

Zm.Jc(p")lw!.p,
(3.9) z= —klogp, argz=n+2mn, k>1, mez, pXq
with residue

1 oy .
(3.10) 3£ @) p~logp;

2 — Acta Arithmetica 56.3



200 J. Kaczorowski

(3.11) z =2kni, argz=mn/2+2mn, k=1, meZ, m#0
with residue m;

(3.12) z= —2kni, argz= —n/2+2mn, k=1, meZ
with residue —1/2+m;

(3.13). z=—2k+1)mni, argz= —=n/2+4+2mn, k=0, meZ
with residue $(—1)*".

4. Classical explicit formulae. We derive these formulae from the theorems
of Section 3 using K-functions defined by (1.5). For ze H we have

K(z, )= j k(s, x)ds,

the path of integration being the half-line s = z+1iy, 0 > y > 0. Hence K can

be continued analytically along every curve lying on M and not passing

through the singularities of k. K becomes a multivalued function on M . In fact,

every pole of k becomes a logarithmic branch point for K. In particular for

lz—klogp| <y, X k€Z, k #0, ry > 0 sufficiently small, we can Write
lo

@1 Kz 9= E008P 100 k108 )+ Gz, )

Tip™
where G is holomorphic in the disc |z—klogp| <, and the number b equals
0 for k>0 and 1 for k <0.
For a real x let us write
4.2) F(x, x) = lim {K(x+iy, )+K(x+iy, 1)}

y—=0*

It is_ obvious that this limit does exist for every x which is a regular point of K.
For x =klogp, k#0, pkq its existence follows easily from (4.1). The
remaining case of x = 0 can be settled using (3.3). It implies that for y—0*

K (iy, )+ K @iy, x) = (%+%(A(x)—ﬁ))logyﬂowtl)

where c, is a constant and

4.3) A(y) = 2miRes N, (z, 3)-
z=0
“But A(x)—A(x) = —mi (compare (8.11)) and the limit F (0, y) really exists and is
finite.
Moreover, (4.1) yields
44) F(x, x) = 4(F(x+0, 9)+F(x—0, ¥))
for every x # 0.
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Using Theorems 3.1-3.3 and the theorem of residues we get the following
result.

THEOREM 4.1. For x > 0 we have
4.5 F(x, p+ Zoff”‘/ﬂ = —Yol€*, x)+e(x)e*—e, ()x—R(x, d)+B(x),
s
where the constant B(x) is given by

(4.6) B()= ) 1/B—e(x)+dlog2—C/2—4log(n/g)+F (0, y).
y=0
For x <0 we have i
@47) FCx, )+ Y /B = o™, x)+e() e +e()x+R (x|, 1 —=d)+ C(x),
y=0

where
(4.8) C(y) = B(x)+ C+log(2n/qg).

This theorem is very close to classical explicit formulae except for the
left-hand sides of (4.5) and (4.7). Indeed, it is not quite obvious that they are
equal to

4.9) ' Ye¥/op=1lim Y e¥/p.
] T-w |y|€T
Moreover, we cannot assume here that the last limit does exist at all. To clarify

the situation we need more information about the behaviour of a generalized

Dirichlet series with complex exponents on the boundary of its half-plane of
convergence.

THEOREM 4.2. Let w, = a,+ib,, n=1,2, 3, ...,denote complex numbers
such that |a,| < A,n>1,b, <b, <b; <...,lim,. b, = 0. Moreover, let the
series

f(@)= i A,e**, A,eC,

n=1

converge for y=1Imz > 0 and satisfy the conditions

(4.10) | ¥ A =o(y7Y), Nooo,

n=N+1

for y—0* almost uniformly with respect to x = Rez, and

N
(4.11) | Y A,e™ ™2 =0o(ly|"!), N-oo,
n=]1
Jor y—07 also almost uniformly with respect to x = Rez.
If f is holomorphic at the boundary point x,€R then the series

Z,A,, exp (w,X,) is convergent to f(x,). Moreover, the convergence is uniform on
every compact real interval consisting of regular points of f only.
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This result is a generalization of the classical theorem of M. Riesz [6]. It
says that if the coefficients of the Dirichlet series

g(s)= ) a,exp(—4,5), 4eR, A, <A, <i3<...,
n=1

satisfy the condition
4.12) Y aet=o0(e*) "~ (c >0, fixed)

k=1

then the conclusions as in Theorem 4.2 hold: The series ) a,exp(—il,to)
converges to f(s,) for every regular point s, = it, of f. The convergence is
uniform in every compact interval of the imaginary axis containing regular
points of f only. Let us remark that this theorem follows from Theorem 4.2 by
putting w, = id,, s =iz; conditions (4.10) and (4.11) follow from (4.12) by
partial summation. In fact our proof of Theorem 4.2 is a modification of Riesz’
method. -

It is not difficult to see that K-functions satisfy (4.10) and (4.11). Let us
number the complex_zeros L(s, x) lying on H according to increasing
imaginary parts: g,, ,, 03, -.- For zeros with the same y’s the order of ¢’s can
be arbitrarily fixed. For y >0 and N —c0 we split the sum

e o]
—elen—en)z

n=N+10n
into three sums $,, S, and §, according to the following ranges of y,:

P <V < It ST InF LI < Vn < 29w, ¥ > 2. Their contributions can be
(trivially) estimated as follows:

1 lo.
11 <= (N -t /1) =N 1) << 0
N

V'

1 |
18,0 <~ Rt

1
N o

Sy % oy Bl

Vyiim? V¥V W

almost uniformly yith respect to x. Hence K satisfies (4.10). Similarly one can
prove that for y—0~

N (2y,) «

almost uniformly with respect to x, which implies (4.11).
Hence we get the following corollary to Theorem 4.2.
CoOROLLARY 4.1. For x # klogp, ke Z, pXgq, the series

21
5 e

n=10Cn
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is convergent to K (x, x). The convergence is uniform in every closed interval not

containing points of the form klogp, peZ, pXq. In particular

efx = 1 = | 1 x*

Fx, )+ ¥ ——= Y —et*+ ¥ —etey ¥ —e’x*=zeﬂ ;
x=0 ﬂx n=1&ny n=10@nj Yx=0Fyx ey Oy

In the case of a logarithmic singularity on the real axis we have the
following result.

THEOREM 4.3. Let f be such as in Theorem 4.1. Suppose for certain X, €R,
geC and ro, >0 we have '

f(2) = glog(z—x0)+h(2),
Jor |z—x4| < ro, Imz > 0, where h is holomorphic in the whole disc lz—x,| < rg.
Then for T tending to infinity

Y, A,e" = —glog T—gC+h(x,)+gmi/2+o(l).

Imwy,=T
In view of (4.1) we get
COROLLARY 4.2. For T —» o0 and x, = klogp, k #0, p¥q we have

1 1
—et*0 = -—Z—%;#(log T+ C—mif2)+ G (x4, x)+o0(1).

o<y<T1@
In particular
Ele“°= lim { Z _l_ee:;xn.'_ Z 1e¢ixo}+ z 1eﬂxo
e @ T 0<y,sT &y o<y;<T@% y=0B
1x(p")logp o 1
= 322 4 G (%0, 0+ G lxg, 0+ T e
2 pkb 0 ( 0 ﬂ rgoﬁ
1
y=oB

The foregoing results provide Riemann-von Mangoldt type formulae in
their classical form. In conclusion let us remark that the constants B(y) and
C(x) can sometimes be explicitly computed. For instance in case y =y,
(principal character), using (4.6) we get

B(xo) = —1—C/2—(log m)/2+F (0, 1o).
But
F0, %) =2} Bllel?
>0
and this sum can be computed using the Weierstrass product formula for the
Riemann zeta function (see [3], §12). It equals C/2+1—(log4m)/2. Hence
B(xo) = —log(2m) and C(y,) = C, which (of course) confirms (1.1) and (1.2).
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5. Proof of Theorem 3.1. We have

(5.1) 2mivk(z, x) = ky(z, ) +ky (2, )+ h(z, ),
where
-2
ki@z, 0= [ I(s, ye*ds,
—1/2+iw
5.2) ;
( 3/2+i 1
kz(z; 0= I I(S, x)e*ds
3/2

and h is defined by (2.4).
Firstly let us consider k,. From the functional equation for L(s, y) we get

L q 1I'{1—s+d\ 1I'(s+d\ L =
- =—log———|——|—z=|—7 |5 (1—5, %)
7 0= —log— ( 2 ) 2F(2) AT
Hence we can split the integral (5.2) into four integrals

(5.3) ky(z, X) = —kyy (2, D —4kia(z, D)= kialz, D) —kialz, 2),
say. Direct integration yields

g ~{? g 1
(5.9 kiz 1) = log; '-lfi‘l-ﬂnn &ds = log; e

Substituting in  k,,, w=(1-s+d)/2, w=2,+it, —0<t<0,
to = (3+2d)/4, applying the functional equation for the Euler gamma function
and using the Cauchy integral theorem we get

L]

' r
kya(z, 1) = 2614 g, (z, ) —2e4 7% [ S (w+1)e " dw

to—iw
= 28"“"891(2, d)_28{3+¢)z J' E(w)e""”dw+e"ku(z, X);
Htosto+1)
where
fo e—2w=
gl(z! d) = .[ dw'

to—iw w

1
Since i g,(z, d) =;e'2‘°’ and for y=Imz >0, |g,(x+iy, d)| -0 as x— o0

oz
thus g,(z, d) = —E,(2tyz). Hence we have
2e(1+d}z
(5.5) ks, 1) = =Tz (E(2toD)+€™ H, (2, d)},
where

H @z, d= | = (w)e™ > dw.
lto,to+ 1)
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We can treat k,, similarly. The result is

2-d)z

2
(5.6) kys(z, x) = _W{El(_ztlz)"'Hz(z, d)},

where

Ff
H,(z,d)= | F(w)ez““dw
Ity 03 +1)
and t, = (2d—5)/4.
To compute k,, it is enough to apply the definition of L(s, x) in the
half-plane Res > 1. Indeed, we have

(5.7
-1/2 1
kisz, 0= | T (1—s, x)eds
—-1/2+im
AQEE) " e AMER)
- ng’z n —'lfi[+iun eﬂ ds - n§2 n3i’2(z + 108 n).

Similarly

(53) kz(Z. x) = @332 Z A(H}X(ﬂ}

54 n32(z—logn)’

Collecting (5.1}5.8) we get (3.1) and (3.2). Finally, let us observe that (3.3)
follows from (2.1) and (3.1). Therefore Theorem 3.1 is proved.

6. Proof of Theorem 3.2. Let us consider the function
6.1) k™(z, 1) = Z e’

<0
defined for ze H™ = {zeC: Imz < 0}. The summation is taken over all
non-trivial zeros of L(s, ) lying on H™. We have
(6.2) 2mick™ (z, x) = ki (z, )+ k2 (z, )+h™ (2, %),

where

3/2 I
ki@ = | 16 netds,

63) g
ki (Z, X) = j I{ss X}‘?"ds
-1/2

and h~ is defined by (2.5).

Expanding L'/L in (6.3) into Dirichlet series and using (5.8) as the
definition of k,(z, ) for Imz <0, it can easily be seen that

(6.4) ki (z, ) = —kaiz, ).
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Let us consider k, next. Suppose z = x+iy, x > 0, y < 0. Applying the
Cauchy integral theorem we get

—IIZ—IL! —-w—i Jr
(6.5 kiz.y)= | —(s,0e%ds+ [ (s, x)e*ds.
-1/2 L -IIZ—EL

The first term defines an entire function, the second defines a function
holomorphic in the half-plane x > 0. Similarly, for y >0 we have

=12+ -12
(6.6) kiz, 0= | 7 (6 peds+ f 7 6 n)eds
—w+i ~1/2+i

and, as before, (6.6) gives the analytic continuation of k, to the half-plane

x>0,
Comparing (6.5) and (6.6) we get

L}

67 -k 0-ki ) =2mE Res{T 6, per],

w S=w

where the summation in (6.7) is taken over all zeros of L(s, x) lying on the
half-line (—co, —1/2]. Incased =0 we havew = —2m,m=1, 2, 3,...and in

cased=1, w=-2m—1, m=0,1, 2,... Hence

(6.8) k3 (z, x) = —k,(z, x)—-Zm'Ghi T
Moreover,

6.9) —h™(z, x)—h(z, x) = 2ni ) Res {%{s, bi) e"},

where the summation in (6.9) is taken over all singularities of (L'/L)(s, x)exp(sz)
in the interval [0, 1]. They are simple poles at the points: w =0 (when
X # Xo, d = 1) with residue 1; w = f (a real zero of L(s, ), if there are any) with
residue ¢/*; w =1 (when y = y,) with residue —e¢*. Hence
(6.10) h™(z, x) = —h(z, Y)+2ni(e(x)e*—e, () — 3 7).

y=0
Formulae (6.2), (6.4), (6.8) and (6.10) imply

61) k()= —k(e, D@ —e, @)~ T

=0
In view of the known analytic properties of k this formula gives the analytic
continuation of k~ to a meromorphic function on the surface M.

To prove (3.4) let us observe that, owing to the functional equation of
Dirichlet L-series, if ¢ is a zero of L(s, x) then 1 —g is a zero of L(s, x). Thus for

(6.12) zeM, O<argz<m,
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we have by (6.11)
(6.13) kiz,) = ) e= % el %"

x>0 <0
= ezk_(Z*, f) = _ezk(zt’ f)'i'D(Z, X)s

where D is given by (3.6). Therefore the functional equation (3.4) follows from
(6.13) by the principle of analytic continuation.

To prove (3.5) let us observe that if p is a zero of L(s, x) then g is a zero of
L(s, x). Hence for z satisfying (6.12) we have .

k(z, x) = Z o = Z e = k™ (=, f) = —k(z, JD+G’D(—Z, 1

x>0 ¥£<0

which ends the proof.

7. Proof of Theorem 3.3. The fact that the only singularities of k on M are
simple poles at the points (3.7), (3.9), (3.11), (3.12) and (3.13) follows easily from
Theorem 3.1 and the functional equation (3.4). Hence it remains to compute the
residues. Let us observe that (3.8) and (3.10) are obvious in view of (3.1) and
(3.2). The residue at (3.11) can be computed using (3.3),

Res  k(z,x)= Res {k(z, x)+mi} =m.

z=2kni z=2kni e’_ I
argz=x/2+2mn argz=nf2
To compute the residue at (3.12) suppose, first, that m = 0. Then by (3.4)
Res k(z,x)=— Res {k(z, p)+e°k(z*, x)} = — Res D(z, x)= —1/2.
C) L 2k

Hence, by (3.3)

e 1
:=R—828h1‘ k(z, x) = g=R-l-ezshi {k(zv X)‘*‘mm} = — 5+m
argz=—x/2+2mn argz= —nxf2

The residue at (3.13) can be treated much in the same way. One should
note only that e*/(e*—1) is regular at z = —(2k+1)xni and

Res  D(z, y) =4(—1)"*".

z=(2k+ 1)mi

8. Proof of Theorem 4.1. Suppose, first, that x > 0. In view of (4.4) we

assume without loss of generality that x # klogp, p4q. Hence k is regular at
z=1x. Let 0 < a < min(x, log2). We have

(8.1) K(x, x) = K(a, Y)+{ k(s, ) ds,
i
where [ = I(a, x). By the theorem of residues and our Theorem 3.3,
(8.2) fk(s, x}ds—]'k(s, Yds= —2mi Y Res k(s, x) = — (e, x).
] I

klogp<x s=klogp
phak=z1
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Moreover, using the functional equation (3.5), we get

(8.3) [ k(s, Y)ds = [ k(s’, x)ds" = — | k(s, ;E)ds+}e‘D(—t. x)dt
Ic 1 1 a

= —K(x, x)+K(a, ;Z)+J_f eD(—t, x)dt.

Also
_[e’D(—t x)dt = j{e(x)e‘ e, (0)— Z g~ Bm+2=d_ % ol d;
mcn e{d 2m)x ;ﬂx
=e(x)e’-“el(x)x—m); . 2m—,20?
oo M 2m)a

—e(pe’+e, (Ya+ E

+Z

and moreover
] e(d 2m)x

Z T=om = R(x, d).

m=1
Combining the above equalities and letting a—0* we arrive at
eﬂx
(84) F(x,0+ ) B —y(e*, ) t+e()e*—e, () x—R(x, d)+ B(x),
y=0

where

1
(8.5) B(x)= ) E—e(x)+ lim {F(a, y)+R(a, d)}.

y=0 a—0*
This proves the case x > 0 of Theorem 4.1 except for (4.6). We have to show
that
(86)  lim {F(a, y)+R(a, d)} = —dlog2—}log(n/q)—4C+F (0, ).
a—0+

By (3.3) we can write

1 ¢
(8.7) k(s, y) = ;ﬁl gs +2—{X)—+W(s],

where W is holomorphic and single-valued at s = 0. Therefore,
(8.8) K(a, x) = K (ia, x)+Ik(s, X ds

l 2 logs A(x)
s

= K (ia, ) +5- I “+o(1)

tﬂ

= K (ia, y)— loga—Ei—ZA(xHo{l)
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as a—0". Hence

89  F(a,z) = K(ia, )+K(ia, D—}loga—3(A(0)+AG0)+0(1).

Next we observe that

(8.10) R(a, d) =3loga+(3—d)log2+o(l), a—0".
Moreover, by (8.7), (3.1), (3.2) and {2.1),

=y log 3)

log (4/15)—2C+ H (0,
= log(n/q) + Res 22/ )1 - Lol
=0 T

A(x) = Res(Zm k(s, x}~—

=0

= log(n/q)+4log(15/4)+ C—4H (0, d).

But (2.2) and (2.3) imply that H(0, d) = log(15/16)+ni and hence
(8.11) A(x) = log (2n/q) + C—(mi/2).

Gathering (8.9), (8.10) and (8.11) we get (8.6), and formulae (4.5) and (4.6)
follow.

Since the proof of formulae (4.7) and (4.8) is very similar we only indicate
the main points. Again we can assume that x # klogp, pYg and let
max(—log2, x) < a < 0. Formula (8.1) still holds. Let I' = M denote the curve

symmetrical to | upon the real axis and such that n < argz < 3n/2 for zel'.
Instead of (8.2) we have

Jk(s, x)ds— [ k(s, p)ds = § (€™, 7).
1 r
Moreover, by (3.3)
[k(s, x)ds = [k(se*™, y)ds" = [k(s", X}dsr"'fe'_e' -dt
r 1 1 o= l

Hence using the functional equation (3.5) and arguing similarly to the first part
of the proof we arrive at
F(x, 0+ Y, /B =y (e, i)+e(x)e‘+e(x)x+R(IxI, 1—d)+C (),
=0
where
C= Y (1/p—e(+ lim {F(a, Y)—R(al, 1-d)}.

=0 a=0~
By a reasoning similar to (8.8) we get F(a, x) = F(lal, x)+loglal
+ReA(y)+o0(l) as a—0". Moreover, (8.10) implies log|al—R(|a|,1—d)
= R(lal, d)+0(1) for a—-0~. Hence
C(x) = B(x)+Re A(x) = B(x) +log2n/q)+C

and (4.8) follows. The proof is complete.
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9. Proof of Theorem 4.2. Suppose f is holomorphic inside the rectangle
Q with the vertices x,+ib, x,+ib, where 0 <b<1 and x, <X, < X,.
Consider the auxiliary function

N
©.1) on(d) = e @ —x)z—x) [f ()=}, 4,e"].

Let us put Hy = \/(x, —X,)*+b*, My =max {|f(z): ze @} and X = |x,|+|x,|.
Fix a positive &. By (4.10) and (4.11) there exists N, = N,(e) such that for
N > N, and zeQ we have

9.2) by = 2e"'HoMye?*, e > 2e~1HE M e?*,

9.3) | ¥ A v <ey Y (Hy+HZb™ Y™, O0<y<l.

n=N+1

N
(9.4) I ¥ A,e“‘"‘_"'""l < %Elyl_'(Ho+H§b_1_)", —-l<y<O.

n=1
If now z belongs to the segment (x,, x, +ib] or (x,, x,+ib] then by (9.1).and
(9.3),
lgn(@)I < Ho.V' Y AyetTvni g,
n=N+1

Since gy is zero at x, and x, the last inequality holds for these two points as
well. Similarly for ze[x, +ib, x,+ib] we have

lgn(2) < HF| Y A,e™ ™ <e.

n=N+1
For ze[x,—ib, x,)U[x,—ib, x,) we have by (9.1), (9.2) and (9.4)
lgn(2) < e**e ™ H|y| Mo+ Hglyldely| ™ (Hy+ H3b™ 1) !
< by'HoMye* +1e < s.
Finally, for ze[x,—ib, x,—ib],

N
lgn(2)l < e*¥e N HIMy+H}| Y, A,e™ " <.

n=1
'By Wh_at we have already shown and by the maximum modulus principle,
the inequality |gy(z)] < ¢ holds for every z inside Q and every N > N,,(e). Hence

N X
o= T Ao <o
n=1 X0 =xy] 1Xo =X,

which implies that the series ) A, exp(—w,x,) converges to f(x,) and

moreover, the convergence is uniform in every closed interval [x), x}]
< (x,, x,). The result therefore follows.
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10. Proof of Theorem 4.3. On the upper half-plane H let us consider the
subsidiary function F defined by the formula

F(2) =f(2)—gl(z—xo),

where
I(z) = log(1 =€) = — § %e"".
n=1

F satisfies the hypotheses of Theorem 4.2 and it is regular at z = x,. Hence the
limit

lim{ ) A,e*"®+g} 1/n}

T Imwa<T nsT

exists and is equal to
F(xo) = lim {f(xo+iy)—gl(iy)}

y—+0*

= h(xg)+g lim {log(iy)—I(iy)} = h(xy)+gmni/2.

y=0*
Since it is well known that

Y I/n=logT+C+o(l) (T-o0),
nsT

the proof is complete.
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