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1. Introduction. A well-known theorem of Eisenstein asserts that if a formal
series
(1.1) y=og+o, X+a, X2+ ...

satisfies an equation F(X,y)=0 where F is a nonzero polynomial with
algebraic coefficients, then aq, &, ... lic in an algebraic number field, and there
are natural numbers a,, a such that

12 adey, (j=0,1,..)

are algebraic integers. It is our purpose to make this more explicit.
In the special case when the polynomial F(X, Y) lies in Z[X, Y] and has
no multiple factors, our results will imply that we may take a, a, with

a<c,(NH®™, ay=ad",

where N is the total degree, and H is the maximum modulus of the coefficients
of F. The only quantitative version of Eisenstein’s Theorem that I could find in
the literature** is due to Coates [2, Lemma 3], and implies a value

a=a, < c,(N)H®

with c;3(N) = (2N)*.

‘F(X, Y) may be regarded as a polynomial in Y whose coefficients are
polynomials in X. As such it has a discriminant D(X) which is a polynomial in
X. We will suppose throughout that D(X)#0, ie., that F(X,Y) when
regarded as a polynomial in Y has no multiple factors. We will assume that F is
of degree m > 0 in X and of degree n > 0 in Y, and that the coefficients of F lie
in an algebraic number field k of degree d. It is well known and easily seen that

* Supported in part by NSF grant DMS-8603093.
** Added in proof. D. L. Hilliker and E. G. Straus on p. 656 of their paper in Trans.
Amer. Math. Soc. 280 (1983), 637-657 obtain a bound similar to Coates'.
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if y as above satisfies F(X, y) =0, then the coefficients ay, «,, ... generate
a field K over k of degree [K:k] < n. Thus K has degree 4 = [K:Q] < nd.
Let a>a® (i=1,..., ) be the isomorphic embeddings of K into C. It is
known that there are positive reals 4,, A such that

(1.3) o] < Ag AP (1<i<é;j=0,1,..).

This, together with the assertion on (1.2), implies that y is a G-function as
defined by Siegel [7].

By an absolute value of k we will always understand an absolute value
which is normalized so that it extends either the standard absolute value or
a p-adic absolute value of Q. Given such an absolute value ||, of k, let n,, be its
local degree. Let M (k) be a set of symbols v, such that with every ve M (k) there
is associated an absolute value ||, of k, and moreover every absolute value ||,
of k is obtained for precisely n,, elements of M(k). In other words, M (k) is the
set of absolute values of k with multiplicities, so that a given ||, occurs n,,
times. With this convention, we have the product formula

[T ld, =1 for xek, «#0.
veM(k)
We will write v| oo if v extends the Archimedean absolute value of Q, i.e., when
v is Archimedean. There are precisely d such ve M(k). We will write v|p if

v extends the p-adic absolute value of Q. Given a prime p, there are precisely
d such ve M(k). We will set

M(k) = M (k) v M, (k) U M, (k),

where M (k) consists of v with v| co, where M (k) consists of v with v| p where
p>n, and M,(k) consists of v with v|p where p < n.

Now let P be a polynomial in one or several variables and with coefficients
in k. Given ve M(k), let |P|, be the maximum of |r|, over all the coefficients 7 of
P. We define the field height H,(P) of P by

H/P)= [] 1P,
veM(k)
and the absolute height by H(P) = H,(P)'. (Warning: sometimes, e.g. in [6],
a different height is used.) We define M(K) in complete analogy with M (k).

When ve M(k), we M(K) and the restriction of |-|,, to k is |*|,, we write w|uv.
Given ve M(k), there are precisely [K:k] elements we M(K) with w|v.

THEOREM 1. Let F, y be as above. There are real numbers A, > 1, dTeﬁned for
veM(k) and with A, =1 for all but finitely many v, such that

(1.4) lef, < AT* (j=0,1,..)
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Jor every ve M(k), we M(K) with w|v, and such that

(1.5) [T A <((n+ 1)+ 1)/ M HE = C,
: veEM o (k) M 4 (k)
say, and
(1.6} I-[ Av < {16??’!)1 1n3d H(F}[2n3+ 2nd
veM z(k)

It is likely that the bound in (1.6) is weak and should be replaced by
a bound similar to (1.5). In order to obtain Eisenstein’s Theorem we need
a variation on Theorem 1. For ve M, (k), let G, be the group R* of positive
reals under multiplication. For

veMy(k): = M (k) u M, (k) = M(k\M_,(k),
let G, = R* be the subgroup consisting of values |af, with o % 0 in k.

THEOREM 2. Let F, y be as above. There are numbers B,e G, for each
ve M(k), having B, > 1, and B, =1 for all but finitely many v, such that

(L.7) o), < B (j=0,1,..)

for every ve M(k), we M(K) with w|v, and such that

(1.8) Il B, <(2“m*n® H(F)¥"+™¥ = C, . say.
veMk)

It is an immediate consequence of Theorem 1 that
et 1€i€8j=0,1,..)
so that (1.3) holds with A = C, A, = C™ On the other hand, for ve M, (k) let
B, be the prime ideal in the ring of integers in k consisting of a with |a), < 1. If
v|p,, then (p,) = P P ... Pf* for prime ideals B,, P,, ..., B, and exponents
e,, €,,...,e. The value group G, is generated by p;’**. Every ae®P, has
], < p, */v. The ideal B, generates an ideal in the ring of integers of K which

we will also denote by B,, and every ae B, ae K has |a|, < p; '/** when w|v.
Now if B, = pi/* for ve My(k), let o be the ideal

o= [] B
veMo(k) ”
where M, (k) (in contrast to M, (k)) indexes every absolute value just once. Then
by (1.7),
(1.9) A" @) (j=0,1,..)

are integral ideals in the ring of integers of K. Moreover, B, has some norm

N (B,) = pf* with e, f, <d, and
N(f)= 1] #B)y= [] pi*»= [] Bl*= [] B, <C..

veMolk) veMo(k) veMolk) veMolk)

Setting a = A4 (&), we obtain the following quantitative version of Eisenstein’s
Theorem. :
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THEOREM 3. There is an ideal & in the ring of integers of k with
N () < C; such that the ideals (1.9) are integral. There is a natural number
a with a < C, such that

a"ta, (j=0,1,..)
are algebraic integers.

We remark that some precision is lost in going from the ideal &/ to the
natural number a. In fact, the formulation in Theorem 1 may be best. For
example, if k = K = @, and if 2 occurs in the denominator of & ; to the exponent
[j/2] where [ ] denotes integer parts, then in Theorem 1 we may take
A, = 22, but in Theorem 2 we have to take B, = 2, and in Theorem 3 we need
to take a divisible by 2.

The quantitative version of Eisenstein’s Theorem due to Coates [2,
Lemma 3], has a, = a < ¢, (n, m) H(F)* and c¢s = (4n%d)*™.

The proofs of Theorems 1 and 2 will distinguish between elements v in
M (k), M, (k), M, (k). The argument for ve M (k) will follow classical lines.
For ve M, (k), a result of Dwork and Robba [3] on p-adic radii of convergence
will be crucial. A conjectured variation (see Section 2, below Lemma 1) of this
result for ve M, (k) would lead to a great simplification and to better bounds.
Since such a variation has not been proved, in order to deal with ve M, (k) we
have to derive a linear differential equation satisfied by y, and to use a paper of
Clark [1] on p-adic convergence of solutions of such differential equations.
I am grateful to Professor Dwork for drawing my attention to this work of
Clark.

Eisenstein in [4] apparently supposes that the discriminant D (X) does not
vanish at x = 0. Under this assumption, his theorem becomes considerably
easier, and our bounds could be much improved.

2. Quantities ¢ and ¢, For we M _ (K), let C, be the algebraic closure of the
completion of K under (-|,. Thus C, = C. For we My(K), let C,, be the
completion of the algebraic closure of the completion of K under [-|,. There is
a natural extension of ||, to C,,. Similarly define C, for ve M (k), and extend ||,
to C,.

For we M(K), let p,, be the w-adic radius of convergence of y. Thus g, is
the supremum of the numbers g such that the series for y converges w-adically
for every xeC,, with |x|, < ¢. We will see in the course of our mvestlgatlon
that ¢, >0 for each w.

Let D(X) be the discriminant of F(X, Y) when considered as a polynomial
with coefficients in k[X]. Then D(X)ek[X], and D(X) # 0 by hypothesis.
Write y

FX,Y)=A,X)Y"+ ... +Ay(X),
so that 4,(X)# 0. Put

2.) R(X) = 4,(X) D(X);
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then deg R(X) < (2n—1)m. Write
(2.2) R(X) = X*R*(X)
where R* is a polynomial with R*(0) # 0.
Now let ve M (k), and k, the completion of k under |‘|,, so that k, = C,.

In k,[X] we have a factorization R*(X) = R,(X) ... R(X) into irreducible
factors. Say R;(X) = (X —fi1) ... (X —Bisw) in C,. Then it is well known that

|ﬁi,|,,‘= vor = Biswly = v, say (i=1,..., ). Thus the set of v-adic absolute
values of the roots of R* is {v,, ..., v,}. Set
(2.3) o, =min(1, v, ..., V).

Suppose now that E is an algebraic extension of k in which R* (X) factors
into linear factors, say R*(X)=c(X—8,)...(X—B), and let |'|, be an
extension of v to E. Then, since E can be embedded into C,, the set of absolute

values |8, (i=1, ..., ) is the same as {v,, ..., v,}. In other words, this set is
independent of E and of w. Thus
(24) Gu = min(‘nlﬁllw: oy |B{|w)

LemMA 1. Suppose w|v with we M(K), ve M (k) u M, (k). Then o, > o,

Proof. The case when ve M (k) is classical: We may suppose that K is
embedded in C and that |-|,, |-|, are the ordinary absolute value. The equation
F(X, y) =0 has n Puiseux series solutions y, (X), ..., y,(X) at x = 0. Since
Ax)#0 and Fy(x,y)#0 for every x, y in C with 0 <|x}{ <o, and
F(x, y) =0, each of the series y,,..., y, can be continued analytically to
0 < |x| < o,. Since there can be no more than n formal Puiseux series solutions
to F(X, y) = 0, the given series y of (1.1) is among y,, ..., y,, hence is analytic
in |x| < g,. Therefore its radius of convergence is = o,.

The case when ve M, (k) is due to Dwork and Robba [3]. Again, at
each x, in C,, with 0 <|x,|, < o,, the equation F(x, y) =0 has n distinct
locally analytic solutions y,,..., y,. Pick £eC, with ||, =0, and set
G(X, Y)=F({X, Y). Then at each x,eC,, with 0 <|x,|, <1, the equation
G(x, y) = 0 has n distinct locally analytic solutions. By Dwork and Robba’s
Theorem 2.1, j(x):= y(£x) is convergent for [x|, < [, so that y(x) itself is
convergent for |x|, < o,. Thus ¢, > a,.

I conjecture that when ve M, (k) and everything else is as above, then j(x)
is convergent for |x|, < c(n), where c(n) depends on n only.

In what follows, write

(2.5) AX)=6,X +a X '+ ... +a,X"

with a, #0, a, # 0. Theorems 1, 2 are invariant under multiplication of F by
a nonzero element of k. We therefore may, and we will, suppose in the sequel
that

(2.6) a,=1.
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LEMMA 2. (a) Suppose that w|v where we M(K) and ve M (k). Then
ol < 20IFL, /0" (j=0,1,..).

(b) Suppose that w|v with we M(K) and ve My(k). Suppose that t,, > 0,
where

1, = min(o,, g,,)-
Then

|l < IFl (1) (j=0,1,..).

Proof. (a) We may suppose that K is embedded in C and that ||, ||, are
the ordinary absolute value. We factor

2.7) A X) =a, X" (X —y) ... (X—y,-0).

(When r = u, we have 4,(X) = a, X".) Since y,, ..., 7,_, are among the roots of
R*, we have |y, >0, (i=1,...,r—u) by (24).
Let z be complex with |z| = ¢,/2. Then |z—y,| > |yl/2 i=1, ..., r—u) and

|4n(@) = la(0,/2) (1741/2) ... (7e-il/2) = 0527 "|a, vy -.- 7p-dl
=0427"a) = 327 > (0,/2)".
On the other hand, since |z| = ¢,/2 < 1/2,
|[4(2)| <2|F|, (i=0,...,n).
Since y(z) satisfies F(z, y(z)) = A,(2) y(2)"+ ... + Ay(z) =0, we have
| 1y(2)l < 2n|F|,(2/c,)".
, By Cauchy’s formula, the coefficient ; in the expansion of y(z) is given by

1 . y2)

5 - - z
¢ 2migdtt™

where C is, say, the circle |zl =0,/2. On this circle, |y(z)/z/*!|
< 2n|F|,(2/o,)"*/* 1. The path of integration has length 2n(c,/2). We obtain’

lef, = lo) < 20lF,Q/a )" (j=0,1,..).

(b) Let ¢ be a number in 0 < ¢ < 7, of the type ¢ = p* where v|p and
te Q. Since ¢ < g,,, the series for y(z) is w-adically convergent for ze C,, with
lzl, = e. In C,, we again have a factorization (2.7), and |y, >0, =17, >0
(i=1,...,r—u). Therefore z with |z|, = p has

14, = lalw "1l - Ire-il = @"lal,, = @" > @™.
On the other hand, since |z], =90 < 1,

|42y < IFl,  (=0,...,n).
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The quotients have |4,(z)/4,(2)l, < |Fl,e™™ (i =0, ..., n). Note that the right
side here is > 1, since ¢ < 1 and since |F|, > 1 by (2.6). Since y(z) satisfies
A2 y@@)'+ ... +Ay(z) =0, we have

Iy, < IFl,e™".
Pick £eC,, with [£]|, =g, and set
JX)=y(EX)=og+a, EX+a, E2 X2+ ... =8,+0, X +6, X%+ ...,

say. Then [y(z)] < |F|,e™™ for every ze C having |z|, = 1. Furthermore, since
y(z) is w-adically convergent for such z, |6, —0 as j—»co. Put

B = max|d,,
i
and when B # 0 pick t such that [§], < B for j > t. There is a zeC,, with

|zl, =1 and
|6p+6,2z+ ... +6,2|, = B;

then also [j(z)|,, = B. This implies that B < |F[,¢™™, so that |6 ], < |F|,e™",
ie, |o;¢&), <|Fl,e™™, and therefore

ey < IFl,@”"™El = |Fl,e™ ) (j=0,1,..).

Since this is true for every g < t,, of the type specified above, assertion (b)
follows.

3. On R (X) and its roots. Given ¢€ E where E is an algebraic number field,
define its field height to be

he(e) = [] max(l, [e],),

weM(E)

and its absolute height by h(e) = hg(e)'/®, where e = [E:Q].
LEMMA 3. Suppose P(X) = g(X —¢,) ... (X —¢) with q, &, ..., & in E. Then
h(e,) ... h(e) < (I+ 1) H(P). '
Proof. For we M(E), put
M, = gl max(1, le,l,) .. max(1, le],).
When we M, (E), so that ||, is non-Archimedean, Gauss’ Lemma yields
M, = |P|,.

Now suppose that w is Archimedean. After embedding E in a suitable way into
C, we may suppose that |-| is the standard absolute value of C. Then ., is the
Mabhler height of P, and therefore

1
M, = exp | log|P(e*™*)| dx
0
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(Mahler [5]). But |P(e*™)| < (I+1)|P|,, so that
M, < (+1)|P],
when we M _(E). Since M _(E) has cardinality e,
he(e)) ... he(e) = [1 M, < (+1)Hy(P).

weM(E)
The lemma follows.

LemMa 4. Let F(X, Y), R(X) be as in Section 2. Then

(3.1) H(R) < ((m+1)(n+1)/nj?"~* H(F)*"~".
Proof.
R(X) = 4,(X) D(X)
A, Ap-1 A,
An An—l . A(,
. . . - " ow "_I
_ A, Ay Ao
nd, (n-=1A4,-, A,
nA, (n—1)A4,_, A,
R i

ln' particular, R(X) = Q(A4,(X), ..., Ao(X)), where Q is a-homogcncous polyno-
mial of degree 2n—1 and with coefficients in Z.

Each coefficient of each 4 ;(X ) has v-adic absolute value < |F|,. Therefore
when v is non-Archimedean,

IR, < |F3"~".

Suppose now that v is Archimedean. Let M be a monomial of degree 2n—1 in
A(X), ..., Ag(X). Since degA(X)<m (i=0,...,n), every coefficient of
M(X) has v-adic absolute value < (m+1)*""!|F2""1, ie,

IM], < (m+ 1)1 |F3m 1.
The sum of the moduli of the coefficients of Q(Y,, ..., ¥p) is

SE+H 1424 oo ) = (n+ l)"_,(”(";‘“)"

___("+])2n-lnn2—u <("+l]2n—lnn~112 —_-((ﬂ'l-l]\/;l-]_zn_l.

We may conclude that

IRl, < ((m+1)(n+1)/n|F|, )1,
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We obtain
H(R) = T] IRl, <((m+1)(m+1)/nf® D H F>",
veM(k) .

where d = [k:Q]. The lemma follows.

LeEmMMmA 5.
[T o.= (m+1)@n+1)/n) 2 HF) @11,

veM(k)

Proof. Let E be an extension in which R*(X) splits into linear factors, say
R¥(X)=c(X—B,) ... (X—=B).

For ve M(k) and any extension ||, of ||, to E we have (2.4). Thus if ¢ = [E:k],
then
(3'2) 0'?, = r[‘ min(l9 lﬂllws =ary lﬁl‘w)'

weM(E)

wio

The quantities &, = 1/B,, ..., & = 1/B, are roots of the reciprocal polynomial
R,(X) = X'R*(1/X). Since H(R,) = H(R*) = H(R), Lemma 3 gives

he,) ... h(e) < (I+ 1) H(R) < 2nm H(R).
Therefore

[T max(l, legly, ... led) < heley) ... he(e) < (2nm H(R))™,

weM(E)

since [E:Q] = dgq. But now by (3.2)
T &= (2nmH(R))™“.

veMi(k)

The lemma now follows upon extracting gth roots, in view of (3.1) and of

2nm < (m+1)(n+1)/n.

We now can do the part of Theorem 1 which is concerned with
veM (k) M,(k). Set :

A = 2n|F|,(2/a,) for veM ,(k),
" IF|,(1/a,) for ve M, (k).

Since |F|, > 1 by (2.6), and since each ¢, < 1, we have 4, > 1. We have 0, = 1
for all but finitely many v, therefore 4, = 1 for all but finitely many v. It is not
difficult to deduce from Lemma 2 that (1.4) is indeed true for
ve M , (k) u M, (k): it is enough to observe that for such v and for w|v, we have

7, =0, by Lemma 1. Furthermore,
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I A, <@n)HF) [] o,

veM o (k)u M (k) veM (k)
< ((m+1)(n+1)/n)2"* Y H(F)> = C,

so that (1.5) is true.

Encouraged by this, let us do the part of Theorem 2 concerned with
veM _(k)u M, (k). Set

B, = A, = 2n|F|,(2/o,) for ve M _(k).

When ve M, (k), we observe that |F|,€ G,, but not necessarily 0,€G,. Each g,
in (2.4) generates a field over k of degree < deg R < 2nm, and therefore for each

i there is an e; < 2nm with |B[5i € G,. Therefore there is some ¢, in 1 < e, < 2nm
with 6" eG,. Put

B, = |F|,(1/ay) for ve M, (k).
Then (1.7) is certainly true, and

(3.3) 1_[ B, < ( l_l Ap)z-m = C2mm.

veM a(k)uM (k) veM o (k)u M (k)

4. A differential equation. It remains for us to deal with ve M, (k). For this
case we have to put in a lot of extra effort, but on the other hand, our auxiliary
theorem on differential equations may be of independent interest.

Our solution y of F(X, y) = 0 generates a function field . over the field
of rational functions k(X); and [#": k(X)] < n. It is well known (see also our
arguments below) that all the derivatives y', y’, ... lie in #". Now y, ¥/, ..., y™
must be linearly dependent over k(X), so that y satisfies an nth order linear
differential equation with coefficients in k(X), and in fact with coefficients in the
polynomial ring k[X]. We will make this more precise.

Let & be a linear differential operator,

d" d

with coefficients L,(X)ek[X] (i =0, ..., n). We define
deg & = max(degL,, ..., deg L,).
We further define the height by
H(#)= ] 12l

veM (k)
where
|), = max(|L,,, ..., |Lol,)-

The absolute height is H(%) = H, (&),
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THEOREM 4. Let F, y be as above. Then y satisfies a nontrivial n-th order
linear differential equation £y = 0, where

(4.1) deg £ < 2nm,

4.2) H(&) < (16m)°™ H(F)*".

We have to begin with a series of lemmas.

LeEMMA 6. We have
(4.3) Ai(X)y = Bo(X)+ B (X)y+ ... +Bja(X)y"" 1 (j=1,2,..)
with certain polynomials B;ek[X] satisfying

(4.4) degBj{ Qjm.,
(4.5) , |Bjl, < @m+2Y|Fl,  when ve M (k),
4.6) Bjl, < |Ft,  when ve Mq(k).

Proof. When j < n—1 we set B;; = 4}, and By = 0 for I # j. Then (4.3),
(4.4), (4.6) hold. In order to prove (4.5), it is enough to observe the fact, which
will be used repeatedly, that if S(X), T(X) are polynomials with degS = s,
deg T=t, then

@7 ISTY, < (1 +mings, 0))ISl,|T],.
Thus for j < n—1, (4.5) holds in the strengthened form that
[Bil, < (m+1Y7"|FJi.
Suppose now that the assertion is true for some j > n—1. Then
Ayt = A Bioy+ A, By 4 .. +A,Bju2y + A, B Y
and
AyBjn—1y'= —AgBjp-1—A; Bjy-1y— ... —Ap—y Bju-1y" 1.
Therefore (4.3) holds for j+1 with
Bj+‘l.0 = *’Aij.n—la
Bjy1i=A,Bji—y—A;Bj,-y (0 <i<n).

Now (4.4), (4.5), (4.6) follow by induction, where for (4.5) we use the obser-
vation (4.7).

In what follows, denote the partial derivatives of F(X, Y) by Fy, Fy, Fxx,
Fxy, ... Further G,=G,(X,Y) will be a polynomial parametrized by
t=1,2,..., and with partial derivatives G;x, Gyy.

" LEMMA 7. For t=1,2,... we have
4.8) FylX, p* "1y = G(X, y)
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where G(X, Y)ek[X, Y] has

4.9 degy G, (2m—1)t—m, "

(4.10) ' deg,G,:é(Zn—Z)t+2—n,

@11 |G), < (20(m+ 1) n*) t1|FIZ*"Y  when ve M (k),
4.12) |G, < |FI3*~"  when ve My(k).

Proof. Differentiating F(X, y) = 0 we obtain Fy+Fyy = 0, so that (4.8)
is true for ¢ = 1 with G; = —F,. Then also (4.9), (4.10) hold for t = 1. ‘When
v is Archimedean, |F,|, < m|F|,, so that (4.11) is_certainly true for t = 1.
Similarly, we have (4.12).

We now proceed by induction on t. Differentiating (4.8) we obtain

Q=) F§~(Fxy+Fyyy)y+F§ ' y* Y = Gy + Gy y.
We multiply by F2 and note FZ~! y? =G, and Fyy = —F, to obtain
(t—=1)G(Fy Fxy—Fy Fyy)+ F§'* ' y'* V) = (Fy G,y — Fx Gyy) Fy.
Thus (4.8) holds for t+1 with
Fy Fy

4.13 Gy =(2t—1
( ) t+1 ( t ]Fxr Flfr

" |Fy F
G—Fy| * ¥|
I ¥ G;x Gr]’l

Therefore
degy Gy+1 < 2m—1 +degyG,,
<2

degy G,y < 2n—2+deg,G,,

so that the truth of (4.9), (4.10) for ¢ implies it for ¢+ 1.
In what follows, we will use the fact that if S(X, Y), T(X, Y) are in
k[X, Y] with degy S = sy, degyS = sy, degy T=ty, deg, T=t,, then

(4.14) IST|, < (1 +min(sy, ty))(1 +min(sy, ty))IS}, T,

(Of course, much more is true when ve M,(k).) We have

|Fyl, < m|Fl,, [Fyl, <nlFl,, [|Fxyl, <mn|F|,, |Fyyl, <n?|F|,
and
|[Fx Fyyl, < m(n—1)|Fyl,|Fyyl, < m*n3|F|Z,
|Fy Fxyl, < mn|Fyl, |Fxyl, < m*n*|F|j,
so that

IFxFrr—FnyrL 52’"1"3”“'3-
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(Here and below, the < may often be replaced by < if F # 0.) We further
obtain
(Fx Fyy—FyFxy) G,|, < 2m)(2n—1)| Fy Fyy—Fy Fxy|, |G/,
< 8m* n*|FI7 |G ),
On the other hand,
|Fx Geyl, < m(n+ 1) |Fxl, |Guyl,
< mn+1)m|F|,(2n—2)t+2—n)|G/,
< 2m*nt|F|, |G/,
|Fy Gixly, < (m+1)n|Fyl, |Gixl,

< (m+Dn-n|F|,(2m—1)t—m)|G),

< 2m+1)2 2 t|F, |Gy,
so that

|Fx Giy—Fy Gixl, < 4(m+1)* n*t|F|, |G,
We further obtain
|Fy(Fy Goy— Fy Gex)l, < (m+1)n? |F|, |Fx Gey— Fy Gixl,
< 4(m+1° n* t|FZ |G/,
Combining our ‘estimates, we see that (4.13) yields
lG,+. o < ((2t—1)-8m® n* +4(m+1)* n* 1) |FI2 |G\,
< 20(m+1)* n* ¢ |FI2(G,.

Now (4.11) follows by induction on t. The proof of (4.12) is similar and
simpler.

LemMa 8. For 0 <t <n we have

(4.15) Fy(X, y)*" ' y% = N(X, y)

where N,(X, Y)ek[X, Y] with

(4.16) degy N, < 2nm—m—t,

(4.17) degy N, € 2n*=3n+2,

(4.18) INJ, < (20(m+1)* a5+ 1 |F2*~t  when ve M (k)
(4.19) INJ, <IFI2""'  when ve My(k).

6 — Acts Arithmetica 56.2
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Proof. When t =0 we set Ny = Y-F3"~1. Then (4.16), (4.17), (4.19) are
clear. On the other hand.
IFyl, <nlFl, and |F}|, <(m+1)ny~!|F,}
by (4.14) and induction on j for j=1, 2, ..., so that
(4.20) IFyl, < (m+Dn?Y|FY (j=1,2,..).

With j =2n—1 we obtain (4.18) for t = 0.
When 0 <t <n, we take

@21 N(X, Y)=G,(X, Y)Fy(X, Y)> %,
In view of (4.9), (4.10) we obtain

dcg; N, < (2m—1)t—m+Q2n—20)m = an;in—r,

degy N, < 2n—2)t+2—n+(@2n—26)(n—1) = 2n*—3n+2,
ie, (4.16), (4.17). Using (4.21), (4.14), (4.16), (4.17), (4.11), (4.20), we get

INJ, < (@m—1)t—m+1)(2n—2)t+3—n)|G, |FF"~ %),
< (2mi) 2nt) ((20(m + 1)° n¥)-£1-((m + 1) n?)2~2) |Fj2=1,
Since t < n, we may conclude that
INJ, < (2mn)(2n%) (20(m+ 1) n)y n*|F|2~ 1
< (20(m+ 12 noy 4|1,
ie, (4.18). The prdof of (4.19) is similar and simpler.
LeEMMA 9. For 0 <t <n we have

4.22) A XPTTIE (X, pPn 0 = (X, y)
where
4.23) degy Q, < 2n*m,
(4.24) deg, 0, <n—1,
(4.25) 1Ql, € 2"*3@2m+2)2W+T pSH L 2P0t hon ye M (K),
(4.26) 1Q4, < IFI2*~"*1  when ve M, (k).
Proof. Write

NI‘[X! Y) = Nto(X)+er(X) Y+ ... +N,(X)Y*
where s = 2n?—3n+2. Since by Lemma 6,

ALy = Bi+Bj y+ ... +Bja_ 1y = B(X, y),
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say, (4.22) will hold with_
@2 Q(X, V=3 AXPINMBX,Y) O<t<n).
j=0

Then (4.24) is clear. On the other hand, by (4.16), (4.4), a typical summand in
(4.27) has

degy < (s—j)m+(2nin—m—1)+jm < (s+2n—1)m < 2n*m,

so that (4.23) holds.
We have

|47, < (m+ 1)~ |FR7,
INl, < qIF""*  with g = (20(m+1)>n%)*!
by (4.18),
IB}|, < 2m+2Y|F})

by (4.5). A typical summand on the right hand side of (4.27) has v-adic absolute
value

< ((s—=i)m+1)((s—j)m+2nm—m+1)|437), IN, B/,
< @2r2m)(3n®m)(m+ 17~ g2m+ 2y |F3 231

< 6n* m?(2m+2)° (20(m+1)* n¥y"* 1 |Fl5* 2n -1

< 22|!+2(2m+2]a+35+5n5u+9'1;'];+2ﬂ-1

= 22 (4 2)20+ T pSn+9 | F2nt -+l

After multiplying by the number s+ 1 < 2n? of summands in (4.27), we obtain
(4.25). The proof of (4.26) is similar and simpler.

Proof of Theorem 4. We may suppose that some coefficient of F is 1,
so that

4.28) |Fl,>1

for each v. Since the discriminant D (X) # 0 by hypothesis, y with F(X, y) =0
has Fy(X, y) # 0. Write

QX ¥) = Quo(X)+Qu(X) Y+ ... +Qpumy(X) Y"1,

In view of Lemma 9, it will suffice to choose the coefficients L,, ..., L, of the
desired linear differential operator % with

Y QuL=0 (j=0,...,n—1).
=0 L
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This is a system of n linear equations in the n+1 unknowns L, ..., L,. Say

this system has rank r, and the equations with j = 0, ..., r—1 are independent,

say the submatrix (Q,) with 0<t,j<r—1 is nonsingular. We set

L,yy = ... = L, = 0(there are no such when r = n), and for Ly, ..., L, we take

certain obvious determinants of order r from (Q,)) with0 <t <r,0<j<r—1.
Then the L; will be in k[X], and (4.23) yields

degL(X)<2nm*mr<2n®m (i=0,...,n),

and therefore (4.1). The determinant for L, has r! summands, and each

summand is (up to sign) a product of r factors Q,;. Therefore by (4.14), (4.23),
each summand has v-adic norm

<(2n*m+1)y"" max |Q,],
0<t<n

and by (4.25) this is
< (4»2 m)n— 1 22n2 +3n(2m+2]2n3+ n "5n2+ iin |FI3u3‘

in view of (4.28). Since the determinant for each L, has r! summands, we obtain

Iglp < 24n3+ 2n?+%19n nSnz +14n m2n3+8u— 1 |F|§n3 < 235«3 mgn-‘ |F'12:.n3-

This holds for ve M(k), whether Archimedean or not. For veMy(k), ie.,
non-Archimedean, we obtain in a similar manner that

|£l, < IF|2™.
Theorem 4 follows.

5. Application of Clark’s Theorem. Let .# be the differential operator of
Theorem 4 and | = deg %, so that

(5.1) 1< 2n®m.

Let ¢ be least such that each X'~'L,(X) (i=0,..., n) is a polynomial. After
multiplying our differential operator by X, and denoting the new differential
operator and its coefficients again by %, L., ..., L,, we have

(5.2) L(X) = lf A X (i=0,...,m),
=0
where the 1;; lie in k, and lo:. 210, - .-, Ao are not all 0. ¥ applied to X* is
(5.3) Z(X) = :i; D(s+) Xt (s=0,1,..),
where @; (j=0, ..., [+1) is the polynomial with

Ofst) =Y Ayss=1)... (s—i+1).
=0
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Then @, is the classical indicial polynomial of %. We have
O,(X) = 32X —(X—j—1) ... (X—=j—i+1),
i=0

where the summand with i =0 is to be interpreted as Ao; Therefore

D), < (1+(+D+G+DG+2+ oo +(+1) .. (+0) | L),

and "

(5.4) (@), <(1+j+n)"|&|, when veM (k).
On the other hand,

(5.5) |®], < ||, when veM(k).

Put

(5.6) Vo= max (8L/l)";

here and in (5.7) below, the term on the right for j =0 is to mean I.

LemMMa 10. We have
[T ¢, <(+2*H,/(£).

veM(k)
Proof. When veM (k), we have from (54) (and the fact that
(14j+4+n)'¥ < n+2 when j > 1) that

(57 ¥, <(n+2 max (Z1/19l)" < (n+2)"max(Z],, 1Pol,)/1Pol,-

J=0,.... 1+1
When ve M,y (k), then
¥, < max(| &, 9ol Y19Pol,-

Therefore, using (5.4), (5.5) again,
I1 ¢, <(+27( [] max(Zl,, |1Pol)) Hy(®o)™*

veMik) veM(k)
<(n+2 ] 121, = m+2*" H (&).
veM(k)
When ve M,(k) and v|p, put
(5.8) o, =p "Dyt

LemMA 11. Suppose ve My(k), we M(K) and w|v. Then ¢, > w,.

Proof, This follows from Clark’s Theorem 3 in [1]. Clark uses the order
function rather than our absolute value [-|,, so that his value group is additive
rather than multiplicative. His b, () corresponds to our ¥, ', his b_(t} corre-
sponds to our @,. The zeros of our indicial polynomial @, are algebraic, so that
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thcy are non-Liouville as defined by Clark. His function w(a) (see Definition
2 in [1]) has 0 < w(a) <1/(p—1). Since &, is of degree <n, Clark’s
w(®,) < n/(p—1), which explains the exponent in (5.8).

6. Cnncltfsion. For w|v with we M(K), ve M, (k), the quantity ,, of Lemma
2 has t,, > min(o,, @,) by Lemma 11. When v|p, let t* be the largest number
of the type p* with ueZ having ¥ < min(s,, w,). Then *€G,,

¥ 2 p~ ' min(o,, ®,),
and
Ia.l‘lw < |Fh(l/’€:}'"+"

by Lemma 2.

For ve M,(k) we set

A, = B, = |F| [t¥.
Then B,eG,, and (1.4), (1.7) are true for w|v. We have
[1 A, <H(F) [] (pmax(e;*, o;")
veM 2(k) veMa(k)
where p = p(v) with v|p. We obtain
< H,(F) H (pl‘rtm‘tp—l»a.;lwp)
veMa(k)

from (5.8), since g, < 1, §, > 1. Given p, there are d elements ve M(k) with v p,
so that

1 - -
H p +(n/(p—1)) < H pz:m;{p 1) < n2n2¢-
veM 2(k) psn

(We are very generous!) Combining this with Lemma 5 and 10, we get
[T A, <("(m+1)(n+1)/n(n+2))*™ H(L)Y H(F)>™.
veM (k)
With the help from Theorem 4 we finally obtain
(6.1) l‘[ Au < (le)“""H(F}‘z"""z”",
veMa(k)
so that (1.6) holds. Theorem 1 is established.
For (1.8) and Theorem 2, we recall that B, = 4, when ve M, (k), so that
(3.3) in conjunction with (6.1) yields
l“[ Bo < {16m111n3¢H(F)(2n3+2u)d sz,
veM(k)
further by (1.5),
1—1 B" < (l6m)"""[4ﬁn \/E}GN*M H(m(2n3+23+_4u3m)¢’
veM (k)
and therefore (1.8).
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