Conspectus materiae tomi LVI, fasciculi 3

Pagina
R. Nair, On strong uniform distribution . . . . . . . . . . . . . . .. 183-193
J. Kaczorowski, The k-functions in multiplicative number theory, I. On complex
explicit formulae . . . . . . . . ., . . . . . . . . . . . . . 195211
— The k-functions in multiplicative number theory, II. Uniform distribution of zeta
ZEIOS . . . . . o e e e e e e e e e e e e e e e e, 1324
An Mosep, I'unotesa Pumana u 3kCTpeMalibHbIE 3HAYEHHS (YHKIIHW Z(t)y. . . . 225-236
Kan Jiahai, Lower and upper bounds for the number of solutions of p+h=P,. . . 237-248

Kumiko Nishioka, On an estimate for the orders of zeros of Mahler type functions 249-256

D. Roy, Sous-groupes minimaux des groupes de Lie commutatifs réels, et applications
arithmétiques . . . . . . . . . . . . . . . .. .. .. ... 251-269

T.Hiramatsuand Y. Mimura, On numbers of type x2+Ny*, . . . . . . . . 2711-277

La revue est consacrée a la Théorie des Nombres

The journal publishes papers on the Theory of Numbers
Die Zeitschrift veroffentlicht Arbeiten aus der Zahlentheorie
JypHan NOCBAILEH TEODHH YHCEN

L'adresse de Address of the Die Adresse der Anpec penaxima
la Rédaction Editorial Board Schriftleitung

ACTA ARITHMETICA
ul Sniadeckich 8, skr. poczt. 137, 00-950 Warszawa, telex PL 816112

Les auteurs sont priés d'envoyer leurs manuscrits en deux exemplaires a I'adresse ci-dessus
The authors are requested to submit papers in two copies to the above address

Die Autoren sind gebeten um Zusendung von 2 Exemplaren jeder Arbeit an die obige Adresse
PykomnucH cTaTell peJAKLMA OPOCHT MPHCHLIATS B ABYX 3K3EMILIAPAX [0 BHILEYKa3aHHOMY afipecy

© Copyright by Instytut Matematyczny PAN, Warszawa 1990|
Published by PWN — Polish Scientific Publishers
iSBN 83-01-09960-7 ISSN (I)65-1£]36

PRINTED IN POLAND

W R O CL A W S K A D R U KARNTIA N A U K O W A

ACTA ARITHMETICA
LVI (1990)

On strong uniform distribution
by

R. Namr (Edinburgh)

1. Introduction. For any real number x, let (x) = x—[x], where [x]
denotes the largest integer not greater than x. In this paper in answer to
a question of R. C. Baker [3] we use ergodic theory to prove the following
theorem. )

THEOREM 1. For a finite set of pairwise coprime integers p,,...,p,,
exceeding one, let (m)2, denote the sequence of integers they generate
multiplicatively, once ordered by size. Then given any function fe L} (Co, 1)),

N 1
1) lim% 2 SKmx))=(f()dt ae.
N—ao k=1 o

Here and henceforth in this paper it is to be understood that pointwise
convergence is always with respect to Lebesgue or Haar measure (depending
on context), unless otherwise stated. Theorem 1, with the stronger assumption
that f is bounded and measurable, instead of just being integrable, is due to
J. M. Marstrand [11, Cor. 6.3]. Theorem 1 and all the other results in this
paper are consequences of the following more general ergodic theorem which is
itself a special case of a theorem due to T. Bewley [4].

THEOREM 2. For a probability space (X, B, ), suppose the finite set of
measurable commuting maps T,: X - X (i =1, 2, ...,r) are all measure preserv-
ing, that is, A(T,” ' B) = A(B) (i = 1, ..., 1), for each set Bep. Suppose also that at
least one, T, (say), of the maps is ergodic, that is, for any Be B, if T, ' B = B, then
A(B) is either zero or one. For a collection of finite subsets (N )2 of the set of
r-tuples of integers Z', assume the following are true:

() N, cN,, if t, <ty;
(ii) For each h=(h,,...,h)EZ" and each t let

h+N, = {(h;+5,, ...,h,+5,): (s;,...,5)€N,},
then for all he Z',
im # {(h+N)AN} _

li

=00 # Nl 0’
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(i) If N,—N,={x—y: x, yeN,}, then there exists a positive constant
K (possibly dependent on (N )2, and r, but not dependent on t) such that
#{N,—N}<K#N,;

(iv) If for some positive integer t, (s,, ...,s,)€ N,, with s; negative for some i,
this implies T, is invertible off a set of measure zero.

Then if s represents (sy, ...,s,)€Z', for any function fe (X, B, A),

1 l 51 srx -
) ‘llrzmﬁsz(’ﬂ N )—)I‘fa‘l,

A almost everywhere.

The term strong uniform distribution refers to a collection of results
related to a well-known conjecture due to A. Khinchin [9] which said that if
S < [0, 1) has indicator function Iy and positive Lebesgue measure |S|, then

N

lim 1 Y Ig(Ckx)) =S| ae.
N-ao N =1

Khinchin’s conjecture was eventually disproved by J. M. Marstrand [11,

Cor. 3.3&Thm. 5.1], however, not before it had been shown by D. A. Raikov

[13] that if p is an integer greater than one, then for any function f'e L' ([0, 1)),
N 1
lim — ¥ f(p*xd) =(f()dt ae.
0

1
N~w N k=1

Raikov’s theorem was later shown by F. Riesz [14] to be a consequence of
the pointwise ergodic theorem due to G. Birkhoff [6, p. 11]. The sequences
(P, and (k)% are both multiplicatively generated by integers. In light of
Marstrand’s disproof of Khinchin’s conjecture and Theorem 1, a natural
question which now arises is whether there exists a sequence of strictly
increasing integers (m¥)i%,, generated by a countable set of distinct integers,
such that (1) remains true with (m, )%, replaced by (m¥)iL ;. More ambitiously,
can we give necessary and sufficient conditions for a set of generators to have
this property. These questions seem quite hard however at the present time.
The proof of Theorem 1 in light of Theorem 2 may be viewed as an extension of
F. Riesz’s above-mentioned observation.

I would like to thank the S.E.R.C. for financial support while this paper
was being written and Maurice Dodson, Bill Parry, Klaus Schmidt, Chris
Smyth, Tim Swift and the referees for various helpful comments.

2. Derivation of results. Without assuming that one of the maps T;
(i=1,2,...,r)is ergodic, the statement that the left-hand side of (2) converges
A almost everywhere to a limit f,(x) (say), in L'(X, S, 4), such that
[xf,dA =[x fdA and f,(T;x) =f,(x) A almost everywhere (i=1,2,...,r), is
a special case of Theorem 3 in [4]. See also [5] and [16] for earlier versions of
this theorem. To derive Theorem 2 we need only observe that f, (x) being T,
invariant forces it to be constant A almost everywhere [17, p. 28].
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We now turn to the derivation of the rest of the resuits from Theorem 2.
Let G denote a compact Abelian group whose topology has a countable base.
We say a map E: G— G is an epimorphism if it is continuous, E(G) = G and
given elements g,, g,€G, E(g,+g,) = E(g,)+E(g,). Here “+” denotes the
group operation on G. We call maps R,: G-G, defined for xeG by
R,(x) = x+g, for some geG, rotations. All epimorphisms and rotations
preserve Haar measure on G [17, p. 21] and an epimorphism or rotation 4 is
ergodic if and only if there exists an element x e G such that {A"(x):neZ }is
dense in G [17, p. 31]. Here and henceforth in this paper for any subset V of R",
the set of r-tuples of real numbers, let V, denote the subset of ¥V consisting of

elements with non-negative coordinates. Theorem 2 has the following corol-
lary.

COROLLARY 3. Let A, (i =1, 2, ...,r) denote a finite set of commuting maps
which are either all epimorphisms or all rotations of a compact, connected,
Abelian group G whose topology has a countable base. Assume Jor one of the
maps, A, (say), and some g, €G that {AXg,): neZ.} is dense in G. Suppose
(N2 o denotes a class of finite subsets of Z" satisfying (i), (i), (i) and (iv) of
Theorem 2. Corresponding to each point s = (Sys ---»8,)EN,, for some teZ, , we
associate the map AY'...A;, of G. Then for any function feL!(G) we have

lim—— ¥ f(A}...A%@) = [ f(dh ae.
1= # N t seN; G

We . now turn to the special case where G = T™, the m-dimensional torus
(1 <m < ©). By T® we mean the product of a countable number of copies of
T, given the Tikhonov product topology. For y = (WWi=1€R™, we use the
abbreviation {y) to denote ({y,>)f=,. In the case where all the maps A;
(i=1,...,r) are epimorphisms, Corollary 3 has the following special case.

THEOREM 4. Let P (i=1,...,r) denote a finite set of commuting integer
entry m x m matrices (1 < m < oo) such that |det (P))| is greater than one for each

i and at least one of which has no roots of unity among its eigenvalues. Suppose
(M)i= denotes the set of mxm matrices,

{BY i PP B S)e L),

given any order such that k < k' only if |det (M,)| < |det(M,.)|. For each positive
integer k, let
a4 =#{..,8)€Z: M, =P}.. . P¥)
and let
Dy=ai+...4+ay (N=1,2,..).
Then, for any function fe I}(T™),

N

lim —!— Y a, f({M,x)) = [mf(t)dt ae.

N-bnoDN k=1 T
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When |det(P)| (i=1,...,r) are pairwise coprime then a4, =1 for all
positive integers k and so Dy = N for all positive integers N. In the special case
when m=1 and P,=p, (i=1,...,r), for pairwise coprime integers p, all
greater than one, Theorem 4 reduces to Theorem 1.

To derive Theorem 4 from Corollary 3, we need the following two lemmas,
the first of which is a variation of one due to M. M. Day [7] only used to prove
the second. We begin with some notation. For sets 4 and B contained in R',
a point x in R" and scalar & we denote {a+b: ae A, be B} by A+B, {x+a:
acA} by x+ A and {da: ac A} by dA. Also let |A| denote the r-dimensional
Lebesgue measure of A and A° its complement in R’

LemMA 5. Suppose C denotes a convex set in R° which contains an
r-dimensional ball B(x, @), with centre x and radius ¢. Then for all y >0

C+B(, v)cx+(9—;51){—x+cy.

Proof. By translation we can assume x = 0 without loss of generality.
Suppose ye B(0, y). Then there exists y' € B(0, g) such that y = y¢~'y". For any
y'eC,

y+y'=e e+ +y) 'y +el+) V) =e" e +1Yo
for some y,€C, using the convexity of C. m

LEMMA 6. Suppose for each teZ,, N,= NfnZ', where N} denotes
a bounded convex subset of R'. Suppose that there exists a positive constant
K (possibly dependent on r and (N,)j%,, but not on t), an unbounded increasing

sequence of real numbers (o,);Zo and a sequence of points (x,)i2o of R" such that
for each t,

3 B(x,, ¢) € N¥ c B(x,, Kg).

Then (N,)j2¢ satisfies conditions (ii) and (iii) of Theorem 2.

Proof. We consider first the proof of (ii). Suppose h = (h,, ...,h)e R" and
let [|h] = (b2 + ... + h?)'/2. Also suppose for a set § < R', with interior S° and
closure S, that 8(S) = §\S°. Finally, for positive v, let

9,(5) = {yeR": inf |y—x| <v}.

xed(S)
The idea of the proof of (ii) is to compare # N, with |[N¥|. First observe that

(h+N)AN, = 0y (NF)NZ".
Hence to prove (ii) it is sufficient to show that
[7] N¥ZT
lim#{ ||"|1-( l)n }=
= #NI

0,(NF)N(NEY = (N +B(0, V)\NF,

0.
Now
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which, by Lemma 5 and (3), is contained in

{x,+g,"(Q,+v)(—xt+N,*)}\N,*_
This implies that

10,(NYANEY
@ _"]Tﬂ“t—lﬂ" Y
In addition
) ,(NH)ONZ| _ | INE(0,(N)]
IN#| INF|
and as

{N#n(0,(NM)+B(0, v)} = N¥,
we know, by Lemma 5, that

s IN¥(0,(N¥)]
—yygil L A v el
e "o, —v) INF|
Thus the right-hand side of (5) is
(6) < l-o "oV
Together (4) and (6) now give
10,(N]) _ _,
(7) ; <o {(Q|+VJ'—(Q;—")'}-
IN¥|
Comparing number of lattice points with volume
@®) # {0 NN Z7} <10, (NP,
and using Lemma 5, similarly we have
) IN¥ < ei(e,—r*)"#N,.
Thus combining (8) and (9) gives
# {0um (N9 Z7} - Q{(g,—r”z)"la""" + (N
#N, [N

which by (7) is

< (@=r") " {lo+ Ihll+72Y ~(o,~ Il —r 2y},

By hypothesis (¢,)20 is unbounded and increasing so (i) is proved.

Now consider (iii). By (3)
B(xn Qr) <= N:‘ < B(xv KQ:),

187
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for some x,eR" and real number p,. Let D denote the largest r-dimensional
cube with sides parallel to the coordinate axes of R", which is contained in
B(x,, ¢,) and has vertices in N,. We can cover B(x,, Kg,)nZ" and hence N, by
a finite number of translates

h+(DNZ), hy+(DAZ), ..., h+(DAZ) of DNZ"

(hy, ...,h e Z"), where q depends on K and (N,)iZ,, but not on t. This means
that

N,—N,c O {(h,—h)+(DNZN—(DAZN)}.

=1
Hence as #{(DNZ")—(DNZ")} <2"#(DNnZ'),

#{N,~N,} <q*2"#N,,

proving (iii) and Lemma 6. =

We are now in a position to complete the proof of Theorem 4. To an
arbitrary mxm (1 < m < o0), integer entry, non-singular matrix (P;;) (say),
there corresponds an epimorphism n of T™ such that if x = (x,,...,x,)eT",
n(x) = (x¥, ...,x%) is given by

x7=<'§ Puxi) [j-:l, 2,...,m)

[15]. Observe first, for a finite set P, (i = 1, ...,r) of commuting integer entry
m x m matrices, with corresponding epimorphisms #; (i = 1, ...,r), that for each
xeT™ and each s =(sy,...,s,)eZ’,

nit...ny(x) = (PY... Prx).

Note also that any epimorphism # is ergodic, or equivalently it possesses an
xe T™ such that {#*(x): s€ Z,} is dense in T, if and only if its matrix has no
roots of unity among its eigenvalues [15]. Now let

N,={(sy,.-.,S)€Z",: |det(P}... P})| < t}.

Then we note, upon taking logarithms, that N, = N¥nZ", where N is the
r-dimensional tetrahedron in R" bounded by the non-negative parts of the
coordinate axes and the hyperplane

s5,log|det(P,)|+ ... +s,log|det(P,)| = logt.

Clearly, for each positive number ¢, N¥ is bounded, convex and satisfies (3) so
by using Lemma 6, Corollary 3 gives Theorem 4. m
For a = (2)f=; € R™ (1 < m < o), the map R, of T™ determined for xe T™
by
R,(x) = {x+a)
is obviously Lebesgue measure preserving.

On strong uniform distribution 189

LeEMMA 7 [5, p. 97]. For a compact, connected, Abelian topological group G,
and an element g,e G, the following are equivalent:

(@) The map R, (x) = x+g, is ergodic with respect to Haar measure;

(b) For any non-trivial character x of G, x(g,) # 1.

When G is T" (1 <m< o), an arbitrary character evaluated at
x =(xJ k=1 €T™ is of the form '

1 (x) = exp(2mi tzl m,x,).
Here m, is an integer and non-zero for only finitely many positive integers k [8,
p- 373]). From Lemma 7, we know that for a sequence of real numbers
a = (o4)f=; the map R, is ergodic if and only if for each finite subset {k,, ..., k,}
of Z,n[l,m], &, ...,0, and 1 are linearly independent over the rationals.
This is the case for example when o, = 8* (ke Z, n[1, m]) for some transcen-
dental number 0. In light of Corollary 3 we have

CoOROLLARY 8. Let ;= (yiu)i=1 (1 <i<r; 1 <m < 0) be a finite number
of sequences of real numbers. Suppose that for at least one i, for all finite subsets
{kis ..osky} of Z, O[1, m], Yinys ---5Yix, and 1 are linearly independent over the
rational numbers. Further, let (N )iZ, be a collection of subsets of Z" which satisfy
(i), (1) and (iii) of Theorem 2. If we now associate to each point xe T™, and each
point s =(s,, ...,s,)eZ", the point

{8491+ ... 5,9, +x>eT™,
then for any function feL'(T™),

lim : Y SEsyyi+ o A5y, +x)) = [mf()dt  ae.
[Eag: <] #N‘sEN. T

Let C,(x) (neZ,) denote the nth Chebyshev polynomial, that is,
C,(x) = cosnf, where x = cos 6. It was shown by R. L. Adler and T. J. Rivlin
[2] that on [—1, 1], with respect to the measure ¢ defined for Lebesgue
measurable sets A = [—1, 1] by

2 dt

(10) C’(A)=;£ﬁ,

C,(x) is ergodic and measure preserving. Using the fact that
Com(¥) =C,(C.(x)) (n,meZ,),

which follows from the definition of C,(x), Theorem 2 gives

COROLLARY 9. For any finite set of integers p,, ...,p,, all greater than one,
let (m){L, denote the sequence of integers they generate multiplicatively, once
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ordered by size. Also let
a=#{(s1,...5)eZ%: my=pY...pr} (k=1,2,..),
Dy=a,+...4ay (N=1,2,..).

Then for any function fe L*([—1, 1], &), with £ and C,(x) (n =1, 2, ...) defined
by (10), we have

lim DL Y af(Cp(x)= _[ fd¢ ae.

N=w ™~N k=1

In the case r = 1, with N, = Zn[1, t], Theorem 2 gives Birkhoff’s ergodic
theorem for an ergodic transformation. This has a number of well-known
implications for metric number theory, some of them a consequence of the
following theorem of R. L. Adler [1] (see also [6, pp. 169&290]).

TueoreM 10. Suppose that for each positive integer w,

[0, ) = UL.....n.s

where the Iy, ., are disjoint intervals such that

U B = T2 w=2,3,..),

indexed by w-tuples ny, ...,n,, which belong to an indexing subset J* of ZY.
Suppose also that ¢: [0, 1)— [0, 1) is monotone and twice continuously differen-
tiable on I}, (n,eJ"), that o(IL)=[0, 1) (n,eJ*) and that

Uul ..... n..) = I:.:.{.uw_, (W = 2, 3, i }

Further, suppose that there exists a natural number s such that if ¢° denotes the
a-fold composition of ¢ (a=1, 2, ...), then

do*(x)

inf inf T

nief! nﬂ‘

> 1.

Finally suppose that

(@ p/dx?) (x,)|

su su e g i

mp wp 3. [(@/dx) (x;))*

Then there exists a measure p on [0, 1), absolutely continuous with respect

to Lebesgue measure, which is preserved by ¢ and with respect to which ¢ is
ergodic. (See [15] for a generalization of Theorem 10.)

< 400

Suppose now that we are given the strictly increasing sequences of positive
integers (d)i=; and (e)i=, such that for some F >0,

(11) e>Fdi-y (k=2,3,..).
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Then, as is readily checked, the subsets (N,)2, of Z, given by
Nl = [l, t]an\ U [db d*+el'Ji
k=1

satisfy (i), (i), (iii) and (iv) of Theorem 2 (needing to use (11) only to verify (iii)).
Let (a,)i%, be the set | Ji>,[d,, d,+e,]nZ once ordered into a sequence by
size. Theorems 2 and 10 now give

CoroOLLARY 11. If ¢: [0, 1)—>[0, 1) and u are as in Theorem 10 and (a,)
is as just above, then for any function feL'([0, 1), ),

(12) lim Zf(<p"*(x)) If(t)du ac.

N-vun
Corollary 11 is of interest because, if in addition to (11), ¢, = o(d,), then as
is easy to verify, (a)i>; has zero density, that is,

lim # {(ak]:;ln[l! N]} =0
N-w N

This means that you cannot hope to derive Corollary 11 from Birkhoff’s
theorem by any direct manipulation.

A famous example of a map ¢ that satisfies the conditions of Theorem 10
is the continued fraction transformation, defined for xe(0, 1) by

@(x) = @,(x) = {1/x).

This is known to preserve the invariant measure ¢ defined for Lebesgue
measurable sets 4 < [0, 1) by

A)=—(—

e log2£l+x’

with respect to which ¢, is ergodic. Using Corollary 11 we obtain a variant of
classical results about arithmetic and geometric means of the partial quotients
of the continued fraction expansion of a real number due to Khinchin which we
quote from [6, pp. 165-175].

COROLLARY 12. Let c,(x) (k = 1, 2, ...) denote the k-th partial quotient of
the continued fraction expansion of the real number xe(0,1), that is,
¢,(x) = [1/x] and ¢;(x) = cx-1(@,(x)) (k = 2, 3, ...). Let (a,) be the sequence
of natural numbers defined just before Corollary 11. Then -

{ N
(13) lim = Y ¢, (x)=c ae,

N'—Ome=l.

N UN _ o 1 logj/log2
(14) lim ([T ¢, )" = ] ( ) ae.

Now k=1 i=1 0+1)2
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Proof. Let f(x)=c,(x), that is, f(x)=k for xe(k+1)"% k1),
(k=1,2,..). Then if f,(x) = min(f(x), M) for positive M, we have

N
‘.lﬁ Z cak(x) EY: Z f (‘P (x)) Z fM ((P (JC))
k=1

the right-hand side of which tends almost everywhere to

If,,()

by Corollary 11. Now letting M — co proves (13) because f is not integrable.
To see (14) choose f(x) = loge,(x), because then Corollary 12 gives

1 /(%) 2 logk 1
g T ™ 2 I]ogZIOg(I+(k+l)2—l)' .

The proof of Corollary 12 is modelled on [6, p. 175].

ComMENT. In the statement of Theorem 2, we can replace Z" by 27, . This is
another special case of Theorem 3 of [4]. In this context (iv) is vacuously
satisfied and a version of Lemma 7 can be proved in which condition (3) used
to verify (iii) can be replaced by the condition that for each ¢, if (s, ...,s,)e N,
and 0 <s¥ <s;(i=1,...,r), thens* = (s1,...,57)e N, if s*€ Z". This condmon
implies N,—N, < N, in Z', and is far less restrictive than (3). For instance,
choose (N,)2, such that N, = N*nZ", for nested r-dimensional rectangles
(N#)Zo in R, with one corner at the origin and with edges parallel to the
coordinate axes, whose lengths tend to infinity with ¢, at different rates. Then
even if (N,)j2, is not assumed to satisfy (3), it satisfies (i), (ii) and (iii) in Z",.

log2 I+t
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