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Thus by (14) and (13)

2 [(1 —¢)eilog2x]

n(x) > 5 E ;Il_'logg{xrltl —&}} > 116‘—’“ —e)cylogax _ '116-7‘“ —e)ci(log2) !
h=1 :

for x > xi. By choosing & = 1/100 the proof is completed.
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The average order of d,(n)
over integers free of large prime factors

by
Ti1 Zuo XuaN (Beijing)

1. Introduction and statement of results. Let us define p(n) as the largest

Prime factor of n>2, p(1)=1, and let

Y%, 0= Y fln,
nEx,plr)ysy

Where f'is an additive or a multiplicative function. Recently, in [1], [2], Alladi
Sstablished asymptotic formulas for ¥ (x, y) when f= p and [ = w, respec-
lively, where u(n) is the Mébius function and w(n) denotes the number of
distinct prime factors of n. In [9], [10], Ivi¢ established asymptotic formulas for
¥ r{x, y) when f = p? and f = Q—w, respectively, where Q(n) denotes the total
Qumber of prime factors of n.

In [11], we estimate ¥ (x, y) for f = d, where d(n) denotes the divisor
Unction.

The purpose of this note is to estimate ¥ (x, y) for f = d,, where d,(n)
denotes the number of ways n can be written as a product of k factors, in
Particular d,(n) = d(n).

Let ¥(x, y) denote the number of positive integers not exceeding x, all of
Whose prime factors do not exceed y. Let the “Dickman function” ¢ be defined
for 4 > 0 as the continuous solution of the equations

ug'(w) = —eu—1),

O0su<l,
u>1.

In 1951, Hua [8] established the asymptotic relation

log,u 1
(1.2 o(u) = cxp{—"(k?g“"'loglu_' £ logu +0(@))}‘

Where log,u = loglogu. (1.2) is also due to de Bruijn [3], who actually proves
2 stronger result.

In the sequel, we write systematically u = logx/logy. The following is
Proved in [11]:
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THEOREM A. For any fixed ¢ >0 and
(1.3) x>3, exp{log,x)’**}<y<x,
we have uniformly
12 0% (u/2) ( (1) (log(u+1)))
dn=——‘P’x, logy| 1+0{ - |+0| —— | |
e, = B e ¥ O Poan 1+ logy
where &E(u) is given by (2.1) below.

To give a clearer impression of Theorem A, in [11] we also point out the
following corollary.

CorOLLARY A. For x, y satisfying (1.3) we have uniformly
Y d(n) =2-+ o (x, y)logy.

n<x,p(m)<y

In the present note, the following result is proved.
THEOREM 1. For x, y satisfying (1.3) and for k = 2 fixed we have umform’y

_ (2r)*~ D12 gk (u/k) .
n&x,%njﬁ y i) = K2 (& (ufk))*~ D72 g(u)?(x’ y)(logyy*

% (1 +0(1)+0(1L("+ l))).
u logy

where the constant implied by “O” depends on k and e.
COROLLARY 1. For x, y satisfying (1.3) and for k = 2 fixed we have ungrorm’)'

Y, dy(n) = kORI P (x, y)logy) !
n<x,pln)Sy

Moreover, it was proved in [4] that

1 log, x ”2))
o gl

where

* [l d
a9 [o(S)"

It was proved in [10] that
o(n)  (2logx\'? log, x x
Q(n)—w(n) 1 log, x\! ’2)) 1
; — 0 —_—
(1.7 ; p(n) @ " (( logx) Ex p(n)
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o gt e
] Z oo~ oex) ) 2p
In [12], we proved that
s 902, o)) 5 L
] n&xp(n) sz l+o lng ugxp(")’

t10 o3 (1o () 3 1
) Lm0 ] )20

Where o(n) denotes the sum of all divisors of n, and ¢(n) is Euler’s totient
Unction. Using Theorem A we proved in [11] that

THEOREM B.
) % 2 ”zx(logx)’*""{logzx)”"'d(x)(l+O(10§3x)).
n€<x 2
Where

logx \ dt
Alxy= j (ZIOgI) T

CorOLLARY B.

Z ﬂ"_) = (2logx/logax)!/2(1 + Ologsx/log2x)) _1___.
n<xP(n) nexP(M)
In the present note, using Theorem 1, we prove the following
THEOREM 2.
Z dpk(("n)) _ 2(1 == l).M-nl’l —-1)/2 k —kﬂx(logx)ME— l],’d(logz x)(k -1)/4
n<x
logyx
X Ak(x)(l + O(Ingx))’
Where
logx \dt
A0 = I (klogt) ¥
COROLLARY 2.
y 2+ d,(n) = k(@logx/logzx)! (1 + Ollowss/loz) § _—_ 1
nEx p(ﬂ] na;xp(")

2. Several lemmas

LemMa 1 [5]. For any fixed ¢ > 0 and x > 3, exp{(log,x)****} < y < x, we

have uniformly
¥(x,y)= xg(u}(l +0(103121T;1]))
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LEMMA 2. Uniformly for u>1 and 1 <t < u*® we have

% tz " 13 . t
) ou—1) = e(u)exp{:f(u)—;«: W+ € (u)}(l +0 (;))

um [2 £3 t
(ii) e(u+1t)= Q{u)exp{— tﬁ(HJHEﬁ'(u}—EC"(u}}(l +0(;)),

where £ = &(u) denotes the positive solution of the equation
2.1) “ é=ut+1 (u>1)

and Eu) =0 (u < 1), and satisfies

(2.2) ¢(u) = logu+log,u+ O(log, u/logu), u— 0.

Proof. From Corollary 2 of [6], we know that as u— co,

' 1/2 W) o5 _
(2.3) o(u) = (l+0( ))(‘E( ])i exp{y—uﬁ(u)+«j}e;s Ids}.
0

Hence
5 Wy 1/2
(24) Q(( )‘) (1+0(ﬁ))(£éf‘(u)ﬂ) exp{F(u, t)},
where '
Su—1
(2.5) F(u, t) = ué)—-@u—éu—-t)+ | i

&(u)
By (2.1) we have
i)
(2.6) aF(u. )=&u—0)+u—t)u—t)—u—1)&'u—1t)=Eu—r).

So

2

b T a’F .
53 (u, ) = —&'(u—1), 33 (u, 1) = &"(u—1),

By (2.1) we have also

g &1 L
2.7 §'(u) = ut—u+1 u(l +O(‘:(")))’

wen €(E-28+2)-2 1 :
(2.8) ') = — @ —u) N _2(1+O('f(u)))

" (u) = O(1/u).

*
iFl, 0= =& =1
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Therefore, for 1 <t < u?3, we obtain

9) F(u, t)—té(u)——f(uH rf”(u)JrO(It )
Obviously
Q10 (&' @—1)/& @)"? = 1+ 0(t/u).

From (2.4), (2.9) and (2.10), part (i) of Lemma 2 is derived at once. The
Proof of (ii) is similar. Moreover, it is easy to deduce (2.2) using (2.1). This
Completes the proof of the lemma.

Lemma 3. Uniformly for u>1 and 0 <t <1 we have

(i) e(u—1) = o(w)e“(1+0(t/u)),

(ii) o(u+t) = p(u)e™"*“(1 +O(t/u)).

Proof. (i) is a slightly stronger form of [2, Lemma 3]. By (3.11) of [2] we

ave
e(u—t) t & u—1)\!2
o(u) _(1+o(u§(u)))( &' (u) ) exp{F(u, t)},

Where F(u, t) is given by (2.5). We now obtain (i) as in the proof of Lemma 2.
¢ proof of (i) is similar. This completes the proof of Lemma 3.

N LemMMA 4. Let k > 2 be a fixed integer. Uniformly foru>1and 1 < t < u*
e hape

ol oo -<(Gholsar))
*g(l (k ll)‘)‘f ( )}(1+°(])+0(;_:))'

@ ofir)e(oeta) = Qrtmne(o)
G- R o))

Proof. For simplicity put & = u/k, t = t/(k—1). From (2.4) and (2.9) we

haye

by 8822 (140(5)+0(3)) (5
B il 7@

2 3
xexp{té(ﬁ)"%é’(ﬁ)+%§"{m}-
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Similarly
D _ (1oL o)) (EEED)
(2.12) i +(1+o(m)+o(mI3 o
o 3 e
xexp{—rc(ﬁ)—z(k_”é g (u)}.

It is easy to prove that

ey L@, (1)
(2.13) ( 7@ ) =1 5 é'(ﬁ)+o(u2 ;
Similarly
%) SR £ WY
(2.14) ( 5B ) =+ 5@+ ola)

Part (i) of the lemma then follows from (2.11)(2.14), when we note that
t2/u* < 1ju+t*/u® for 1 <t <u?3. Part (ii) is proved analogously.

Lemma 5. (i) Uniformly for u > 2k and 1 <t < u/k—1 we have

LIS I T2 Y (LWL BPCIRY. S T L. W _ﬁgﬂ
G e =1 e\ /)P T2 RN

(i) Uniformly for u>= 2k and 1 <t <(1—1/kju—k we have

2
ool S0}

Proof We use i, t as in the preceding proof. By (2.3) we have

ou+t) N\ /& u+e)\**
(2.15) = —(1+0(;))(m—) exp{F(u, —1)},

where F(u, t) is given by (2.5). By (2.7) we obtain, for 1 <t <a-1,
Ca-0\" _ ip (@D
&'@ ’

&'(@)
From this and (2.4), (2.15) we have

< 1.

2.16) “’(:(—uf;)(%)_ <uexp{F(a, ) +(k—)F (@, —1)}.

Let
G(u, t) = F(@, t)+(k—1)F (@, —[)+4t2& (@).
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By (2.5) and (2.6) we have

%G(u, 1) = {@—n)—L@+it)+e'@,

Whence
P G, 1) = —E—t)———E@+1)+E @)
FG(N’ t}_ _é(u_t)_k_l (“ *

From (2.7) and (2.8) we know that &'(u) > 0, £"(u) <0, for u > 1. Thus é'_(u) is
decreasing, and &'(@)—¢&'(ii—1) < 0. Hence (9%/0t*)G(u, t) < 0. From this we
Obtain, for ¢t > 0, (8/0t)G(u, t) < (3/dt)G(u, 0) =0 and G(u, t) < G(u, 0)=0.
Part (i) of the lemma now follows from (2.16). Part (i) is proved analogously.

LEmMMA 6. Let
log.x
L, = exp{(%lcogxlog2 x]”z(l —2—g—3—)},

log, x

1
L= exp{&log:n:.logzx)”2 (1 +2 —oﬁ)}

log,x
Then for any fixed A >0,

1 1 X _ —A 1 o
¥ i 1+ Y —‘P(—p, p) =(1+0(og™*x)) Y ‘P( ‘p)-

n<x péxp L|(p€f.2p P

Proof. See (4.3) of [10].
3. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. In the proof, we do not use Theorem A, which
Atually will be proven again. We proceed by induction. Let d,(n) = 1. In the
Case k = 1, Theorem 1 is trivial. Now assume that Theorem 1 is true for k—1
(here & > 2); we shall show it is also true for k.

When x!/¢*1 < y < x, the conclusion of Theorem 1 becomes

Y dy(n) < P(x, y)logx)'.

n<x,pln)sy

Obviously, this is true. Now suppose y < x'/**!. We have
3.1 Dx):= Y dm= Y Ydi-1(9)

nEx,pin)<y n<x,pin)<yd|n

= Y Y d-100)
y<m<x/yk pim)<y d€x/m,p(d) <y
+ ) Z di-1(9)
m<y < x/im,pld) <y
+ X Y,  &-109)

xfy*<mEx,pm)Sydsx/m,pld) sy

=D,+D,+D,, say.
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Put

1 logm
Wyi=——u———|.
k—1 logy

By the inductive hypothesis we have

(21'5)(,‘ —-2)/2

k=1 -1
RIS S ) A e

y<m<xjyk,p(m)<y (ﬁ'(w,,)}‘* .

X (1 +o( : )+ o('°g(“+ ”)).
u—logm/logy logy

We first éstimale the sum on the right-hand side of (3.2). We shall use the
following elementary partial summation identity:

(3:3) 2 ab,—b.-)= ¥

M<n<N M<nEN-1

(32) D,

b"{G,,"—ﬂ,.+ I)+aﬂb.~_a“+ 1 bM!

where M, N are positive integers. By (3.3) and Lemma 1 we have -

¢~ (wpm !

34 = T

( ) Z Jf‘méxg‘-p(mﬁy(6,(‘“»:))(*—2”2
_ ' wm™t ¢ (W )m+1)7!
™ sl ”{(:’(wm))‘*'z'“_ (€ O )72 }

+0(e(u—k)+ O(Q"“ (H)u"‘“”‘).

By Lemma 3(i) we have

_ 1 log(u+1)
(3.9) e(Wmsy) = a(wm)(1+0(5 Togy ))
and by (2.7) and (2.8) we have
" — Flw llog(u+l)
(3.:6) &/ Wmar) = &( .)(1+0(m—logy ))

Using Lemma 1 and (3.4){3.6) we have

_ e(logm/logy)e* ™! (W) ( (1Og(u+ IJ))
(3.?) Z - y<m<x|y* m({f(wm)){k—z:lfz \1 * O IOgy

+0(9(“—&))+0(g"(:Tq:)uU‘-2HZ)‘

It is easy to prove that the summatory function on the right-hand side of (3.7) 1
decreasing. Using Theorem 8.2 of [7, Ch. 5] we see that the sum on the
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tight-hand side of (3.7) is

u—k k=1 = k—1 _ifu— 1 .
58 logy | f:(‘;(f— w)(/((‘;i _‘:;ﬁ“—m)l At 0(‘-" ' (;T_IT) 3 m)'

Now we estimate the integral in (3.8). We have

k u—k

ulk
=+ [ =1,+1,, say.
1 ufk

(3.9) I(u):=

o ey |

Let w= u/k—t. Then we have

u _a U t
ufk—lQ(E__!)Qk I(E+k_—l) o wk-1

NGRS

Where t, = u'/?logu. Set as before @ = u/k, t = t/(k—1). Using Lemma 5(i) and
27) we have

I, =

T < Tuﬂ‘-zuz ull? g (if)e~ WD gt < g*()u" 2.

fo to

Similarly

(i+t)e* ! (i—t) 1, )
L= ga-or i+0(3z¢ @)

By (3.9) we have
(3.10) I(u)=‘f{a(ﬁ—t]d‘_l(ﬁ+a+a(ﬁ+t)¢_l(ﬁ_t)}dt+0(%ot(ﬁ)).
t(k—2)¢" (@)

N @+ Ea-or >
Iz
(ﬁ'(ﬁit_) —Gk=2)2 (c'(ﬁ))-tt—zyz(l :Fm+0(;5))

It is easy to prove that
and we note that t?/u? < 1/u+1t%/u® for 1 <t <ty, so that Lemma 4 gives

Q@Fe* ! (@£)
€a@n"

o* (@) e — £ 1 " t(k—2)¢&" (w)
=Eapr "“’(1i3(1 (k—l)Z)‘E OF2k—1)e @

rofif)o(3)
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Therefore

I(u) - Qk(ﬁ)(é’(ﬁ))—(k—zlﬁ {2 uf o~ k12— 1))2g (@) dt
0

+ O(}D e~ ki2¢— 128 @) dt)

to

1 WL SalP0 2 W . Lo
+0 £ ;+u_3+y e dt |+ 0 FQ (@) |.

A simple calculation shows that

_ (2m(k—=1)\'? '@ [ 1
(3.11) I(u)—( k ) (‘f,@)‘,‘_l,,z\1+o )
Also, it follows from (1.2) and Lemma 3(i) that -

(3.12) ou—k) < t@u?, a*“(:—:—:)u”‘_z”z <g'@ut.

From this and (3.2), (3.7), (3.8) and (3.11) we have

_ (21,‘)0;.— 1)f2 Qk (ﬁ}
(3.13) Dy =" (gx(g)u—wzg(u)%"”“03}’

x (1 $ 0(1)+ o(l—"g(” ”)).
u logy

To finish the proof of the theorem it remains to show D,, D; < D u~'. BY
the inductive hypothesis we have

k—1

&) X s
DZ « mgy(cr(wn} (k—2)2 m(logy)l .

Because g(u) is decreasing, it follows from (2.7) that

D, < x(logy)““g*"(g)u‘*_z”z.
By (1.2) we have
(3.14) 0" (ufk) = k**+ownesg(y),

Thus we have D, < D,u”*. Now we turn to the estimation of D,. By th¢
inductive hypothesis we have

Dy < x(logyy)™*

xfyk<mEx

m=*(¥(m, y)—¥(m—1, y)).
Using (3.3) we have

Dy < x(logy)=* 3 ¥(m, y)m™? < x(logy)* ™' e(u—k).

xiyk<m=x
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Using (3.12) we have D, < D,u~'. This completes the proof of Theorem 1.
Corollary 1 follows from Theorem 1 and (3.14).

4. Proofs of Theorem 2 and Corollary 2. The proofs of Theorem 2 and
Corollary 2 are similar to those of Theorem B and Corollary B (cf. [11]).
Therefore we shall only sketch the proof of Theorem 2.

Let Z = exp{(logxlog,x)'/?}, Z, = Z'/*°, and Z, = Z'°. Using Corollary
I, Lemma 1 and (1.2) we have

@n Y 4 _ Y d_"w_)+0(x2“) =G,+0(xZ™*%), say.

n<x p(”) B nEx,Zy<pm=Z; p(ﬂ)
Further we have
k
@2 6,=Y +¥Y =Y - Y dm

pmlln  prmln  Zi<pszaP m<x/ppm<p

oY - %

d(m)) = G,+0(G,), say.
z1<p<Z P m<xip2,pm<p

Using Theorem 1 and (2.7) we obtain

2, ol ul™ 2 g% ((u, — 1)/k)(logp)* "
TR s po(u,—1)

x sv(?f, p)(l +0(1°g3x)),
p log,x

Where u, = logx/logp. To further estimate G, we write simply

@9 G= Y + ¥ + X

z,-cp&L,_ Li<p=<La L2<P£Z:

Where L, and L, are defined in Lemma 6. By (3.14) we have

uy* V72 M (uy — 1)/K) _ o +Otus/logus)

43) G,=

= Gy;+Ga2+Ga3, say

e(u—1)
Similarly for G,;, G,3 we obtain analogously to (4.3) of [10]
4.5) Gay, Gz3 < (log™4x)G)a,

Where A is any fixed positive number. Using Lemma 3(i), (2.1), and (2.2) we
obtain

(4.6) Gzz = 2(& = l}.M-,nll. i l);‘Zk—k.‘Z x(logx}:i(k - l}f‘(logzx)(k— 1)/4

()1 voopn)
x;...gs;,, p’ " k log,x
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Further we have

logp ,(u logp ,(u log,x
@7 logp *(.J_) _ logp .(*x 25
L.<§€Lz pz ¢ k z,qu:szz Pz & k 1+0 logzx
_ %logz , (logx logsx
=JTe (mogz)‘f"‘”(”"(@;))-

As for G, we have similarly G, < (log,x/log,x)G,. Combining (4.1}4.7)
completes the proof of Theorem 2.
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B,-sequences whose terms are squares
by

J. CiLLERUELO (Madrid)

Introduction. A sequence of integers 1<a, <a,<... is called
a B,-sequence if the sums a,+a; are all different. Sidon asked for a B,- sequence
for which a, increases as slowly as possible. There is a trivial argument which
allows us to construct such a B,-sequence with a, < k* for all k. For a long
time, this bound was the best known one until Ajtai, Komlos and Szemereédi
[1] showed, with an ingenious method, the existence of a B,-sequence such that
a,/k® - 0. However, this result is far from Erdds’ conjecture on the existence,
for each ¢ > 0, of a B,-sequence with a, < k*** [3].

In this paper we deal with B,-sequences of squares, in other words,
sequences of integers 1 < a, < a, < ... where the sums a +aj are all distinct.

Again, thereiis an easy argument giving us, for each ¢ > 0, a sequence such
that g, < k*** and where the sums a? +aj are all different. Apparently, there is
not a simple argument to improve this result.

The purpose of this paper is to remove ¢, using a new method developed
by Javier Cilleruelo and Antonio Cérdoba in [2].

THEOREM. There exists a sequence A = {a,}, a,<k?, such that the sums
al+a? are all different.

Proof. Consider the sets I; = {a; 6/ <a < 6 +6/2, a=2 (mod 6)} and

I= (J I;- The sequence A will be given by the set I except for a few numbers
j=1
that we have to eliminate: 4 = ) 4;, 4;,< ;.

=1
Construction of A,. Once we have chosen the 4, j < k, we shall pick the

members of A, from among the elements of I,, with a few exceptions, to avoid
k

a4 b2 = 2 4+d?, with a,b,c,de | 4,
=1
LemMA 1. Let a, b, c, d belong respectively to I,, I,, I, I,,, where k > j
>m> 1, and suppose a*+b* = c*+d*, a>c>d>b. Then we have:
(1) k=J.
i) If | <m, k/2 < m < 3k/4.
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