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Small eigenvalues of Laplacian for I',(N)
by

HENRYK IWANIEC (New Brunswick, N.J.)

1. Introduction. The Hecke congruence group of level N,

['=Ty(N)= {[: 3]esL2(Z): ¢ =0 (mod N)}

acts on the upper half-plane H (equipped with the Poincaré metric) discon-

tinuously by
z_az+b P ab
? " cz+d Y=leafp

giving the quotient space~I'\ H of finite volume
V=vol('\H)= [ duz
nHeH

with respect to the invariant measure duz = y~2dxdy. Let y be a Dirichlet
character to the modulus N; it induces a character of I' by x(y) = x(d). Let
4 (I'\ H, y) be the space of functions f: H — C which satisfy the automorphy
equation

JG2) =210 f ).

Thus for any f, ges/(I'\H, x) the product f(z)j(z) is I'-invariant. Let
Z(I'\ H, y) be the subspace of & (I' \ H, y) of functions f (2) such that (f, 1 is

finite, where
(o= | f@i)dpz
nH
is the inner product in &(I'\ H, x). The Laplace-Beltrami operator
2 9
4= 75+ 57)

acts on a dense subspace of #(I'\ H, y), and it is essentially a self-udjoint,
unbounded operator. A. Selberg [26] showed that 4 has a point spectrum

Ao<2 €1,< ..., say, with J,—+ 00 as j— o, and it has a continuous
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spectrum covering the interval (&, oo) with multiplicity equal to the number {)f
singular cusps of I'. The subspace & (I'\ H, y) of the continuous spectrum is
spanned by Eisenstein series and the subspace Zo(I'\H, 1) of the point
spectrum is spanned by Maass cusp forms together with a constant function (_)f
eigenvalue A, =0 in the case of the trivial character. If, however, y is
a non-trivial character then the entire point spectrum is cuspidal. In the latter
case we formally set 4, = 0, s0 4; < 4, < ... always accounts for the cuspidal
spectrum. As usual we set

Aj=s;(1—s) with s;=3+it;,

so t; is real if ;> % and it; is real otherwise.
A. Selberg [27] conjectured that for congruence groups we have

() b2

In other words, the cuspidal spectrum lies on the continuous one. The
conjecture is known to be true for a few groups of small level (see [2_4] arlld
[14]). In fact, for the modular group I' = SL, (Z) the lowest eigenvalue is quite
large, 4, = 91.14... (see the numerical computation of D. Hejhal [12]). But as
the level tends to infinity one can find many eigenvalues near 1 (see [8)).
Moreover, the point A = 4 belongs to the spectrum of 4 on £ (Fo()\ H, x,)
with p = 1 (mod 4) provided the class number of Q(,/p) exceeds 1 (see [31]).

Here y, is the quadratic character

d
an=()

The assumption that I' is a congruence group cannot be dropped from the
Selberg conjecture, for one can find a compact smooth surface I'\ H of genus
g =2 with A,,_3 as small as desired (see [5D)- .

J.-P. Serre [28] interpreted Selberg’s eigenvalue conjecture as an an?logue
of the Ramanujan conjecture for the “infinite place”, so today the conjecture
lies within the scope of the program of R. Langlands outlined in [20]. Although
Langlands® program happened to be partially successful for “finite places” (see
[22], [23], [29)) it fails so far to work for the “infinite place”.

Yet, A. Selberg [27] was able to show that

() A > 15
by applying A. Weil's bound for the Kloosterman sums
S (mn;c)= Y x(d)e.(md+nd),

d (modc)
namely that

(3) S, (m, n; c)| < (m, n, ©)''*c'7(c).
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Thus Selberg appealed (indirectly) to the Riemann hypothesis for curves over
finite fields. Later S. Gelbart and H. Jacquet [10] established the strict
inequality 4, > 1§ without using bounds for Kloosterman sums by means of
a lift from GL, to GL,. Recently we [18] gave an estimate for special sums of
Kloosterman sums from which (2) follows with minimum arithmetic being
involved.

A relation between the spectrum of 4 and the Kloosterman sums
S,(m, n; c) emerges in the spectral representation for the zeta-function
4) Z(s)= Y c*S,(m,n;0).

¢=0 (mod N)

Selberg [27] has shown that Z (s) has meromorphic continuation to the whole
complex s-plane. For suitable m, n the poles of Z(s) in the half-plane Res > 4

are at the points s; of the segment (3, 1). These points will be called exceptional;
they correspond to the exceptional eigenvalues

) 0<=s,(l—s) <4

Since (3) implies that the series (4) converges absolutely in Res > # it follows
that Z(s) is holomorphic in Res > 3, whence 4; > 5. For more information
about the zeta-function Z(s) see [11].

In this paper we shall utilize a somewhat stronger connection (a
quantitative one) between the spectrum and the Kloosterman sums. Let us
choose a complete orthonormal system {u;(2)}j2, of Maass cusp forms in
Zo('\H, y). Each form has the Fourier expansion

(6) uy(2) = y'? ¥ 0;(n) K- 12 (2 In| y) e (nx),

n#0
where K (y) is the Macdonald-Bessel function and the g;(n) are complex
numbers called the Fourier coefficients of u;(z). Let f(v) be a test function,
smooth and compactly supported in (0, o). For N> 1 and X > 1 we set

FyX) = Y T ErX/0)S,0, 1 o),
¢=0 (modN)

Gy(X)= Y sin(ns)f(1-2s) I Q2s;— 1)(X?~ 1= X1=29) o, (1),
1/2<s;<1

where f stands for the Mellin transform of f Then we have
@) FnX)=9y(X)+0,(1)

up to the error term O (1) which is bounded by a constant depending on the
test function f alone. This is the Kuznetsov formula for I' = I'y(N) with some
undisplayed spectral terms being estimated by O (1). The main ingredients for
a proof of (7) have been manufactured in [7]. Since the arguments are almost
identical to those used in [19] we omit them here.
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Notice that the terms of %,(X) are non-negative provided [ is
non-negative, which we henceforth assume. Therefore it is again evident that (3)
implies (2) by letting X in (7) tend to co. Moreover, it is clear that in order to
improve (2) along these lines one must inquire into the oscillatory behavior of
the Kloosterman sums S, (1, 1; ¢) with respect to the modulus ¢. One expects
that the variation in sign of the Kloosterman sums may result in a considerable
cancellation of terms in & y(X) to the effect that

Fu(X) < X"

for any & > 0. This estimate, of course, is equivalent to Selberg’s eigenvalue
conjecture.

Notation. Throughout this paper we use the notation accepted in number
theory. In particular, we set e(z) = e*™* e, (z) = e(z/c), (c) is the divisor function,
(a, b, ...) is the greatest common divisor of a, b, ... and d (modc) is the
multiplicative inverse of d modulo c. If x is the trivial character to the modulus
¢ then S,(m,n;c) is the classical Kloosterman sum which we denote by
S(m, n; c). If m = n we abbreviate S, (n, n; ¢)=S5,(n;c)and S(n, n; c)=8(n; o).

Either expression f = O(g) or f < g means that (f| <oag, where o is
a suitable positive constant which may depend on the relevant parameters to
be specified occasionally. For instance, we have t(c) < ¢* for any £ > 0, the
constant implied in the symbol < depending on ¢ only. '

2. Statement of results. In practice a few exceptional eigenvalues do not
matter, but a large number of them may cause a problem. Therefore it is
important to investigate the distribution of the points s, in the segment (4, 1)
from a statistical point of view. A natural may to pursue this program is to
count all points s; with certain weights such that the larger s; is the heavier the
weight attached to s;. The following inequality, called the “density theorem”, is
suitable:

(8) Z VC{SJ'—UZ) < 1743 +x’

1/2<s;<1
where & is any positive number and the constant implied in < depends on
¢ alone. Here the points s; are counted with the multiplicity of the eigenvalues
Ay =s;(1-s5).

It has been shown in [19] and [16] that the density theorem holds true in
£ (o(p)\H, 1) with exponents ¢ = %4 and c = % respectively. In this paper
we improve these results substantially.

Tueorem 1. The density theorem holds true in % (Io(N)\ H, 1) with
exponent ¢ = 4.

Let us recall that the volume of I'o(N)\ H is equal to
©) Vv=4xN[1(1+1/p),

pIN
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thus the density theorem can be expressed in terms of the level, namely we have
(10) z Nd-ts;—l,‘i) < Nl +e

1/2<s;<1 '
or equivalently, we have

(11) #{j: s, 2> a) < N3-4a+e

for any « > % and any & > 0, the constant implied in < depending on ¢ alone
As pointed out in [15] the density theorem with exponent ¢ = 4 woulci
follow frm:n a suitable lower bound for the Fourier coefficients of the Maass cus
fonq. Until now the latter objective seemed to be more difficult than the formelr')
yet, it could have been accomplished by assuming the Ramanujan conjecture fo;
finite places. In this paper we establish the desired bound unconditionally.

THEOREM 2. Let u(z) be a Maass cus,
1EO . ) p form for the group ' = I’ ith
a multiplier given by Dirichlet’s character y (mod N) and with e‘:‘;ﬁv:;ue
A =s(1—s). Suppose u(z) is a newform. We then have
12) V le()?

sinws {u, u) > (AN)*

Jor any >0, the constant implied in > depending on & only.

This result is the best possible in either
parameter A or N. We expect, but
have not beep able to prove, that the reverse inequality holds lrug \g?tch any
€ <0. Assuming the Ramanujan conjecture L. A. Takhtadzhyan®and A. I
Vinogradov [32] showed for I' = SL,(Z) that .
= o V le()? '
(log 4)~3 (loglog 4)~3 € ——2
(loglog ) ‘zsinns(u, = < (log 2) (log log A).
Weal;?r bulfl unconditional results can be found in [30].
ow the density theorem with exponent ¢ = 4 follows di
. = tly from (12)
through (3) and (7) (see Section 4). No cancellation be Kloos
o i on between Kloosterman sums
Our main goal in this paper is to i
get further improvements for almost all
groups I'y (p). The following estimate for bilinear forms in Kl
S,,(1; pgr) is basic in this work. costerman sums

THEOREM 3. For any complex numbers «,, B, we have

(13) Y Y «,B,5,,(1; par) < |l«ll |Ble, (P, Q)

PsPgsQ

where p, q range over primes, |al, stand for the I3-
(B) respecitoely and I, 181 Jor the I*-norms of the sequences (),

(14) o,(P, Q) = (rPQ)"* (P' +r'* Qlog 3rQ) (z (r))**,
the implied constant being absolute.
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When compared with a,(P, Q) = PQr'/?t(r) obtainable directly by (3) our
result shows that a cancellation between Kloosterman sums S, (1; pgr) exists if
Q is large and P is a bit larger than Qr'/ 2 This is a good range for applications.
In the proof of Theorem 3 an exponential sum in three variables over a finite
field arises, it is estimated by means of the Riemann hypothesis for varieties
(Deligne’s theory). We should like to emphasize that building up the complete
exponential sum in three variables rests on the approximate reciprocity
formula

1 W | T ey (1)
.7 =28 (B;q)+0 !
(15) Zﬁsx,(q,p) > /a u(P;9+0(

where £(p, q) = 1, i, i2, © for (p, @) = (1, 1), (—1, 1), (=1, =1), (1, —1) (mod 4)
respectively, and g, p are the multiplicative inverses of g, p modulo p,
g respectively.

Theorem 3 will be applied to explore the exceptional spectrum of 4 in
Z (o (p)\ H; x,) through the connection (7). This is by no means immediate.
We shall apply (7) for the subgroups I'y(pq) rather than for I’y (p) and we shall
average over g to gain a flexibility on the Kloosterman sums side. On the
spectral side of (7) the positivity of terms becomes vital as well as the lower
bound (12). Combining all the described ideas we shall prove

THEOREM 4. We have
(16) z E pShJ- 1/2) & P1316+:’

p<P1/2<s<1

where the innermost sum ranges over the exceptional eigenvalues of 4 in
Z(Io(p)\H; x,,) and ¢ is any positive number, the constant implied in < de-
pending on & alone.

Theorem 4 easily implies
COROLLARY. Let 0 <6 < %5 We have
Spec £ (o (P)\ H, x,) = [#s—(7+30)8/75, )
except for at most O(P'~°*¢) primes p < P.
Observe that £% > &, so we have improved Selberg’s bound (2) for almost
all groups I'y(p).

The author acknowledges numerous discussions with E. Bombieri and S.
Sperber on exponential sums over varieties.

3. An upper bound for the I*-norm of newforms. The newforms for the
group I'y (N) were introduced by A. O. Atkin and J. Lehner [3]. Originally only
holomorphic modular forms of weight k, level N and trivial character y =1
were considered. Later W. Li [21] extended the theory to any character
y (mod N), but still restricted herself to holomorphic forms. This restriction is
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not important and her theory applies to Maass cusp forms as well. Since the
transfer has not been presented in the literature we shall give in this section
a brief survey of main concepts and results.

Let T, be the Hecke operator defined by

_ ab
?;— nﬁ{:"x{d) E [0 d]

b (mod d)
Only those T, with (n, N) =1 are of interest for the group I’y (N).

PROPOSITION 1. If (n, N)=1 then T, acts in %,(I'y(N)\ H, X), it is

:ounded and y (n)-hermitian, ie. {T.f, g> = x(n){f, T,g). For (mn, N) =1 we
ave

Tm T:i = E I(d) TI‘NN,ML
d|(m,n)

. In particular, the operators T,,, T, commute. Clearly, they also commute
with the Laplace-Beltrami operator A. Consequently, there is a basis in
e (I" o(N)\ H, x) of Maass cusp forms which are common eigenfunctions of all
T, with (n, N) = 1. ‘

For p|N the Hecke operator is defined by

1
Wom % B b].
\/}_? b (mod p) P
Clearly, U, acts on Z0(I'o(N)\ H, ) and commutes with T, for (n, N) = 1.
But U, is not hermitian, nor even a normal operator. Therefore, in order to
complete the diagonalization through U p one must split up the space
Z,(I'o(N)\ H, x) properly. First observe that if % is a character to the modulus
M and v(z)e £, (o (M)\ H, ) then v(dz)e £, (I'o(N)\ H, x) whenever dM|N.

This follows from
[d 0][0( ﬁ]_[rx Bdl[d 0
01)ly 6| |yd a][o 1]‘

Now let Z4(I'o(N)\ H, x) be the subspace of £, (I',(N)\ H, x) spanned by
forms of type v(dz), where v(z) is a Maass cusp form on I’ o (M) of character
x (mod M) with M < N, dM|N and v(z) is a common eigenfunction of all the
Hecke operators T, with (m, M)=1. Let %, (Io(N)\H, x) be the or-
thogonal complement to (I, (N)\ H, x), so

‘QO(‘FO(N)\H' x) = ‘gu!ﬂ(FO(N)\Hv Z)GB-TMW(FD(Nj\H' X)-

Clearly, fhe operator T, with (n, N) =1 maps £4(I'((N)\ H, ) into itself
because it commutes with the operator

d 0
Bd=[0 l] for d|N.
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into itself because it is y (n)-hermi-
Consequently, T, maps L ([o(N)\ H, ¥) into itse
tian. Therefore, there exists a basis in L (I’ 0 (N)\ H, x) of Maass cusp forms
which are common eigenfunction of all T, with (n, N) = 1. These cusp forms

are called newforms of level N. .
In the Fourier expansion (6) of a newform u(z) the first coefficient does not

vanish, so it is customary to normalize newforms by setting ¢ (1) = 1. Then the
following happens:

PROPOSITION 2. A normalized newform u(z) on I'4(N) is an eigenfunction of
all U, with p|N of eigenvalue ¢ (p).

Finally, let us look back to the space Lo (Fo(N)\H, ). A Maass cusp
form u(z) on I'y(N) of character y (mod N) is called on oldform if u(z) = v(dz2),
where v(z) is a newform on some proper overgroup I'y(M) of a .character
x (mod M) with M < N and dM|N. In this case we say that u(z) is Pf level
M and divisor d. The following result is true, though it is not obvious:

PROPOSITION 3. Loa(lo(N)\ H, ) is spanned by oldforms.

One of many profits from splitting the space of cusp forms into newforms
is the multiplicativity of the Fourier coefficients.

PROPOSITION 4. Let u(z) be a normalized newform of level N and character
x. Then the Fourier coefficients satisfy

an empem) = Y x(d)e(mn/d®) for (mn, N)=1,
dl(m,n)
(18) o(p)e(n) = e(pn) for p|N and all n.

Now we are ready to prove Theorem 2. We assume that u(z) is
a normalized newform and will estimate its I>-norm. By Proposition 4 we have

lememl < Y lo(mn/d®)

d|{m,n)
for all m, n. Hence, letting
Lxy= Y n'leml*

1€nsx

we deduce that
)< LY m) (Y lo(mn/d®))

mn<x dj{m.n)

< XY o{m, M)~ 3, letmn/d”
di(m,n}

mnsx

< ¥ c@dd -t Y (k. D)&D ek

d<x kl€x/d
ST Y tn~'2le@m)?,

nsx?
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where

T(x)= ) t@d'<(Y d')* <(log3x)* and

d=x d=sx
tn) = “z_" t((k, D) < cle)m?

for any £¢>0 and some c(¢)>0. In this way we obtain the following
inhomogeneous inequality for L(x): '

(19) 2 (x) < c(e) (x*log 3x)2 L(x?).

On the other hand, we shall evaluate L(x) by means of the Rankin-Selberg
zeta-function

Lu®u; w) = i le(m)>n=>.

Here the series converges absolutely in Rew > 1. It is known that L(u®u, w)
has meromorphic continuation to the whole complex w-plane and it satisfies
a certain functional equation (inherited from that for the Eisenstein series). The
point w=1 is a simple pole with residue

_4 Quw
" mvol(I'\ H)

In the half-plane Re w > § there are no other poles. By a standard application

of the convexity principle of Phragmén-Lindelof it follows from the functional
equation that

sin mts.

w—1)Lu®u; w) < (A1|w|N)*R

in Rew > 4, where 4 and the implied constant are absolute. Hence one infers
that

(20) Rx'? < L(x) < Rx'/?

for x > (AN)®, where B and the implied constants are absolute. Inserting (20)
into (19) we obtain R < (AN)* and conclude that

vol(I'\ H)
21 u,u ——(ANY}
1) Cu, u) € =2 (AN)
for any £ > 0, the implied constant depending on & alone. This completes the
proof of Theorem 2.

4. Proof of Theorem 1. Define
QN)= ¥ NWTUR QYN)=  FT NS,

1/2<s;<1 1/2<sy<1

where s; ranges over the exceptional points for I'y(N) (counted with multi-
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plicity) and Z* means that the sum is restricted to those j for which u;(z) is
a newform of level N. By (3), (7) and (12) we deduce that
Q*(N) < N**t %, (N?) = N1 *¢(F y(N})+0(1)) < N' **log2N.
Hence by (2) and Proposition 3 we obtain
QN < Y ¥, NWmua

dM|N ujof level M
and divisor d

< Y MTINQ*(M)<N Y Mtlog2M < N'* %,

dMIN dMIN
completing the proof of Theorem 1.

5. Sums of Kloosterman sums. In this section we shall estimate the
bilinear forms

A, (P, Q)= Y ) %Py, (1; par).
psPq=sQ 4
It will be clear that the hypothesis that p ranges over primes is important and
the same hypothesis about g is imposed for convenience. First we reduce
o, (P, Q) to

AXP, Q= LY B8, (15 pgr)
P=P q=<Q
(p.g)=(pg.2r)=1

up to the error term O(llall Bl (P+Q)t(r)) by means of Weil’s estimate 3).
Here the Kloosterman sum factors as follows:

S, (1; par) = S, (ar; p) S (7; ar),

where ;-, p stand for the multiplicative inverses of gr, p modulo p, gr
respectively. The Kloosterman sum S, (m, n; p) can be evaluated in terms of
Gauss sums (see [25]).

LemMA 1. We have S, (m, n; p) = 0 unless mn = 12 (mod p), in which case

@2) Sy, (m, 7 p;=e,((§)+(§))cos (4?‘),,

where ¢, = i»""/2" is the sign of the Gauss sum.
In particular, we obtain

(23) Sy, (ars p) = 28;:(9;)005 (%q—r)p”’-

Next by the quadratic reciprocity law

G)-4C)
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and by the “reciprocity” formula

+

SRS

1
— (mod1)

o R

we infer that

— r 4np
S,,(ar; p) = 2¢} (;) E) cos (f)p”%o(p”z(pqr)‘ 4,

Sy, (15 par) = 24(;) E) - (4%)” Y28 (5 qr)+ 0 ((par) 21 (1)),
o P, = .t) 12 E 415 =,
2.0=2 L 6()r T g (2)eos() 63 a0

(p.@)=(pg.2r)=1
+O(lll 181 (P+Q)z(r)).

For notational simplicity we introduce
K(n;c)=e.(2n)S(n; c).
Then by Cauchy’s inequality we obtain
|2, (P, Q) < 4 |lall P*2 B} (P, Q)+O(llal Bl (P+Q)z(r)), where

2

2,pP0=Y | % 3,(;—‘)“&; an| .

aspP q=Q
{ar)=1 (g.2ar)=1

a ranges over all integu?rs and g over primes. Notice that we have dropped the
factor &2; this can be Jusliﬁed by splitting the summation over g into classes
modulo 4 and changing B, accordingly. We shall prove

LemMmA 2. For any complex numbers f, we have

12, (P, Q)| < 881> (PQr+Q°*r*?log 30r)(z (r)**.

We have
g" (P’ Q] = ZZ ﬁﬂn Bfiz lezr(P)s where
q1.925Q
(9192.2r)=1
BpexP)= ) ( z )K(ﬁ; 4.1 K(@; q,7).
aspP 142
(a,2rq1q2)=1

If g, =g, =q we apply Weil’s estimate giving
(24) |Bger (P)| < 4 Pgrz*(r).
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Now consider g, # q,,50 (q,, g,) = 1 because g, g, are primes. In this case we
complete the sum by a Fourier technique (see (3.14) of [17] for example) getting

QQIG:I‘{P) — z bk@nq,, (h], where

|kl <q1qzr

a ah
= K(a; q,r)K(a; q,r )e( )
() MMEM (@ q,1K(@; q; )(‘h‘i‘z 4, 4,7

by, = P/q,q,r and 2|hb,| < 1 for h #0. For the complete sum we shall prove

LEMMA 3. Let (q,, 4;) = (4145, 2r) = 1. We have
|€ quaor (W] < 44, g5 (B, 1122 (T (D))

Since for (c,, ¢,) = 1 we have K(n; ¢, ¢;) = K(né,; ¢,) K (né,; ¢,) we find
that €,,,,.(h) factors as follows:

r

ECararr (h) = (q )9,, (hd, ) Doy (—h3, ) 8,3, 33, h), where

192

x\ [cx
2,0= Y K(x; q)(—)e(—),
x {(mod gq) q q
* cx
&,@ b, c)= Y Klax;r)K(bx;r)e - )
x (modr)
LeMMA 4. If q is odd prime we have
(25) 12, (01 < 24.
Proof By Lemma 1 we obtain

2,0= T* Sy (y+2+7,¢:9)

¥y (mod g)

5 4nz
N b ** y+2+y)+(£))cos (—),
sq 1 y(n§d q) (( q q q

where Y** means that y is restricted to the primitive residue classes modulo
g such that the congruence (y+2+Jy)c = z? (modg) is soluble in z.
If ¢ =0 (modg) then

oo ()L s () (D)
E )’(mzc:‘dﬂ( q y# -1 (modgq) q q

whence 9,(c) = —&,4"% If ¢ #0 (modg) then

2= (00,5 (5)
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Here y # —1 (modg), so we may change z = (y+ 1)t getting

5 oI 5, Zcos(&":-l-)—f)=8(2£, 2; q)-n_(*?"’),

y2=c¢ (modg)
y# —1 (modg)

whence

1 c ) ¢ -1
0 2.0= 3ot (§)see.204(0) ()]

Now the result follows from Weil’s estimate for the classical Kloosterman
sums.

We proceed to estimating the sum &, (a, b, ¢) of modulus r. This can be
reduced to sums of prime power moduli by means of the factorization

8.(a, b, c)=é,,(a,b,cF3)é,,(a, b, crl)
valid for r = r r, with (r,, ry) = 1.
LEMMA 5. If r=1* with a > 2, | prime, | }2ab then
27 1€, (a, b, o)l < 4(c, N2 r32 ().
Proof If 1 ¥2n we have (see [33])

K(n;n)= (;-') P2 [14 (r)e(47")+ 1].

&.(a,b,c)= (?)r[S(Za—Zb, c;r)+x,(r)S(2a, c; r)

Hence

+x4(r)S(=2b, ¢; )+ 5(0, c; )]

and (27) follows by (3) (or directly by explicit computation of the Kloosterman
sums).

LeMMA 6. If r=2* with > 1 and 2 ) ab then
(28) |€,(a, b, c)] < 4(c, N2 r2(r).
Proof. Similar to that of Lemma 5.

LEMMA 7. If r is prime, r ¥ 2ab and r|c then

(29) &,(a, b, C)=5¢brz—(ﬁ)r-—r—-l,
r

where 6., =1 if a= b (modr) and 8., =0 otherwise.
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Proof We have

&.(a,b,c)= Z' K (ax; ) K (bx; r) = r # (a, b)—(r—1)?,

x (modr)

where 4" (a, b) is the number of points on the curve
az(y+1)? = by(z+1)?

over F*.1If a = b (mod r) the curve consists of the line y = z and the hyperbola
yz = 1. There are r—1 points on either component and 2 points on the
intersection. Thus 4 (a, b) = 2r—4 and (29) follows. If a # b (modr) then all
points except (—1, — 1) are parametrized by by = azu?, y+1 = (z+ 1)u, where

b
u#0, 1, b/a and u? # b/a. Thus A (a, b) = r—3—(aT) and (29) follows.

Now it remains to estimate &, (a, b, ¢) for r prime with r ¥ 2abc. To this
end we shall appeal to the Riemann hypothesis for varieties. Deligne’s
celebrated work [6] does not automatically supply the estimate. It reduces the
problem to computing certain l-adic cohomology groups. The complexity of
the latter in the general case is formidable. Recently A. Adolphson and S.
Sperber [1], [2] succeeded in carrying out the computation of cohomology
associated with exponential sums for Laurent polynomials. Their results are
quite explicit (expressed in terms of the Newton polyhedron) but unfortunately
some hypotheses about the polynomial fail to hold in the case of our sum.

E. Bombieri [4] found ways to go around cohomology by exploiting a bit
more than the Riemann hypothesis from Deligne’s profound theory, namely
the invariance of valuations of roots under the Galois conjugation. In many
cases some ad hoc estimates for averaged sums may provide an adequate
information about the number and magnitude of the roots (see the survey
article of C. Hooley [13] in which special sums in two variables are con-
sidered). We shall apply similar ideas for sums &, (a, b, c) in three variables. We
take advantage of Kloosterman sums coupling in &, (a, b, ¢) when estimating
the second moment by duality principles.

We set

fx) =x+24x7", f(x, ) =afX+bf(y), Flx,y,2= &, yz+cz"
and consider the sum

S, (F)= ):Z; V(F(x, y 2)),

x.y,26F g

where F_ is the field of ¢ = p” elements and Y is a non-trivial additive character
of F,. Thus for g=p we have S,(F) = &,(a, b, ¢).

LemMA 8. If p 4t 2abc we have
(30) zr IS, (uF)* < 32¢*.
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Proof. For ueF; we have
S,wF) =% Z N@OY(uz+cz")= Y Y n@Oy(ultz+cz™Y),
teFq :E}'. teFq 3&!‘;
where N(t) is the number of points on the curve f(x, y) =t over F} and
(31 nM)=N@E—q 'g—1)*=q"" Z ut) 33 ¥ (uf(x, y).
xyel’q
Thus for any complcx numbers 4, we have
Z A, S, (uF) =Y n(r) Z;A W (u(tz4cz7h).
uef'q 1eFg u,z€
By Cauchy’s inequality we obtain |S|> < AB, where

A=Y@, B=Y |3 Ay(tz+ez )

eFy teFg u,zeFg
By (31), Plancherel’s theorem and Weil’s esnmate for Kloosterman sums we
obtain
=g X, l):Z';lP(uf(x MIE<q™" L IS@; gl <16(g—1)q.
ueFg x.ye ueFg

Next we have

B=g ZZZZ Ay, W cuz™  —cuy 27 %)

=q ZZ A, 2 ¥ ((w*—u)2)
=q ZZF Ay Ty — qIZ A <29 3 AP
oy seFy

Setting 4, =§q (uF) we deduce (30) by combining the above inequalities.
Now we appeal to the theory of the zeta-function

I*(F,t) = exp( Z Sn (F) t%/n).

n=1

B. Dwork [9] proved that I*(F, I) is a rational function,
XF,n)=[](1—-w;n",
i
say, where the w; are distinct complex numbers from the cyclotomic field Q ({,).
P. Deligne [6] proved the Riemann hypothesis asserting that
lmjl 2 pm 1!2;

where the m, are non-negative integers, and E. Bombieri [4] proved that the

number of roots wf‘ counted with the multiplicities |d;| is bounded by
a constant independent of p.
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In our case Theorem 2 of [4] yields
Yid) <17,
i

It remains to estimate the weights m;. Evaluating (d"/dt")log L* (F, t) at t = 0
we get

S,(F) = =Y.d; .
i

Besides the Riemann hypothesis Deligne proved that under Galois conjugation
the roots do not change weight. Let 0 <u<p and let w;, denote the
conjugation of w, under the automorphism of Q((,) over @ which raises {, to
the power (%. Then the w;, are roots for S,(uF) with |w,| = p™/? and

5 [Bd0hf = T IS,WPP< 3 18,6P° < 32"

O<u<p O<u<p

by Lemma 8. Suppose there are roots of weight > 4. Let d,, ..., d, be the
multiplicities of roots of the highest weight. As in (5.1) of [4] we infer from the
above inequality that

(p—1)(d?+ ... +d}) <32,
so p < 33. We conclude that for p > 33 all roots have weight <3 and that
IS, (F)l < 17*3 g2,
In particular, we have
LeMMA 9. If pi2abc then
(32) |€,(a, b, o)) < 1713 p32,

Here the restriction p > 33 is not necessary because the result is trivial for
small p. The constant 173 can be reduced but this is not worth the effort. It is
easy to show that

ISP < Y IS(z; 9)* = 4 —29—1.

Collecting together Lemmas 5-7 and 9 we get

Lemma 10. If (r, ab) = 1 we have
(33) |&,(a, b, c)| < (c, N*2r¥2(z(r)**.

Next we obtain Lemma 3 by Lemmas 4 and 10. Then by Lemma 3 we
infer that
(34) |Bg,q0r (P)| < 4r(P+q, g, 1" log3q, g,7)((r)**

as long as (q;,49;) =(q,9,,7)=1. From (24) and (34) we conclude
the assertion of Lemma 2. Finally, by Lemma 2 we complete the proof of
Theorem 3.
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6. Proof of Theorem 4. If {u;(z)} is an orthonormal basis of Maass
cusp forms in Z(Fy(p)\H,yx,) then the system {u~'?u;(z)} with
u=[Iy(P):Ty(pg)] < g+1 can be completed to an orthonormal basis of
Maass cusp forms in & (Iy(pq)\ H, x‘,). From this observation we infer that

(@+1)7"9,(X) S G,y (X) = F,(X)+0(1)

because the terms in ¢ ~(X) are non-negative, see the formulas prior to (7). We
sum over p, g with P<p<2P, 0 <g<2Q and get

(0g0)"' T 9,(X) <Y z(pqr)t‘f(%)s,,u; par)+PQ

P ar

< X2 (P2 4144 Qlog 3rQ) (¢ ()° + PQ

< (P' R+ QR4 (log X)***+ PQ

by Theorem 3. In the above r ranges over integers with R < r < R and R is
given by POR = X. We choose Q = P'/® and X = P° giving

63 Y 3 lg(WPPSTID < PUS(log P

P<p=2P 1/2<s;<1

Here the g;(1) are the first Fourier coefficients of u,(z). We can assume that the
u,(z) are newforms because the old forms on I'y (p) have level 1, so they are not
exceptional. Then Theorem 2 is applicable giving |¢;(1)|* > P~!~*. This and
(35) yield the assertion of Theorem 4.
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A matrix paraphrase of Kloosterman sums
by
D. H. LenMeRr (Berkeley, Calif.)

1. Introduction. In 1967 Lehmer and Lehmer [3] showed that there was

a strong connection between the cyclotomic periods and the ordinary
Kloosterman sums

p—1

1 Sy= 3 eXCEp (b0, 1,...,p—1)
x=1
where X = 1/x (mod p) and the Gaussian periods
I-
Zl emig™ *Mp
¥=0

where p = e¢f+1 and g is a primitive root of the odd prime p. In this paper we

exploit this connection to give a matrix paraphrase of the Kloosterman sum
and its periods.

2. Notation. Throughout the paper capital letters are reserved for ma-

trices. The matrices will be of special kind known as circulants. A circulant is an
n by n matrix of the form

ag a, ay ... Quy-3

a’_l 0‘0 al “an aﬂ-z
M=la,—, a,-, ay Qy-3

ag a, ay . ay

The matrix M depends only on its first row. To save space we will write
M as follows:

@ M = cir(ay, ay, ..., ay-1).

We number the rows and columns of M from 0 to n—1 to allow the use of

residue classes modulo n. If we denote the element in the ith row and jth
column by «;; we have

(3) Oy =aj—;
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