ACTA ARITHMETICA LVI (1990)

Eisenstein's theorem on power series expansions of algebraic functions

by

WOLFGANG M. SCHMIDT* (Boulder, Col.)

1. Introduction. A well-known theorem of Eisenstein asserts that if a formal series

(1.1)
$$y = \alpha_0 + \alpha_1 X + \alpha_2 X^2 + \dots$$

satisfies an equation F(X, y) = 0 where F is a nonzero polynomial with algebraic coefficients, then $\alpha_0, \alpha_1, \ldots$ lie in an algebraic number field, and there are natural numbers a_0 , a such that

(1.2)
$$a_0 a^j \alpha_j \quad (j = 0, 1, ...)$$

are algebraic integers. It is our purpose to make this more explicit.

In the special case when the polynomial F(X, Y) lies in Z[X, Y] and has no multiple factors, our results will imply that we may take a, a_0 with

$$a < c_1(N)H^{8N^3}, \quad a_0 = a^N,$$

where N is the total degree, and H is the maximum modulus of the coefficients of F. The only quantitative version of Eisenstein's Theorem that I could find in the literature** is due to Coates [2, Lemma 3], and implies a value

$$a = a_0 < c_2(N)H^{c_3}$$

with $c_3(N) = (2N)^{6N^2}$.

F(X, Y) may be regarded as a polynomial in Y whose coefficients are polynomials in X. As such it has a discriminant D(X) which is a polynomial in X. We will suppose throughout that $D(X) \neq 0$, i.e., that F(X, Y) when regarded as a polynomial in Y has no multiple factors. We will assume that F is of degree m > 0 in X and of degree n > 0 in Y, and that the coefficients of F lie in an algebraic number field k of degree d. It is well known and easily seen that

^{*} Supported in part by NSF grant DMS-8603093.

^{**} Added in proof. D. L. Hilliker and E. G. Straus on p. 656 of their paper in Trans. Amer. Math. Soc. 280 (1983), 637-657 obtain a bound similar to Coates'.

if y as above satisfies F(X, y) = 0, then the coefficients $\alpha_0, \alpha_1, \ldots$ generate a field K over k of degree $[K:k] \le n$. Thus K has degree $\delta = [K:Q] \le nd$. Let $\alpha \mapsto \alpha^{(i)}$ $(i = 1, ..., \delta)$ be the isomorphic embeddings of K into C. It is known that there are positive reals A_0 , A such that

(1.3)
$$|\alpha_j^{(i)}| \leq A_0 A^j$$
 $(1 \leq i \leq \delta; j = 0, 1, ...).$

This, together with the assertion on (1.2), implies that y is a G-function as defined by Siegel [7].

By an absolute value of k we will always understand an absolute value which is normalized so that it extends either the standard absolute value or a p-adic absolute value of Q. Given such an absolute value $|\cdot|_w$ of k, let n_w be its local degree. Let M(k) be a set of symbols v, such that with every $v \in M(k)$ there is associated an absolute value $|\cdot|_n$ of k, and moreover every absolute value $|\cdot|_n$ of k is obtained for precisely n_w elements of M(k). In other words, M(k) is the set of absolute values of k with multiplicities, so that a given $|\cdot|_{w}$ occurs n_{w} times. With this convention, we have the product formula

$$\prod_{v \in M(k)} |\alpha|_v = 1 \quad \text{for } \alpha \in k, \ \alpha \neq 0.$$

We will write $v \mid \infty$ if v extends the Archimedean absolute value of Q, i.e., when v is Archimedean. There are precisely d such $v \in M(k)$. We will write $v \mid p$ if v extends the p-adic absolute value of Q. Given a prime p, there are precisely d such $v \in M(k)$. We will set

$$M(k) = M_{\infty}(k) \cup M_1(k) \cup M_2(k),$$

where $M_{\infty}(k)$ consists of v with $v \mid \infty$, where $M_{\infty}(k)$ consists of v with $v \mid p$ where p > n, and $M_2(k)$ consists of v with $v \mid p$ where $p \le n$.

Now let P be a polynomial in one or several variables and with coefficients in k. Given $v \in M(k)$, let $|P|_v$ be the maximum of $|\pi|_v$ over all the coefficients π of P. We define the field height $H_{\nu}(P)$ of P by

$$H_k(P) = \prod_{v \in M(k)} |P|_v,$$

and the absolute height by $H(P) = H_k(P)^{1/d}$. (Warning: sometimes, e.g. in [6], a different height is used.) We define M(K) in complete analogy with M(k). When $v \in M(k)$, $w \in M(K)$ and the restriction of $|\cdot|_w$ to k is $|\cdot|_v$, we write $w \mid v$. Given $v \in M(k)$, there are precisely [K:k] elements $w \in M(K)$ with $w \mid v$.

THEOREM 1. Let F, y be as above. There are real numbers $A_v \ge 1$, defined for $v \in M(k)$ and with $A_v = 1$ for all but finitely many v, such that

(1.4)
$$|\alpha_i|_{w} \leq A_v^{m+j} \quad (j=0,1,\ldots)$$

for every $v \in M(k)$, $w \in M(K)$ with $w \mid v$, and such that

(1.5)
$$\prod_{v \in M_{\infty}(k) \cup M_{1}(k)} A_{v} \leq ((m+1)(n+1)\sqrt{n})^{(2n+1)d} H(F)^{2nd} = C,$$

say, and

(1.6)
$$\prod_{v \in M_2(k)} A_v < (16m)^{1 \ln^3 d} H(F)^{(2n^3 + 2n)d}.$$

It is likely that the bound in (1.6) is weak and should be replaced by a bound similar to (1.5). In order to obtain Eisenstein's Theorem we need a variation on Theorem 1. For $v \in M_{\infty}(k)$, let G_v be the group \mathbb{R}^+ of positive reals under multiplication. For

$$v \in M_0(k) := M_1(k) \cup M_2(k) = M(k) \setminus M_{\infty}(k)$$

let $G_n \subseteq \mathbb{R}^+$ be the subgroup consisting of values $|\alpha|$, with $\alpha \neq 0$ in k.

THEOREM 2. Let F, y be as above. There are numbers $B_v \in G_v$ for each $v \in M(k)$, having $B_n \ge 1$, and $B_n = 1$ for all but finitely many v, such that

(1.7)
$$|\alpha_j|_w \leq B_v^{m+j} \quad (j=0,1,\ldots)$$

for every $v \in M(k)$, $w \in M(K)$ with $w \mid v$, and such that

(1.8)
$$\prod_{v \in M(k)} B_v < (2^{14} m^3 n^3 H(F))^{4(n+m)n^2 d} = C_1, \quad say.$$

It is an immediate consequence of Theorem 1 that

$$|\alpha_j^{(i)}| \leq C^{m+j}$$
 $(1 \leq i \leq \delta; j = 0, 1, ...),$

so that (1.3) holds with A = C, $A_0 = C^m$. On the other hand, for $v \in M_0(k)$ let \mathfrak{P}_n be the prime ideal in the ring of integers in k consisting of α with $|\alpha|_n < 1$. If $v \mid p_{...}$, then $(p_{..}) = \mathfrak{P}_{v}^{e_{v}} \mathfrak{P}_{2}^{e_{2}} \dots \mathfrak{P}_{l}^{e_{l}}$ for prime ideals $\mathfrak{P}_{v}, \mathfrak{P}_{2}, \dots, \mathfrak{P}_{l}$ and exponents e_v, e_2, \dots, e_l . The value group G_v is generated by p_v^{1/e_v} . Every $\alpha \in \mathfrak{P}_v$ has $|\alpha|_{\nu} \leqslant p_{\nu}^{-1/e_{\nu}}$. The ideal \mathfrak{P}_{ν} generates an ideal in the ring of integers of K which we will also denote by \mathfrak{P}_v , and every $\alpha \in \mathfrak{P}_v$, $\alpha \in K$ has $|\alpha|_w \leqslant p_v^{-1/e_v}$ when $w \mid v$. Now if $B_v = p_v^{b_v/e_v}$ for $v \in M_0(k)$, let \mathscr{A} be the ideal

$$\mathscr{A} = \prod_{v \in \mathbf{M}_0(k)} \mathfrak{P}_v^{b_v}.$$

 $\mathscr{A} = \prod_{v \in \mathbf{M}_0(k)} \mathfrak{P}_v^{b_v}.$ where $\mathbf{M}_0(k)$ (in contrast to $M_0(k)$) indexes every absolute value just once. Then by (1.7),

(1.9)
$$\mathscr{A}^{m+j}(\alpha_j) \quad (j=0,1,...)$$

are integral ideals in the ring of integers of K. Moreover, \mathfrak{P}_n has some norm $\mathcal{N}(\mathfrak{P}_{v}) = p_{v}^{f_{v}}$ with $e_{v} f_{v} \leq d$, and

$$\mathcal{N}\left(\mathcal{A}\right) = \prod_{v \in \mathsf{M}_0(k)} \mathcal{N}(\mathfrak{P}_v)^{b_v} = \prod_{v \in \mathsf{M}_0(k)} p_v^{f_v b_v} = \prod_{v \in \mathsf{M}_0(k)} B_v^{f_v e_v} = \prod_{v \in \mathsf{M}_0(k)} B_v \leqslant C_1.$$

Setting $a = \mathcal{N}(\mathcal{A})$, we obtain the following quantitative version of Eisenstein's Theorem.

THEOREM 3. There is an ideal $\mathscr A$ in the ring of integers of k with $\mathscr N(\mathscr A)\leqslant C_1$ such that the ideals (1.9) are integral. There is a natural number a with $a\leqslant C_1$ such that

$$a^{m+j}\alpha_j \quad (j=0,1,\ldots)$$

are algebraic integers.

We remark that some precision is lost in going from the ideal \mathscr{A} to the natural number a. In fact, the formulation in Theorem 1 may be best. For example, if k = K = Q, and if 2 occurs in the denominator of α_j to the exponent $\lfloor j/2 \rfloor$ where $\lfloor j/2 \rfloor$ where $\lfloor j/2 \rfloor$ denotes integer parts, then in Theorem 1 we may take $A_2 = 2^{1/2}$, but in Theorem 2 we have to take $B_2 = 2$, and in Theorem 3 we need to take a divisible by 2.

The quantitative version of Eisenstein's Theorem due to Coates [2, Lemma 3], has $a_0 = a \le c_4(n, m) H(F)^{c_5}$ and $c_5 = (4n^2 d)^{3nm}$.

The proofs of Theorems 1 and 2 will distinguish between elements v in $M_{\infty}(k)$, $M_1(k)$, $M_2(k)$. The argument for $v \in M_{\infty}(k)$ will follow classical lines. For $v \in M_1(k)$, a result of Dwork and Robba [3] on p-adic radii of convergence will be crucial. A conjectured variation (see Section 2, below Lemma 1) of this result for $v \in M_2(k)$ would lead to a great simplification and to better bounds. Since such a variation has not been proved, in order to deal with $v \in M_2(k)$ we have to derive a linear differential equation satisfied by y, and to use a paper of Clark [1] on p-adic convergence of solutions of such differential equations. I am grateful to Professor Dwork for drawing my attention to this work of Clark.

Eisenstein in [4] apparently supposes that the discriminant D(X) does not vanish at x = 0. Under this assumption, his theorem becomes considerably easier, and our bounds could be much improved.

2. Quantities ϱ and σ . For $w \in M_{\infty}(K)$, let C_w be the algebraic closure of the completion of K under $|\cdot|_w$. Thus $C_w \cong C$. For $w \in M_0(K)$, let C_w be the completion of the algebraic closure of the completion of K under $|\cdot|_w$. There is a natural extension of $|\cdot|_w$ to C_w . Similarly define C_v for $v \in M(k)$, and extend $|\cdot|_v$ to C_v .

For $w \in M(K)$, let ϱ_w be the w-adic radius of convergence of y. Thus ϱ_w is the supremum of the numbers ϱ such that the series for y converges w-adically for every $x \in C_w$ with $|x|_w \le \varrho$. We will see in the course of our investigation that $\varrho_w > 0$ for each w.

Let D(X) be the discriminant of F(X, Y) when considered as a polynomial with coefficients in k[X]. Then $D(X) \in k[X]$, and $D(X) \neq 0$ by hypothesis. Write

$$F(X, Y) = A_n(X) Y^n + ... + A_0(X),$$

so that $A_n(X) \neq 0$. Put

$$(2.1) R(X) = A_n(X) D(X);$$

then $\deg R(X) \leq (2n-1)m$. Write

$$(2.2) R(X) = X^q R^*(X)$$

where R^* is a polynomial with $R^*(0) \neq 0$.

Now let $v \in M(k)$, and k_v the completion of k under $|\cdot|_v$, so that $k_v \subseteq C_v$. In $k_v[X]$ we have a factorization $R^*(X) = R_1(X) \dots R_t(X)$ into irreducible factors. Say $R_i(X) = (X - \beta_{i1}) \dots (X - \beta_{i,s(i)})$ in C_v . Then it is well known that $|\beta_{i1}|_v = \dots = |\beta_{i,s(i)}|_v = v_i$, say $(i = 1, \dots, t)$. Thus the set of v-adic absolute values of the roots of R^* is $\{v_1, \dots, v_t\}$. Set

$$\sigma_{\nu} = \min(1, \nu_1, \dots, \nu_l).$$

Suppose now that E is an algebraic extension of k in which $R^*(X)$ factors into linear factors, say $R^*(X) = c(X - \beta_1) \dots (X - \beta_l)$, and let $|\cdot|_w$ be an extension of v to E. Then, since E can be embedded into C_v , the set of absolute values $|\beta_i|_w$ $(i = 1, \dots, l)$ is the same as $\{v_1, \dots, v_t\}$. In other words, this set is independent of E and of w. Thus

(2.4)
$$\sigma_{v} = \min(1, |\beta_{1}|_{w}, \dots, |\beta_{l}|_{w}).$$

LEMMA 1. Suppose $w \mid v$ with $w \in M(K)$, $v \in M_{\infty}(k) \cup M_{1}(k)$. Then $\varrho_{w} \geqslant \sigma_{v}$.

Proof. The case when $v \in M_{\infty}(k)$ is classical: We may suppose that K is embedded in C and that $|\cdot|_{w}$, $|\cdot|_{v}$ are the ordinary absolute value. The equation F(X, y) = 0 has n Puiseux series solutions $y_1(X), \ldots, y_n(X)$ at x = 0. Since $A_n(x) \neq 0$ and $F_Y(x, y) \neq 0$ for every x, y in C with $0 < |x| < \sigma_v$ and F(x, y) = 0, each of the series y_1, \ldots, y_n can be continued analytically to $0 < |x| < \sigma_v$. Since there can be no more than n formal Puiseux series solutions to F(X, y) = 0, the given series y of (1.1) is among y_1, \ldots, y_n , hence is analytic in $|x| < \sigma_v$. Therefore its radius of convergence is $\ge \sigma_v$.

The case when $v \in M_1(k)$ is due to Dwork and Robba [3]. Again, at each x_0 in C_w with $0 < |x_0|_w < \sigma_v$, the equation F(x, y) = 0 has n distinct locally analytic solutions y_1, \ldots, y_n . Pick $\xi \in C_w$ with $|\xi|_w = \sigma_v$, and set $G(X, Y) = F(\xi X, Y)$. Then at each $x_0 \in C_w$ with $0 < |x_0|_w < 1$, the equation G(x, y) = 0 has n distinct locally analytic solutions. By Dwork and Robba's Theorem 2.1, $\hat{y}(x) := y(\xi x)$ is convergent for $|x|_w < 1$, so that y(x) itself is convergent for $|x|_w < \sigma_v$. Thus $\varrho_w \geqslant \sigma_v$.

I conjecture that when $v \in M_2(k)$ and everything else is as above, then $\hat{y}(x)$ is convergent for $|x|_w < c(n)$, where c(n) depends on n only.

In what follows, write

$$(2.5) A_n(X) = a_r X^r + a_{r-1} X^{r-1} + \dots + a_u X^u$$

with $a_r \neq 0$, $a_u \neq 0$. Theorems 1, 2 are invariant under multiplication of F by a nonzero element of k. We therefore may, and we will, suppose in the sequel that

$$(2.6) a_u = 1.$$

167

LEMMA 2. (a) Suppose that $w \mid v$ where $w \in M(K)$ and $v \in M_{\infty}(k)$. Then $|\alpha_i|_w \leq 2n|F|_w(2/\sigma_w)^{m+j}$ $(j=0,1,\ldots)$.

(b) Suppose that $w \mid v$ with $w \in M(K)$ and $v \in M_0(k)$. Suppose that $\tau_w > 0$, where

$$\tau_{w} = \min(\sigma_{v}, \varrho_{w}).$$

Then

$$|\alpha_i|_w \le |F|_v (1/\tau_w)^{m+j}$$
 $(j=0,1,\ldots)$

Proof. (a) We may suppose that K is embedded in C and that $|\cdot|_{w}$, $|\cdot|_{v}$ are the ordinary absolute value. We factor

(2.7)
$$A_n(X) = a_r X^u(X - \gamma_1) \dots (X - \gamma_{r-u}).$$

(When r = u, we have $A_n(X) = a_r X^r$.) Since $\gamma_1, \ldots, \gamma_{r-u}$ are among the roots of R^* , we have $|\gamma_i|_w \ge \sigma_v$ $(i = 1, \ldots, r-u)$ by (2.4).

Let z be complex with $|z| = \sigma_v/2$. Then $|z - \gamma_i| \ge |\gamma_i|/2$ (i = 1, ..., r - u) and

$$|A_n(z)| \ge |a_r| (\sigma_v/2)^u (|\gamma_1|/2) \dots (|\gamma_{r-u}|/2) = \sigma_v^u 2^{-r} |a_r \gamma_1 \dots \gamma_{r-u}|$$

= $\sigma_v^u 2^{-r} |a_u| = \sigma_v^u 2^{-r} \ge (\sigma_v/2)^m$.

On the other hand, since $|z| = \sigma_{\nu}/2 \le 1/2$,

$$|A_i(z)| < 2|F|_n$$
 $(i = 0, ..., n).$

Since y(z) satisfies $F(z, y(z)) = A_n(z) y(z)^n + ... + A_0(z) = 0$, we have

$$|y(z)| < 2n|F|_{\nu}(2/\sigma_{\nu})^{m}.$$

By Cauchy's formula, the coefficient α_j in the expansion of y(z) is given by

$$\alpha_j = \frac{1}{2\pi i} \int_C \frac{y(z)}{z^{j+1}} dz,$$

where C is, say, the circle $|z| = \sigma_v/2$. On this circle, $|y(z)/z^{j+1}| \le 2n|F|_v(2/\sigma_v)^{m+j+1}$. The path of integration has length $2\pi(\sigma_v/2)$. We obtain

$$|\alpha_j|_w = |\alpha_j| \le 2n|F|_v(2/\sigma_v)^{m+j} \quad (j = 0, 1, ...).$$

(b) Let ϱ be a number in $0 < \varrho < \tau_w$, of the type $\varrho = p^t$ where $v \mid p$ and $t \in Q$. Since $\varrho < \varrho_w$, the series for y(z) is w-adically convergent for $z \in C_w$ with $|z|_w = \varrho$. In C_w we again have a factorization (2.7), and $|\gamma_i|_w \ge \sigma_v \ge \tau_w > \varrho$ (i = 1, ..., r - u). Therefore z with $|z|_w = \varrho$ has

$$|A_n(z)|_w = |a_r|_w \varrho^u |\gamma_1|_w \dots |\gamma_{r-u}|_w = \varrho^u |a_u|_w = \varrho^u \geqslant \varrho^m.$$

On the other hand, since $|z|_w = \varrho < 1$,

$$|A_i(z)|_{\mathbf{w}} \leqslant |F|_n \quad (i=0,\ldots,n).$$

The quotients have $|A_i(z)/A_n(z)|_w \le |F|_v \varrho^{-m}$ (i = 0, ..., n). Note that the right side here is > 1, since $\varrho < 1$ and since $|F|_v \ge 1$ by (2.6). Since y(z) satisfies $A_n(z) y(z)^n + ... + A_0(z) = 0$, we have

$$|y(z)|_{w} \leq |F|_{v} \varrho^{-m}$$

Pick $\xi \in C_w$ with $|\xi|_w = \varrho$, and set

$$\hat{y}(X) = y(\xi X) = \alpha_0 + \alpha_1 \, \xi X + \alpha_2 \, \xi^2 \, X^2 + \ldots = \delta_0 + \delta_1 \, X + \delta_2 \, X^2 + \ldots,$$

say. Then $|\hat{y}(z)| \leq |F|_v \varrho^{-m}$ for every $z \in C_w$ having $|z|_w = 1$. Furthermore, since $\hat{y}(z)$ is w-adically convergent for such z, $|\delta_j|_w \to 0$ as $j \to \infty$. Put

$$B = \max_{j} |\delta_{j}|_{w},$$

and when $B \neq 0$ pick t such that $|\delta_j|_w < B$ for j > t. There is a $z \in C_w$ with $|z|_w = 1$ and

$$|\delta_0 + \delta_1 z + \dots + \delta_t z^t|_w = B;$$

then also $|\hat{y}(z)|_w = B$. This implies that $B \leq |F|_v \varrho^{-m}$, so that $|\delta_j|_w \leq |F|_v \varrho^{-m}$, i.e., $|\alpha_j \xi^j|_w \leq |F|_v \varrho^{-m}$, and therefore

$$|\alpha_j|_w \le |F|_v \varrho^{-m} |\xi|_w^{-j} = |F|_v \varrho^{-m-j} \quad (j = 0, 1, ...).$$

Since this is true for every $\varrho < \tau_w$ of the type specified above, assertion (b) follows.

3. On R(X) and its roots. Given $\varepsilon \in E$ where E is an algebraic number field, define its field height to be

$$h_E(\varepsilon) = \prod_{w \in M(E)} \max(1, |\varepsilon|_w),$$

and its absolute height by $h(\varepsilon) = h_{\varepsilon}(\varepsilon)^{1/e}$, where e = [E:Q].

LEMMA 3. Suppose $P(X) = q(X - \varepsilon_1) \dots (X - \varepsilon_l)$ with $q, \varepsilon_1, \dots, \varepsilon_l$ in E. Then

$$h(\varepsilon_1) \dots h(\varepsilon_l) \leq (l+1) H(P).$$

Proof. For $w \in M(E)$, put

$$\mathcal{M}_{w} = |q|_{w} \max(1, |\varepsilon_{1}|_{w}) \dots \max(1, |\varepsilon_{l}|_{w}).$$

When $w \in M_0(E)$, so that $|\cdot|_w$ is non-Archimedean, Gauss' Lemma yields

$$\mathcal{M}_{w} = |P|_{w}$$
.

Now suppose that w is Archimedean. After embedding E in a suitable way into C, we may suppose that $|\cdot|$ is the standard absolute value of C. Then \mathcal{M}_w is the Mahler height of P, and therefore

$$\mathcal{M}_{w} = \exp \int_{0}^{1} \log |P(e^{2\pi i x})| \, dx$$

169

(Mahler [5]). But $|P(e^{2\pi ix})| \le (l+1)|P|_w$, so that

$$\mathcal{M}_{w} \leq (l+1)|P|_{w}$$

when $w \in M_{\infty}(E)$. Since $M_{\infty}(E)$ has cardinality e,

$$h_E(\varepsilon_1) \ldots h_E(\varepsilon_l) = \prod_{\mathbf{w} \in M(E)} \mathcal{M}_{\mathbf{w}} \leq (l+1)^e H_E(P).$$

The lemma follows.

LEMMA 4. Let F(X, Y), R(X) be as in Section 2. Then

(3.1)
$$H(R) < ((m+1)(n+1)\sqrt{n})^{2n-1}H(F)^{2n-1}.$$

Proof.

$$R(X) = A_n(X) D(X)$$

$$= \begin{pmatrix} A_{n} & A_{n-1} & \cdots & A_{0} \\ A_{n} & A_{n-1} & \cdots & A_{0} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ A_{n} & A_{n-1} & \cdots & A_{0} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ nA_{n} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ nA_{n} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ nA_{n} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & (n-1)A_{n-1} & \cdots & A_{1} \\ \vdots & \vdots & \vdots & \vdots \\ nA_{n-1} & \cdots & \vdots$$

In particular, $R(X) = Q(A_n(X), ..., A_0(X))$, where Q is a homogeneous polynomial of degree 2n-1 and with coefficients in \mathbb{Z} .

Each coefficient of each $A_j(X)$ has v-adic absolute value $\leq |F|_v$. Therefore when v is non-Archimedean,

$$|R|_v \leqslant |F|_v^{2n-1}.$$

Suppose now that v is Archimedean. Let M be a monomial of degree 2n-1 in $A_n(X), \ldots, A_0(X)$. Since $\deg A_i(X) \leq m$ $(i=0,\ldots,n)$, every coefficient of M(X) has v-adic absolute value $\leq (m+1)^{2n-1} |F|_v^{2n-1}$, i.e.,

$$|M|_v \leq (m+1)^{2n-1} |F|_v^{2n-1}.$$

The sum of the moduli of the coefficients of $Q(Y_n, ..., Y_0)$ is

$$\leq (n+1)^{n-1} (1+2+\ldots+n)^n = (n+1)^{n-1} \left(\frac{n(n+1)}{2}\right)^n$$

$$= (n+1)^{2n-1} n^n 2^{-n} < (n+1)^{2n-1} n^{n-1/2} = ((n+1)\sqrt{n})^{2n-1}.$$

We may conclude that

$$|R|_v < ((m+1)(n+1)\sqrt{n}|F|_v)^{2n-1}$$

We obtain

$$H_k(R) = \prod_{v \in M(k)} |R|_v < ((m+1)(n+1)\sqrt{n})^{(2n-1)d} H_k(F)^{2n-1},$$

where d = [k:Q]. The lemma follows.

LEMMA 5.

$$\prod_{v \in M(k)} \sigma_v \ge ((m+1)(n+1)\sqrt{n})^{-2nd} H(F)^{-(2n-1)d}.$$

Proof. Let E be an extension in which $R^*(X)$ splits into linear factors, say

$$R^*(X) = c(X - \beta_1) \dots (X - \beta_l).$$

For $v \in M(k)$ and any extension $|\cdot|_w$ of $|\cdot|_v$ to E we have (2.4). Thus if q = [E:k], then

(3.2)
$$\sigma_v^q = \prod_{\substack{w \in M(E) \\ w \mid p}} \min(1, |\beta_1|_w, \dots, |\beta_l|_w).$$

The quantities $\varepsilon_1 = 1/\beta_1, \dots, \varepsilon_l = 1/\beta_l$ are roots of the reciprocal polynomial $R_1(X) = X^l R^*(1/X)$. Since $H(R_1) = H(R^*) = H(R)$, Lemma 3 gives

$$h(\varepsilon_1) \dots h(\varepsilon_l) \leq (l+1) H(R) \leq 2nm H(R)$$
.

Therefore

$$\prod_{w \in M(E)} \max(1, |\varepsilon_1|_w, \dots, |\varepsilon_l|_w) \leq h_E(\varepsilon_1) \dots h_E(\varepsilon_l) \leq (2nm H(R))^{dq},$$

since [E:Q] = dq. But now by (3.2)

$$\prod_{v \in M(k)} \sigma_v^q \geqslant (2nm H(R))^{-dq}.$$

The lemma now follows upon extracting qth roots, in view of (3.1) and of $2nm \le (m+1)(n+1)\sqrt{n}$.

We now can do the part of Theorem 1 which is concerned with $v \in M_{\infty}(k) \cup M_1(k)$. Set

$$A_v = \begin{cases} 2n|F|_v(2/\sigma_v) & \text{for } v \in M_\infty(k), \\ |F|_v(1/\sigma_v) & \text{for } v \in M_1(k). \end{cases}$$

Since $|F|_v \ge 1$ by (2.6), and since each $\sigma_v \le 1$, we have $A_v \ge 1$. We have $\sigma_v = 1$ for all but finitely many v, therefore $A_v = 1$ for all but finitely many v. It is not difficult to deduce from Lemma 2 that (1.4) is indeed true for $v \in M_{\infty}(k) \cup M_1(k)$: it is enough to observe that for such v and for $w \mid v$, we have $\tau_w = \sigma_v$ by Lemma 1. Furthermore,

$$\prod_{v \in M_{\infty}(k) \cup M_1(k)} A_v \leq (4n)^d H(F) \prod_{v \in M(k)} \sigma_v^{-1}$$

$$\leq ((m+1)(n+1)\sqrt{n})^{(2n+1)d}H(F)^{2nd}=C,$$

so that (1.5) is true.

Encouraged by this, let us do the part of Theorem 2 concerned with $v \in M_{\infty}(k) \cup M_{1}(k)$. Set

$$B_v = A_v = 2n|F|_v(2/\sigma_v)$$
 for $v \in M_\infty(k)$.

When $v \in M_1(k)$, we observe that $|F|_v \in G_v$, but not necessarily $\sigma_v \in G_v$. Each β_i in (2.4) generates a field over k of degree \leq deg R < 2nm, and therefore for each i there is an $e_i < 2nm$ with $|\beta_i|_w^{e_i} \in G_v$. Therefore there is some e_v in $1 \leq e_v < 2nm$ with $\sigma_v^{e_v} \in G_v$. Put

$$B_v = |F|_v (1/\sigma_v^{e_v})$$
 for $v \in M_1(k)$.

Then (1.7) is certainly true, and

(3.3)
$$\prod_{v \in M_{\infty}(k) \cup M_1(k)} B_v \leq \left(\prod_{v \in M_{\infty}(k) \cup M_1(k)} A_v\right)^{2nm} = C^{2nm}.$$

4. A differential equation. It remains for us to deal with $v \in M_2(k)$. For this case we have to put in a lot of extra effort, but on the other hand, our auxiliary theorem on differential equations may be of independent interest.

Our solution y of F(X, y) = 0 generates a function field \mathcal{K} over the field of rational functions k(X); and $[\mathcal{K}: k(X)] \le n$. It is well known (see also our arguments below) that all the derivatives y', y'', \dots lie in \mathcal{K} . Now $y, y', \dots, y^{(n)}$ must be linearly dependent over k(X), so that y satisfies an nth order linear differential equation with coefficients in k(X), and in fact with coefficients in the polynomial ring k[X]. We will make this more precise.

Let \mathcal{L} be a linear differential operator,

$$\mathscr{L} = L_n(X)\frac{d^n}{dX^n} + \ldots + L_1(X)\frac{d}{dX} + L_0(X)$$

with coefficients $L_i(X) \in k[X]$ (i = 0, ..., n). We define

$$\deg \mathscr{L} = \max(\deg L_n, \ldots, \deg L_0).$$

We further define the height by

$$H_k(\mathscr{L}) = \prod_{v \in M(k)} |\mathscr{L}|_v,$$

where

$$|\mathcal{L}|_v = \max(|L_n|_v, \ldots, |L_0|_v).$$

The absolute height is $H(\mathcal{L}) = H_{\nu}(\mathcal{L})^{1/d}$.

THEOREM 4. Let F, y be as above. Then y satisfies a nontrivial n-th order linear differential equation $\mathcal{L}y = 0$, where

$$(4.1) \deg \mathscr{L} \leqslant 2n^3 m,$$

$$(4.2) H(\mathcal{L}) < (16m)^{9n^3} H(F)^{2n^3}.$$

We have to begin with a series of lemmas.

LEMMA 6. We have

(4.3)
$$A_n^j(X)y^j = B_{j0}(X) + B_{j1}(X)y + \dots + B_{j,n-1}(X)y^{n-1}$$
 $(j = 1, 2, \dots)$ with certain polynomials $B_{ij} \in k[X]$ satisfying

$$(4.5) |B_{il}|_{v} < (2m+2)^{j} |F|_{v}^{j} when v \in M_{\infty}(k),$$

$$(4.6) |B_{il}|_v \leqslant |F|_v^j when v \in M_0(k).$$

Proof. When $j \le n-1$ we set $B_{jj} = A_n^j$, and $B_{jl} = 0$ for $l \ne j$. Then (4.3), (4.4), (4.6) hold. In order to prove (4.5), it is enough to observe the fact, which will be used repeatedly, that if S(X), T(X) are polynomials with deg S = s, deg T = t, then

$$(4.7) |ST|_{v} \leq (1 + \min(s, t)) |S|_{v} |T|_{v}.$$

Thus for $j \le n-1$, (4.5) holds in the strengthened form that

$$|B_{ij}|_{n} \leq (m+1)^{j-1} |F|_{n}^{j}$$

Suppose now that the assertion is true for some $j \ge n-1$. Then

$$A_n^{j+1} y^{j+1} = A_n B_{j0} y + A_n B_{j1} y^2 + \dots + A_n B_{j,n-2} y^{n-1} + A_n B_{j,n-1} y^n$$

and

$$A_n B_{j,n-1} y^n = -A_0 B_{j,n-1} - A_1 B_{j,n-1} y - \dots - A_{n-1} B_{j,n-1} y^{n-1}.$$

Therefore (4.3) holds for j+1 with

$$B_{j+1,0} = -A_0 B_{j,n-1},$$

$$B_{i+1,i} = A_n B_{i,i-1} - A_i B_{i,n-1} (0 < i < n).$$

Now (4.4), (4.5), (4.6) follow by induction, where for (4.5) we use the observation (4.7).

In what follows, denote the partial derivatives of F(X, Y) by F_X , F_Y , F_{XX} , F_{XY} , ... Further $G_t = G_t(X, Y)$ will be a polynomial parametrized by t = 1, 2, ..., and with partial derivatives G_{tX} , G_{tY} .

LEMMA 7. For t = 1, 2, ... we have

$$(4.8) F_{\nu}(X, y)^{2t-1} y^{(t)} = G_{t}(X, y)$$

173

where $G_t(X, Y) \in k[X, Y]$ has

$$\deg_X G_t \leqslant (2m-1)t - m,$$

(4.10)
$$\deg_{\mathbf{r}} G_{t} \leq (2n-2)t + 2 - n,$$

$$(4.11) |G_t|_v < (20(m+1)^3 n^4)^t t! |F|_v^{2t-1} when v \in M_\infty(k),$$

$$(4.12) |G_t|_v \leq |F|_v^{2t-1} when v \in M_0(k).$$

Proof. Differentiating F(X, y) = 0 we obtain $F_X + F_Y y' = 0$, so that (4.8) is true for t = 1 with $G_1 = -F_X$. Then also (4.9), (4.10) hold for t = 1. When v is Archimedean, $|F_X|_v \le m|F|_v$, so that (4.11) is certainly true for t = 1. Similarly, we have (4.12).

We now proceed by induction on t. Differentiating (4.8) we obtain

$$(2t-1)F_Y^{2t-2}(F_{XY}+F_{YY}y')y^{(t)}+F_Y^{2t-1}y^{(t+1)}=G_{tX}+G_{tY}y'.$$

We multiply by F_Y^2 and note $F_Y^{2t-1}y^{(t)} = G_t$ and $F_Yy' = -F_X$ to obtain

$$(2t-1)G_t(F_YF_{XY}-F_XF_{YY})+F_Y^{2t+1}y^{(t+1)}=(F_YG_{tX}-F_XG_{tY})F_Y.$$

Thus (4.8) holds for t+1 with

(4.13)
$$G_{t+1} = (2t-1) \begin{vmatrix} F_X & F_Y \\ F_{XY} & F_{YY} \end{vmatrix} G_t - F_Y \begin{vmatrix} F_X & F_Y \\ G_{tX} & G_{tY} \end{vmatrix}.$$

Therefore

$$\deg_X G_{t+1} \leqslant 2m - 1 + \deg_X G_t,$$

$$\deg_Y G_{t+1} \leqslant 2m - 2 + \deg_Y G_t,$$

so that the truth of (4.9), (4.10) for t implies it for t+1.

In what follows, we will use the fact that if S(X, Y), T(X, Y) are in k[X, Y] with $\deg_X S = s_X$, $\deg_Y S = s_Y$, $\deg_X T = t_X$, $\deg_Y T = t_Y$, then

$$(4.14) |ST|_{v} \leq (1 + \min(s_{X}, t_{X}))(1 + \min(s_{Y}, t_{Y}))|S|_{v}|T|_{v}.$$

(Of course, much more is true when $v \in M_0(k)$.) We have

$$|F_X|_v\leqslant m|F|_v, \quad |F_Y|_v\leqslant n|F|_v, \quad |F_{XY}|_v\leqslant mn|F|_v, \quad |F_{YY}|_v\leqslant n^2|F|_v$$

and

$$|F_{\chi} F_{\gamma \gamma}|_{v} \leq m(n-1)|F_{\chi}|_{v}|F_{\gamma \gamma}|_{v} \leq m^{2} n^{3}|F|_{v}^{2},$$

$$|F_{\gamma}F_{\chi\gamma}|_{v} \leq mn|F_{\gamma}|_{v}|F_{\chi\gamma}|_{v} \leq m^{2}n^{3}|F|_{v}^{2}$$

so that

$$|F_X F_{YY} - F_Y F_{XY}|_v \le 2m^2 n^3 |F|_v^2$$

(Here and below, the \leq may often be replaced by < if $F \neq 0$.) We further obtain

$$|(F_X F_{YY} - F_Y F_{XY}) G_t|_{v} \leq (2m)(2n-1)|F_X F_{YY} - F_Y F_{XY}|_{v}|G_t|_{v}$$

$$\leq 8m^3 n^4 |F|_{v}^2 |G_t|_{v}.$$

On the other hand,

$$|F_{X} G_{tY}|_{v} \leq m(n+1)|F_{X}|_{v}|G_{tY}|_{v}$$

$$\leq m(n+1)m|F|_{v}((2n-2)t+2-n)|G_{t}|_{v}$$

$$\leq 2m^{2}n^{2}t|F|_{v}|G_{t}|_{v},$$

$$|F_{Y} G_{tX}|_{v} \leq (m+1)n|F_{Y}|_{v}|G_{tX}|_{v}$$

$$\leq (m+1)n|F|_{v}((2m-1)t-m)|G_{t}|_{v}$$

$$\leq 2(m+1)^{2}n^{2}t|F|_{v}|G_{t}|_{v},$$

so that

$$|F_X G_{tY} - F_Y G_{tX}|_v \leq 4(m+1)^2 n^2 t |F|_v |G_t|_v$$

We further obtain

$$|F_{Y}(F_{X} G_{tY} - F_{Y} G_{tX})|_{v} \leq (m+1)n^{2} |F|_{v} |F_{X} G_{tY} - F_{Y} G_{tX}|_{v}$$

$$\leq 4(m+1)^{3} n^{4} t |F|_{v}^{2} |G_{t}|_{v}.$$

Combining our estimates, we see that (4.13) yields

$$|G_{t+1}|_{v} \leq ((2t-1) \cdot 8m^{3} n^{4} + 4(m+1)^{3} n^{4} t) |F|_{v}^{2} |G_{t}|_{v}$$

$$\leq 20(m+1)^{3} n^{4} t |F|_{v}^{2} |G_{t}|_{v}.$$

Now (4.11) follows by induction on t. The proof of (4.12) is similar and simpler.

LEMMA 8. For $0 \le t \le n$ we have

(4.15)
$$F_{\nu}(X, y)^{2n-1} y^{(t)} = N_{\iota}(X, y)$$

where $N_i(X, Y) \in k[X, Y]$ with

$$(4.16) \deg_{\mathbf{x}} N_{t} \leqslant 2nm - m - t,$$

$$(4.17) deg_v N_v \leq 2n^2 - 3n + 2,$$

$$|N_t|_v \le (20(m+1)^3 n^5)^{n+1} |F|_v^{2n-1} \quad \text{when } v \in M_\infty(k),$$

$$|N_t|_v \leqslant |F|_v^{2n-1} \quad \text{when } v \in M_0(k).$$

6 - Acta Arithmetica 56.2

Proof. When t=0 we set $N_0=Y\cdot F_Y^{2n-1}$. Then (4.16), (4.17), (4.19) are clear. On the other hand

$$|F_{\gamma}|_{v} \leq n|F|_{v}$$
 and $|F_{\gamma}^{j}|_{v} \leq ((m+1)n)^{j-1}|F_{\gamma}|_{v}^{j}$

by (4.14) and induction on j for j = 1, 2, ..., so that

$$(4.20) |F_{\mathbf{Y}}^{j}|_{v} \leq ((m+1)n^{2})^{j} |F|_{v}^{j} (j=1, 2, \ldots).$$

With j = 2n-1 we obtain (4.18) for t = 0.

When $0 < t \le n$, we take

$$(4.21) N_t(X, Y) = G_t(X, Y) \cdot F_Y(X, Y)^{2n-2t}.$$

In view of (4.9), (4.10) we obtain

$$\deg_X N_t \le (2m-1)t - m + (2n-2t)m = 2nm - m - t,$$

$$\deg_X N_t \le (2n-2)t + 2 - n + (2n-2t)(n-1) = 2n^2 - 3n + 2.$$

i.e., (4.16), (4.17). Using (4.21), (4.14), (4.16), (4.17), (4.11), (4.20), we get
$$|N_t|_v \leq ((2m-1)t-m+1)((2n-2)t+3-n)|G_t|_v |F_Y^{2n-2t}|_v \\ \leq (2mt)(2nt)((20(m+1)^3 n^4)^t \cdot t! \cdot ((m+1) n^2)^{2n-2t})|F|_v^{2n-1}.$$

Since $t \le n$, we may conclude that

$$|N_t|_v \le (2mn)(2n^2) (20(m+1)^3 n^4)^n n^n |F|_v^{2n-1}$$

$$\le (20(m+1)^3 n^5)^{n+1} |F|_v^{2n-1},$$

i.e., (4.18). The proof of (4.19) is similar and simpler.

LEMMA 9. For $0 \le t \le n$ we have

$$(4.22) A_n(X)^{2n^2-3n+2} F_{\nu}(X, \nu)^{2n-1} \nu^{(t)} = Q_{\nu}(X, \nu)$$

where

$$(4.23) \deg_X Q_t \leqslant 2n^2 m,$$

$$(4.24) \deg_{\gamma} Q_{t} \leqslant n-1,$$

$$(4.25) \quad |Q_t|_v \leq 2^{2n+3} (2m+2)^{2n^2+7} n^{5n+11} |F|_v^{2n^2-n+1} \quad \text{when } v \in M_\infty(k),$$

$$(4.26) |Q_t|_v \leq |F|_v^{2n^2-n+1} when v \in M_0(k).$$

Proof. Write

$$N_{t}(X, \dot{Y}) = N_{t0}(X) + N_{t1}(X) Y + ... + N_{tn}(X) Y^{s}$$

where $s = 2n^2 - 3n + 2$. Since by Lemma 6,

$$A_n^j y^j = B_{j0} + B_{j1} y + \dots + B_{j,n-1} y^{n-1} = B_j(X, y),$$

say, (4.22) will hold with

(4.27)
$$Q_t(X, Y) = \sum_{j=0}^{s} A_n(X)^{s-j} N_{tj}(X) B_j(X, Y) \quad (0 \le t \le n).$$

Then (4.24) is clear. On the other hand, by (4.16), (4.4), a typical summand in (4.27) has

$$\deg_x \le (s-j)m + (2nm-m-t) + jm \le (s+2n-1)m \le 2n^2 m$$
,

so that (4.23) holds.

We have

$$|A_n^{s-j}|_v \le (m+1)^{s-j} |F|_v^{s-j},$$

$$|N_{t,j}|_v \le q|F|_v^{2n-1} \quad \text{with } q = (20(m+1)^3 n^5)^{n+1}$$

by (4.18),

$$|B_i|_v \leq (2m+2)^j |F|_v^j$$

by (4.5). A typical summand on the right hand side of (4.27) has v-adic absolute value

$$\leq ((s-j)m+1)((s-j)m+2nm-m+1)|A_n^{s-j}|_v|N_{tj}|_v|B_j|_v$$

$$\leq (2n^2m)(3n^2m)(m+1)^{s-j}q(2m+2)^j|F|_v^{s+2n-1}$$

$$\leq 6n^4m^2(2m+2)^s(20(m+1)^3n^5)^{n+1}|F|_v^{s+2n-1}$$

$$< 2^{2n+2}(2m+2)^{s+3n+5}n^{5n+9}|F|_v^{s+2n-1}$$

$$= 2^{2n+2}(2m+2)^{2n^2+7}n^{5n+9}|F|_v^{2n^2-n+1}.$$

After multiplying by the number $s+1 \le 2n^2$ of summands in (4.27), we obtain (4.25). The proof of (4.26) is similar and simpler.

Proof of Theorem 4. We may suppose that some coefficient of F is 1, so that

$$(4.28) |F|_n \geqslant 1$$

for each v. Since the discriminant $D(X) \neq 0$ by hypothesis, y with F(X, y) = 0 has $F_{Y}(X, y) \neq 0$. Write

$$Q_t(X, Y) = Q_{t0}(X) + Q_{t1}(X) Y + \dots + Q_{t,n-1}(X) Y^{n-1}.$$

In view of Lemma 9, it will suffice to choose the coefficients L_n, \ldots, L_0 of the desired linear differential operator \mathcal{L} with

$$\sum_{t=0}^{n} Q_{ij} L_{t} = 0 \qquad (j = 0, ..., n-1).$$

177

This is a system of n linear equations in the n+1 unknowns L_0, \ldots, L_n . Say this system has rank r, and the equations with $j=0,\ldots,r-1$ are independent, say the submatrix (Q_{tj}) with $0 \le t, j \le r-1$ is nonsingular. We set $L_{r+1} = \ldots = L_n = 0$ (there are no such when r=n), and for L_0, \ldots, L_r we take certain obvious determinants of order r from (Q_{tj}) with $0 \le t \le r, 0 \le j \le r-1$.

Then the L_i will be in k[X], and (4.23) yields

$$\deg L_i(X) \leqslant 2n^2 mr \leqslant 2n^3 m \qquad (i = 0, ..., n),$$

and therefore (4.1). The determinant for L_i has r! summands, and each summand is (up to sign) a product of r factors Q_{ij} . Therefore by (4.14), (4.23), each summand has v-adic norm

$$\leq (2n^2 m+1)^{r-1} \max_{0 \leq t < n} |Q_t|^r,$$

and by (4.25) this is

$$< (4n^2 m)^{n-1} 2^{2n^2+3n} (2m+2)^{2n^3+7n} n^{5n^2+11n} |F|_v^{2n^3}$$

in view of (4.28). Since the determinant for each L_i has r! summands, we obtain

$$|\mathcal{L}|_{v} < 2^{4n^{3}+2n^{2}+19n} n^{5n^{2}+14n} m^{2n^{3}+8n-1} |F|_{v}^{2n^{3}} < 2^{35n^{3}} m^{9n^{3}} |F|_{v}^{2n^{3}}.$$

This holds for $v \in M(k)$, whether Archimedean or not. For $v \in M_0(k)$, i.e., non-Archimedean, we obtain in a similar manner that

$$|\mathcal{L}|_v \leqslant |F|_v^{2n^3}.$$

Theorem 4 follows.

5. Application of Clark's Theorem. Let $\mathscr L$ be the differential operator of Theorem 4 and $l = \deg \mathscr L$, so that

$$(5.1) l \leq 2n^3 m.$$

Let t be least such that each $X^{i-i}L_i(X)$ (i=0,...,n) is a polynomial. After multiplying our differential operator by X^i , and denoting the new differential operator and its coefficients again by $\mathcal{L}, L_n, ..., L_0$, we have

(5.2)
$$L_i(X) = \sum_{j=0}^{l+i} \lambda_{ij} X^{i+j} \quad (i = 0, ..., n),$$

where the λ_{ij} lie in k, and λ_{00} , λ_{10} , ..., λ_{n0} are not all 0. \mathcal{L} applied to X^s is

(5.3)
$$\mathscr{L}(X^s) = \sum_{j=0}^{t+t} \Phi_j(s+j) X^{s+j} \quad (s=0, 1, ...),$$

where Φ_i (j = 0, ..., l+t) is the polynomial with

$$\Phi_j(s+j) = \sum_{i=0}^n \lambda_{ij} s(s-1) \dots (s-i+1).$$

Then Φ_0 is the classical indicial polynomial of \mathcal{L} . We have

$$\Phi_j(X) = \sum_{i=0}^n \lambda_{ij}(X-j)(X-j-1) \dots (X-j-i+1),$$

where the summand with i = 0 is to be interpreted as λ_{0i} . Therefore

$$|\Phi_{j|_{v}} \leq (1+(j+1)+(j+1)(j+2)+\ldots+(j+1)\ldots(j+n))|\mathcal{L}|_{v},$$

and

$$|\Phi_j|_v \leq (1+j+n)^n |\mathcal{L}|_v \quad \text{when } v \in M_\infty(k).$$

On the other hand,

$$|\Phi_{i}|_{v} \leq |\mathcal{L}|_{v} \quad \text{when } v \in M_{0}(k).$$

Put

(5.6)
$$\psi_v = \max_{j=0,\dots,l+t} (|\Phi_j|_v / |\Phi_0|_v)^{1/j};$$

here and in (5.7) below, the term on the right for j = 0 is to mean 1.

LEMMA 10. We have

$$\prod_{v \in M(k)} \psi_v \leqslant (n+2)^{2nd} H_k(\mathcal{L}).$$

Proof. When $v \in M_{\infty}(k)$, we have from (5.4) (and the fact that $(1+j+n)^{1/j} \le n+2$ when $j \ge 1$) that

$$(5.7) \quad \psi_{v} \leq (n+2)^{n} \max_{j=0,\dots,l+t} (|\mathcal{L}|_{v}/|\Phi_{0}|_{v})^{1/j} \leq (n+2)^{n} \max(|\mathcal{L}|_{v}, |\Phi_{0}|_{v})/|\Phi_{0}|_{v}.$$

When $v \in M_0(k)$, then

$$\psi_{p} \leq \max(|\mathcal{L}|_{p}, |\Phi_{0}|_{p})/|\Phi_{0}|_{p}.$$

Therefore, using (5.4), (5.5) again,

$$\begin{split} \prod_{v \in M(k)} \psi_v & \leq (n+2)^{nd} \left(\prod_{v \in M(k)} \max(|\mathcal{L}|_v, |\Phi_0|_v) \right) H_k(\Phi_0)^{-1} \\ & \leq (n+2)^{2nd} \prod_{v \in M(k)} |\mathcal{L}|_v = (n+2)^{2nd} H_k(\mathcal{L}). \end{split}$$

When $v \in M_0(k)$ and $v \mid p$, put

(5.8)
$$\omega_{v} = p^{-n/(p-1)} \psi_{v}^{-1}.$$

LEMMA 11. Suppose $v \in M_0(k)$, $w \in M(K)$ and $w \mid v$. Then $\varrho_w \geqslant \omega_v$.

Proof. This follows from Clark's Theorem 3 in [1]. Clark uses the order function rather than our absolute value $|\cdot|_w$, so that his value group is additive rather than multiplicative. His $b_1(l)$ corresponds to our ψ_v^{-1} , his b(l) corresponds to our $\dot{\omega}_v$. The zeros of our indicial polynomial Φ_0 are algebraic, so that

they are non-Liouville as defined by Clark. His function $w(\alpha)$ (see Definition 2 in [1]) has $0 \le w(\alpha) \le 1/(p-1)$. Since Φ_0 is of degree $\le n$, Clark's $w(\Phi_0) \le n/(p-1)$, which explains the exponent in (5.8).

6. Conclusion. For $w \mid v$ with $w \in M(K)$, $v \in M_0(k)$, the quantity τ_w of Lemma 2 has $\tau_w \ge \min(\sigma_v, \omega_v)$ by Lemma 11. When $v \mid p$, let τ_v^* be the largest number of the type p^u with $u \in \mathbb{Z}$ having $\tau_v^* \le \min(\sigma_v, \omega_v)$. Then $\tau_v^* \in G_v$,

$$\tau_v^* \geqslant p^{-1} \min(\sigma_v, \omega_v),$$

and

$$|\alpha_i|_w \leqslant |F|_v (1/\tau_v^*)^{m+j}$$

by Lemma 2.

For $v \in M_2(k)$ we set

$$A_v = B_v = |F|_v/\tau_v^*.$$

Then $B_v \in G_v$, and (1.4), (1.7) are true for $w \mid v$. We have

$$\prod_{v \in M_2(k)} A_v \leqslant H_k(F) \prod_{v \in M_2(k)} \left(p \max(\sigma_v^{-1}, \, \omega_v^{-1}) \right)$$

where p = p(v) with $v \mid p$. We obtain

$$\leq H_k(F) \prod_{v \in M_2(k)} (p^{1+(n/(p-1))} \sigma_v^{-1} \psi_v)$$

from (5.8), since $\sigma_v \le 1$, $\psi_v \ge 1$. Given p, there are d elements $v \in M(k)$ with $v \mid p$, so that

$$\prod_{v \in M_2(k)} p^{1 + (n/(p-1))} \le \prod_{p \le n} p^{2nd/(p-1)} \le n^{2n^2d}.$$

(We are very generous!) Combining this with Lemma 5 and 10, we get

$$\prod_{v\in M_2(k)}A_v\leqslant \left(n^n(m+1)(n+1)\sqrt{n(n+2)}\right)^{2nd}H(\mathcal{L})^dH(F)^{2nd}.$$

With the help from Theorem 4 we finally obtain

(6.1)
$$\prod_{v \in M_2(k)} A_v < (16m)^{11n^3d} H(F)^{(2n^3+2n)d},$$

so that (1.6) holds. Theorem 1 is established.

For (1.8) and Theorem 2, we recall that $B_v = A_v$ when $v \in M_2(k)$, so that (3.3) in conjunction with (6.1) yields

$$\prod_{v \in M(k)} B_v < (16m)^{1\ln^3 d} H(F)^{(2n^3 + 2n)d} C^{2nm},$$

further by (1.5),

$$\prod_{v \in M(k)} B_v < (16m)^{1 \ln^{3d}} (4mn \sqrt{n})^{6n^2md} H(F)^{(2n^3 + 2n + 4n^2m)d},$$

and therefore (1.8).

References

- [1] D. N. Clark, A note on the p-adic convergence of solutions of linear differential equations, Proc. Amer. Math. Soc. 17 (1966), 262-269.
- [2] J. Coates, Construction of rational functions on a curve, Proc. Camb. Phil. Soc. 68 (1970), 105-123.
- [3] B. Dwork and B. Robba, On natural radii of p-adic convergence, Trans. Amer. Math. Soc. 256 (1979), 199-213.
- [4] G. Eisenstein, Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen, Bericht Königl. Preuss. Akad. d. Wiss. zu Berlin (1852), 441-443.
- [5] K. Mahler, An application of Jensen's formula to polynomials, Mathematika 7 (1960), 98-100.
- [6] W. Schmidt, The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317 (1990), 197-227.
- [7] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys.-math. Klasse 1929, Nr. 1.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COLORADO Boulder Colorado 80309-0426 U.S.A.

Received on 10.4.1989

(1923)