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Introduction. In this paper, we introduce an algorithm that leads to
a general alternating series expansion for real numbers in terms of rationals. In
particular, this algorithm is used to show the existence and uniqueness of two
alternating series expansions which are analogous to the positive series of
Liiroth, and to a modified Engel expansion, respectively. In addition, the
representation of rational numbers by means of these algorithms is inves-
tigated. Thereafter, stochastic properties of the sequence of digits in the
Liiroth-type alternating representation are studied. In particular, we solve the
Gauss-type measure problem for this expansion.

1. A general alternating - series algorithm. We first define a general
alternating series algorithm, analogous to a positive one of Oppenheim (7], as
follows:

Given any real number A, let a, = [A], A, = A—a,. Then recursively
define :

a,=[1/4,]=1 forn=1, 4,>0,
where A,., = (1/a,— A,)(c,/b,) for a, > 0. Here
bl-:bi(al,.--, al)’ Cl-=Ci(al,..., a‘)

are positive numbers (usually integers), chosen so that 4, < 1 for n > 1. Note
that A,4+, 20, since a, < 1/4, for 4, > 0.
Using this algorithm we now prove:

THEOREM 1. Every real number has unique representations in the forms

1 1 1 1 |
T P " it pug
@ lﬂ“a, (a,+1a, az+(a,+l)a,[al+1}a:12 a,

= ((@g, @ys ---» Gy, ...), say, where a,>1 (n>1), and
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P11 1 1
) e e L
(i) ot T D) 4 aF D@ +]) as

= (atb Ayy ey Qpy )9 say, where Ap+y 2 ag, a, 2 L.

Proof. Repeated application of our alternating series algorithm yields

1 b
A: A — ___1A —
ag+ A, a°+a, s 2
1 b,...b.-
=a0+L_E_+?ﬂ 1 S +{_])k—lb1 2 k 1Al.

€1€Cz - Cx—1

Now a, = [1/4,] implies 1/(a,+1) < A4, < 1/a, for 0 < A, < 1. Thus

i =(ai—A.,)(cn/b,.)<(al—a LI)(cn/an=m'+—n(cn/b,), if 0<A, <1

In particular, by setting b, =1, ¢, =(a,+1)a, for all n we obtain a,.,
=[1/4,..1> 1, provided 4; >0 for i <n. Furthermore,

Au-l-l < —

a (a,+1)...a,{a,+1) 2"

since a, > 1 for all n>1. It follows that A has a Liiroth-type alternating
expansion

-0 asn- oo,

T g, (ay+1)aya, (ag+1)ag(a+1)ay a3

=

a,= 1 (n> 1), which perhaps may terminate.
Secondly, by setting c,=a,+1, b,=1 for all n, we obtain
apsy = [1/Ap+1] = a,, provided 4;> 0 for i <n, and so

A 1/a,

@ D@D . @) © 2

-0 as n- o,

since @, > 1. Thus A has the “modified Engel-type” alternating expansion

R S S Y 1 1
=Gt TG ) a4, @t D)@ +)) ay

3

a;+y 2 a; 21 (i = 1), which also may terminate. w

In the same manner as above, by setting b, =c, =1 for all n in the
alternating-Oppenheim algorithm, we obtain the known “alternating-Sylves-

ter” expansion
1 1 1
A=agt———t—= ...,
a, a; 4a,

where ay4; > a,(a,+1); cf. [51, [9], [11].
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Similarly, by setting ¢, =a,, b,=1 for all n we obtain the “alter-
nating-Engel” (or “Pierce”) expansion

where a,,, > a,+1 (n>1); cf. [5], [9], [10], [11].
We remark here also that another suitable choice of the numbers b,, ¢,

above leads to an interesting alternating product expansion for real numbers,
which will be treated in detail elsewhere.

2. Expansions for rational numbers. As in the case of the positive Liiroth
series, rational numbers have special types of alternating-Liiroth expansions.

THEOREM 2. The alternating-Liiroth expansion ((aq, a,, a,, ...)) is periodic
or terminates if and only if A is rational.

Proof. Let\A = p/q be rational (with p, geN). Then each A4, is also
rational, with

A, =8y 1+1—a,—y(@-1+1) A,y
= an—1+l_an—l(au—l+ l){an—2+1_an—-z(an—Z'l'l)An—z}
= ..=ad,+b=p/a,

where a, be Z. Now since 0 < 4, < 1 for all n, either 4, =0 for some n, in
which case the expansion terminates, or else for every n,

A_é{l, 2 E}
q q q

and so 3k, ne N such that A, = A, .. Then the algorithm applied to A4, gives
the same successive digits as when applied to A4,, i.e. the digits become periodic.
Conversely, suppose eventually @, =, for some keN. Using the
notation '
1 1 1

X g e
°a; (a;+1)a; a,

1 1

+(=1"2 : ,
(ay+1)ay ... (@p-2+t1)ay-2 G5y

and letting o, = (a,+1)a, ... (a,+1)a, and &, = 0, +x—1/0,—1, We have

A zxn+ﬂ:{(l___1_. !

i (— 1! 1 )
(@, +1a, ... @sk—2+1)Gusk-2 Gnir-1
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H_l}k(al 1 1

LG 2t la,+1)a, a4y

(=1 1 )
+ .
“*{“,.‘Fl)“n---{“n+k—z+l}ﬂn+k—2 Uptk—1

1
+(_])2k( 3 a -”)+ ---}.
a*an
If k is even,

AL 1
PRNC a3 (I S I
-y la, (a,+Da, ay+y

(=1t 1 }( 1 1 )
+ - * I+-—+—2+ ves
“an+l)a"...{a"+i_2+1}an+k._)_ a“+k_1 ‘1* 'I*

= a rational number.

If k is odd, the expression is the same except for the last factor in round
brackets which is to be replaced by 1—1/a, +1/a5— ...
Obviously if the expansion terminates then A is rational. =

We note that for rational numbers with a finite expansion there is
a possible ambiguity in the final term, analogous to that for continued
fractions. We eliminate this as follows:

ConVENTION 3. We replace the finite sequence ((@q, @y, «-+s dn—-1» 1)) by
the sequence ((aq, @y, -.-» Qn—2, a,—,+1)) in the case a,= 1.

For the above “modified Engel-type” expansion 4 = (a,, @y, @, .--), the
question of whether or not all rationals have a finite or recurring expansion has
not been settled. However, we note:

TueoreM 4. If the expansion A = (ay, a,, a,, -..) terminates or if the digits
a; satisfy a;=a>1 for i=n+1, then A is rational.

Proof The terminating case is obvious. Suppose now a;=a> 1 for
i > n+1. Then, with the notation

1 1 1 1 1

A=t e D . T E ) @t e
we have
B "+(al+l)...(an+1}{;_(a+1)a (@+1)?a
B (=1 ) at+l| .
_X"+{a|+l}...(a"+l)a T rational.
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Note that in the special case 4 = (a+1)/(a(a+2)) for some aeN, then A has
expansion (0,a,4,4a,...). =

Once again, to eliminate the possibility of ambiguity in a finite represen-
tation we have

CONVENTION 5. We replace the finite sequence (a4, @y, ..., 4,) by the
sequence (ag, @y, ..., Gp-2, dg—1+1) in the case a, = a,-.

3. Uniqueness and order properties. In order to be able to compare finite
expansions of different lengths in size we introduce the symbol w with the
property n < w, for any ne N. We can now represent finite sequences by infinite
sequences as follows: For every 4 = ((ao, a4, ---, G,)) let a; = for j>n and
hence A =((ag, g, .-+, 4y @, ®,..)). We do the same in the case
A = (ay, ay, ..., a,).

THEOREM 6 (Uniqueness and order). Let A = ((aq, ay, -..)) # B = (b,
by, ..))or A=(agy, a,...) # B =(by, by, ...). In both these cases, the condition
A < B is equivalent to:

(i) azy < byy or (i) @zps1 > b2ns1s
where i =2n or i=2n+1 is the first index i >0 such that a; # b;.
Proof We shall use the notation

1 1 1 1 1

Ay=—— e > —_—
a, (an+1) Anvq (an+l')(an+l+1) Qn+2

for A = ((aq, a,, a3, ...)), and

1 1 1 1 1
Ay =—— : + * — e
a, (a,+1)a, aps1 (@4, +1)a,(@n+1+1)Gpsy Gni2

for A = (a,, a,, a,, ...). (Note we do not assume at this stage that A, = A4, as
defined by the algorithm.)
Now suppose (i) holds. If firstly a, < b, then
A=ay+A, <ag+1<by<by+B, =5,

in either case.
Next suppose dp, < by, n>0, in the Liroth-type case. Since a, > 1,
n>1, we have

1 1 1 1 1

e ke el . + N
Gzn (Gan+1)a2n Gan+1 @20+ 1)020(az0+1 + 1) 2041 G242

Az =

1 1 1 1
) (e
Azn az,+1 (az.t Dazp(@zn+1+1)azn+1 @2n+2 Ap+2+1

1 ( 1 ) |
>—(1-— = ;
Aap a;,,+1 a;+1
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Strict inequality holds above, since we use Convention 3 to eliminate the case
A = ((ay, ays --., aan, 1)). Also,

, 1 1 ( 1 ) 1
2n g__ I_ — e Q i
a3, (aza+1)az,az., zpi1+1 dzn

Thus again A5, > 1/(az,+1) = 1/b,, > Bj,, and the result A < B now follows
from

1 1 1 1
A=ay+————————4 ... —
°"a, (a,+1)a, a, @ +1)ay ... @za-y +Daze—y

1 1 1 1
B:a0+_— B’Zn'

a,_(a,+l)a, E; (a,+1)ay ... (azp—1+1)az,—;
Note that if b,, = @ then B3, = 0, and the result remains valid in this case. The
result is proved in a similar fashion if (i) holds.

For the other expansion, if a,, < b;,, n > 0, the fact that a,., > a,,n 2 1,
implies that

1 1 1 1 1
- - + : -
az, (az,+1) a3,y (@za+ 1@z, 41+1) @242

r
2n —

1 1 1 1
= 1— + 1—- + ...
ﬂzu( azﬁ") (azn+l)(ﬂzn+|+l)az..+z( a2n+2+])

1 1 1
5 — (1~ = ,
ag,.( a;,,+l) azn"‘l

since a, > 1 for n > 1, and by observing Convention 5: we use this in order to
eliminate the possibility that

A= (a()v Ayyonny Aan, a1n+1)| An+1 = Q2ns

as this implies that

o1t 1 _ 1
h azs Gz.+1 az, B az,+1 '
Also
; 1 1 ( 1 ) 1
o & ——— 1- — . £—.
azn (02n+1)02u+1 aZn+1+1 Qzp
Thus A%, > 1faz+1) > 1/by, > Bs,. It now follows from
1 11 A2

" (a4 1) . (@ + 1)
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L 11, B
a, (a,+1) a, To(ag 1) .. (age-g +1)
thatt A < B. The case (ii) is similar again. m

4. Stochastic properties of the sequence of digits. We now focus on the
Liiroth-type expansion (1) for an irrational number xe[0, 1] = I, and define

1 1 1
4, (%) (@, (X)+1)a, (%) ap-1(x)
1 1
e ) g, 0 a1 a0
1 1
(a,,(x)+l)a,,(x) (az(x)+l]az(x] a, (x)

Then the sequence (b,,{ : }),,E,;, is a sequence of real random variables defined on
I and satisfying the recursive relation

1 B 1
i1 (Ane1+1)Gnsy

2 b,(x) =

+(_1]H—1

(3) by = neN.

nt

We first prove

TueoreM 7. The digits a,(+), neN, are stochastically independent and
identically distributed random variables with respect to Lebesgue measure A, with

1
k(k+1)
Proof. We first consider the sets

ila, = k)= (ke N).

Lok, = {x€l: a,(x) =k, ..., a,0x) =k},
where k,, ..., k,e N. Then we have
Loy = X2 @3 (%) = kg, ooy 0,00) = Ky Gpsa (X) = Ky}
= U Tukstbors-

kieN
Also
; . 1 1 +
kikz.kokrsy = 3% x_]‘_"_(kﬁ—l)kl k_z
(=1 !

+ : + som
ky(ky+1) oo kpsy (ks +1) Kpisy

where k,.3, k.43, ... Tange over N}

1 1
&= {x. X = E—m Y, .V'th.“k.-n}'

2 - Acta Arithmetica LV. 4
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Thus Iy, 4, = (m,, M,] or [m,, M,), where

; 1 1 1
mr(Mr) = mm(max]{k-“(k—_'_—l)—k'k——f
1 1 1 K2

N (=1 1
k1) kg (k-1 +1) K

1 1 1 1
w0k & T e k,(k,+1)}'

Therefore we get

A{xel: ay(x) =kyy..nh @,() = kpoy, Gri 1 (%) = k.})

1
- ,Ez,,w”“-"") - E\,k(k+l)kl k,+1) ... k (k,+1)
L 1
- il;[l ki(kf'l'l]‘

Repeating the same argument we see in general that the value

£ 1
A({xel: ay(x) =Ky, .oes Qpep-1 () =k }) = Em
does not depend on neN for any reN, ij,...,i,€N, and the proof is
complete. m

Further, following the same reasonings as in [3] and [4], relations (2) and
(3) and Theorem 7 allow us to consider the random system with complete
connections (for short RSCC) below:

) {(, By, (N, Po(N)), u, P}

where

u(x, J*:):1 2

n_u(n+1)'x, P(x,n) = = (xe[0, 1], neN),

_*
(n+1)
and P,(N) denotes the power set of N.

Let us now associate with each real-valued function f defined on
I = [0, 1] the following two positive numbers:

S () =S (x3)

Xy —X3

[flo=suplf ), Ifly= sup
xel xy#xz¢l
Then the set L(I) of all real-valued functions defined on I for which |f}; < o
i =0, 1, is a Banach space with respect to the norm || 1]} = |flo +1f];- We noW
prove:
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THEOREM 8. The system (4) is a RSCC with contraction in the sense of
Norman, and its Markov operator is regular with respect to L(I). (Cf. the
definitions in [2], [6].)

Proof. Since

d d
—P(x,n)=0, —u(x,n=— neN,
dx

— <0

& I

the system (4) is a RSCC with contraction according to Norman'’s definition
given in [6] (see also [2]).

We further show that the associated Markov operator U is regular with

respect to L(I) (see Theorem 3.2.23 of Grigorescu and Tosifescu [2]). This
means that we have to prove the existence of a point xo€(0, 1) such that

lim |0, (x) =gl = 0,

n—+oo

for any x € I, where g, (x) denotes the support of the measure Q"(x,")and @ is
the transition probability measure of the associated Markov chain (see [23;

p. 31).
If x is arbitrarily fixed in I, then by defining recursively

(5) Xy =X, Xp+1 = %_%xns HEN!

we have x,€(0, 1). Then letting n — oo in (5) we find x, = 3, which was to be
proved. m '

An immediate consequence of Theorem 8 is the fact that, on account of
Theorem 3.4.5 of Grigorescu and losifescu [2], the RSCC (4) is uniformly
ergodic and that there exists a limit probability on B;. It is this limit
probability that we shall identify in the following statement.

TueoreM 9. The limit probability of the RSCC (4) is identical to Lebesgue
measure M. ‘

Proof. We shall show that
1
6) [Q(x. B)A(dx) = A(B),
0

for all BeB,, where Q(-,*) is defined by
Q(x,B)= Y Plx,n.
wromeB

In fact it suffices to prove (6)‘only for B, = (0, u], where u ranges over the
rationals of (0, 1].
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Let us fix u,€(0, 1]. Then the solutions ne N of the inequality

n+1—x<u
nn+1) = °

are
o —u.)? _
n> [l o + /(1 —to)” +4u (1 x)}Ll, xe(0, 1].
2ug
Let
) n+l—x
n0=n0(x)=mln{neN: mguo}, xe(0, 1].
Thus
1 1 1 1 1
) x, (0, ugl)dx = ( ———)dx = dx.
£Q( o) g u;%{x)n("'l'l) oMo (%)
Moreover, since
— — 2 —
®) ! Uo+/(1 —ug)* +4uy (1 9 1
U 2u, Ug

we may find x, such that

=g+ /(1 —ug)* +4ug (1 —xg) _ [L]

2u, Ug

and therefore obtain u, = (n,+ 1 —Xx,)/(no (1, +1)). Then, by further equalities
like (7), we get

A Ll 1 1
gnn+ldx+£nn—0dx=n0+lx°+;;(l-—xo)
ne+1—=x,
=t "X _ = 4(00, uo]).
noing 1) o7 A0 vl

This is what was to be proved. =

5. The Gauss-type problem. Let us consider the r-th rank remainder of the
Liiroth-type alternating series representation (1):

_ 1 _ 1 ) 1 +
T a0 (a,(0+1)a,(x) apii(x)

Also, let u be an arbitrary nonatomic probability measure on B;. Set

ra(x)

©) Fp(x) = Fp(x, ) = p(rp+1 < X)
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for any ne N u {0} = N,, xel. Then we plainly have F,(x) = ([0, x]). Since
0 <rpses <x if and only if
1 1 |

- o S N
Gpi1 (Gner+1)a,4y n+1

we may consider the Gauss equation

1 1 1
S )

Assuming that F, exists and is bounded (ie. u has a bounded density), it
follows by induction that F,, ne N, exist and are bounded too.
Then the derivative operation transforms (10) into

v = 1 i l___—.—l
(11) Fre1(9) = gsmn“(s fu+1)")’
for any ne Ny, xe[0, 1]. By writing\ F, (x) = f,(x), ne N, x€[0, 1], relation
(11) becomes

1 1 1
(12) f,.+1(x)=JEZNI.(]._H)L(;*!-(,-J,,,)")'

Therefore f,.; = Uf, where U denotes the Markov operator associated to the
RSCC (4). Then

(13) F,(x) ='} U'fo(u)du, neN,,
0

where f, is given by the equality f,(x) = Fo(x), x€[0, 1].
Now we are ready to solve the Gauss-type measure problem for the
Liiroth-type alternating series representation:

CoroLLARY 10. If Fye L([0, 17), then there exist two positive constants
¢ and q <1 such that for each x€[0, 1], neN, we have

(14) plr, <x)=(1+0,9"x,
where 0, = 0, (n, x) with |0, < c.

Proof. We have
1 1
Ufo = [ fo(x)A(dx) = _!.'Fi,(x)dx = Fq(1) = 1.
0

Thus, on account of Theorem 8, Theorem 9 and Lemma 3.1.22 of Grigorescu
and losifescu [2], and on writing V=U-U®, we get

Ufo(x) = U= fo(x)+ V" fo(x) = 1 +0p(n, X)q",
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where 0 < g < 1 and |0,] < ¢ for ¢ > 0. Then (14) follows from (9) and (13) and
the proof is complete. w

Finally, we remark that the independence of the digits a,, neN, with
infinite mean value allows us to apply the various extended classical limit
theorems to this case.

Acknowledgement. The authors are indebted to the referee for helpful
comments, and for pointing out an incorrect deduction in the original draft.
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ACTA ARITHMETICA
LV (1990)

Uber die zahlentheoretische Funktion o (n)

von

‘Dierer WoLKE (Freiburg i. Br.)

1. Einleitung und Ergebnisse. Das mittlere Verhalten der Funktion
om=Y1 (pprim)
pin

ist sehr gut bekannt. Fiir geN gilt

N
(L) Y @'(m)=x Y, Ry(nlnx)(nx)~/+0(x(n x)"V Y(lnlnx)*"Y).
nEXx =0

Dabei ist N beliebig aus N, Ry, ist ein Polynom vom Grad g, die R;, (j = 1)
sind Polynome vom Grad < g—1. (Fiir N = 1 s. Hardy und Ramanujan [3].
Fiir beliebige N s. Delange [2], Théoréme 2. Hier wird die von Selberg [7]
angegebene Methode benutzt. Fiir eine ausfiihrliche Darstellung s. Ivi¢ [4], Ch.
15.) Mit Hilfe der Dirichletschen Hyperbelmethode erzielte Saffari [6] eine
Verschirfung von (1.1). Fiir ¢ =1 lautet sein Ergebnis

o g
(12 Y o) =xlninx+Bx—x [ e mrgds

+0 (exp(—c(in x)** (Inln x)~*/%)).

Unter Annahme der Riemannschen Vermutung kann nach Saffari der Fehler
sogar durch O(x*?(In x)13) abgeschitzt werden. Es scheint, als ob die zu
erwartende Schranke O (x'/2*%) mit der Hyperbelmethode nicht erzielt werden
konnte. Kolesnik und Straus [5] untersuchten mittels Integration iiber die
erzeugende Dirichlet-Reihe die Summen )’ 1. Sic deuteten an, daB unter
nE=xwn)=k
Annahme der Riemannschen Vermutung Fehlerglieder der Ordnung O (x
erreicht werden konnen. Dies Verfahren soll hier auf das erstgenannte Problem

angewandt werden. ;

1!2+z)

SaTz 1. Sei geN. Notwendig und hinreichend fiir die Giltigkeit der
Riemannschen Vermutung ist die asymptotische Formel

Y oi)=x Y  Ri(nlnx)(nx)~/+0(x"*")

nEx 0<j<(1/2)Inx

(fiir jedes & > 0).
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