On certain character sums

by
Masao Toyoizumi (Kawagoe)

1. Introduction. In [3], Williams showed that for any positive integer n,

$$
\begin{equation*}
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a^{n}=O\left(p^{n+1 / 2} \log p\right) \tag{1}
\end{equation*}
$$

where p is an odd prime and $\left(\frac{a}{p}\right)$ is the Legendre symbol.
Let q be a positive integer and let χ be a non-principal primitive character modulo q. For any positive integer n, we put

$$
S_{\chi}(n)=\sum_{a=1}^{q-1} \chi(a) a^{n} .
$$

The aim of this note is to prove the following two theorems, which enable us to improve the estimate (1).

Theorem 1. Assume that $\chi(-1)=1$ and $n \geqslant 2$. Then

$$
\left|S_{\chi}(n)\right|<C_{1}(n) q^{n+1 / 2}
$$

where

$$
C_{1}(n)=\frac{2 \zeta(2) n!}{(2 \pi)^{n+1}} \sum_{1 \leqslant m \leqslant n / 2} \frac{(2 \pi)^{n+1-2 m}}{(n+1-2 m)!}
$$

and $\zeta(s)$, as usual, denotes the Riemann zeta function.
Theorem 2. Assume that $\chi(-1)=-1$ and $n \geqslant 3$. Then

$$
\left|S_{\chi}(n)\right|<\left(C_{2}(n)+|L(1, \chi)| / \pi\right) q^{n+1 / 2}
$$

where

$$
C_{2}(n)=\frac{2 \zeta(3) n!}{(2 \pi)^{n+1}} \sum_{1 \leqslant m \leqslant(n-1) / 2} \frac{(2 \pi)^{n-2 m}}{(n-2 m)!} .
$$

We note here that

$$
C_{1}(n)<\frac{\zeta(2) e^{2 \pi} n!}{(2 \pi)^{n+1}}, \quad C_{2}(n)<\frac{\zeta(3) e^{2 \pi} n!}{(2 \pi)^{n+1}} .
$$

These estimates are useful for large n.
By Theorem 2 and the upper bound for $L(1, \chi)$ due to Pintz [2], we have
Theorem 3. Let χ be a non-principal real primitive character modulo q, and assume that $\chi(-1)=-1$. Then for any $\varepsilon>0$ and any positive integer n,

$$
\left|S_{x}(n)\right|<\frac{1}{2 \pi}\left(1-\frac{1}{\sqrt{e}}+\varepsilon\right) q^{n+1 / 2} \log q
$$

if $q>q_{0}(\varepsilon, n)$.
As immediate consequences of Theorems 1 and 3, we obtain the following two corollaries, which give us an improvement of (1).

Corollary 1. Let p be an odd prime, and assume that $p \equiv 1(\bmod 4)$. Then for any integer $n \geqslant 2$,

$$
\left|\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a^{n}\right|<C_{1}(n) p^{n+1 / 2}
$$

where $C_{1}(n)$ is defined in Theorem 1.
Corollary 2 . Let p be an odd prime, and assume that $p \equiv 3(\bmod 4)$. Then for any $\varepsilon>0$ and any positive integer n,

$$
\left|\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) a^{n}\right|<\frac{1}{2 \pi}\left(1-\frac{1}{\sqrt{e}}+\varepsilon\right) p^{n+1 / 2} \log p
$$

if $p>p_{0}(\varepsilon, n)$.
2. Proofs of Theorems 1 and 2. Let $B_{k, x}$ denote the k th Bernoulli number corresponding to χ in the sense of Leopoldt. Then it is known that (cf. [1], p. 11)

$$
S_{\chi}(n)=\frac{1}{n+1}\left(B_{n+1, \mathrm{x}}(q)-B_{n+1, \mathrm{x}}(0)\right)
$$

where

$$
B_{n+1, x}(x)=\sum_{k=0}^{n+1}\binom{n+1}{k} B_{k, x} x^{n+1-k}
$$

Thus we get

$$
\begin{equation*}
S_{x}(n)=\frac{1}{n+1} \sum_{k=0}^{n}\binom{n+1}{k} B_{k, x} q^{n+1-k} \tag{2}
\end{equation*}
$$

Moreover, let $\tau(\chi)$ be the Gaussian sum defined by

$$
\tau(\chi)=\sum_{h=1}^{q-1} \chi(h) \exp (2 \pi i h / q) .
$$

Then it is also known that
(3)

$$
|\tau(\chi)|=|\tau(\bar{\chi})|=\sqrt{q}
$$

Where $\bar{\chi}$ is the character conjugate to χ.
First, we prove Theorem 1. Since $\chi(-1)=1$, it follows from (2) that
(4) $\quad S_{x}(n)=\frac{1}{n+1} \sum_{1 \leqslant m \leqslant n / 2}\binom{n+1}{2 m} B_{2 m, x} q^{n+1-2 m}$.

By noting that for any positive integer m,

$$
L(2 m, \bar{\chi})=\frac{(-1)^{m+1} \tau(\bar{\chi})}{2(2 m)!}\left(\frac{2 \pi}{q}\right)^{2 m} B_{2 m, x}, \quad|L(2 m, \bar{\chi})|<\zeta(2),
$$

from (3) we have

$$
\left|B_{2 m, x}\right|<\frac{2 \zeta(2)(2 m)!}{(2 \pi)^{2 m}} q^{2 m-1 / 2}
$$

Therefore, from (4) we obtain

$$
\left|S_{\chi}(n)\right|<\frac{2 \zeta(2) q^{n+1 / 2}}{n+1} \sum_{1 \leqslant m \leqslant n / 2}\binom{n+1}{2 m} \frac{(2 m)!}{(2 \pi)^{2 m}}=C_{1}(n) q^{n+1 / 2}
$$

as required.
Now, we show Theorem 2. Since $\chi(-1)=-1$, it follows from (2) that

$$
\begin{align*}
S_{\chi}(n) & =\frac{1}{n+1} \sum_{0 \leqslant m \leqslant(n-1) / 2}\binom{n+1}{2 m+1} B_{2 m+1, \chi} q^{n-2 m} \tag{5}\\
& =B_{1, x} q^{n}+\frac{1}{n+1} \sum_{1 \leqslant m \leqslant(n-1) / 2}\binom{n+1}{2 m+1} B_{2 m+1, x} q^{n-2 m} \\
& =B_{1, \chi} q^{n}+S, \text { say. }
\end{align*}
$$

By noting that

$$
\begin{align*}
& B_{1 . \chi}=\frac{i \tau(\chi) L(1, \bar{\chi})}{\pi} \tag{6}\\
& |L(1, \chi)|=|L(1, \bar{\chi})|
\end{align*}
$$

fom (3) we have at once

$$
\begin{equation*}
\left|B_{1, \chi} q^{n}\right|=\frac{|L(1, \chi)|}{\pi} q^{n+1 / 2} \tag{8}
\end{equation*}
$$

Since for any positive integer m,

$$
L(2 m+1, \bar{\chi})=\frac{(-1)^{m} i \tau(\bar{\chi})}{2(2 m+1)!}\left(\frac{2 \pi}{q}\right)^{2 m+1} B_{2 m+1, \chi}, \quad|L(2 m+1, \bar{\chi})|<\zeta(3),
$$

we find that

$$
\begin{equation*}
|S|<C_{2}(n) q^{n+1 / 2} \tag{9}
\end{equation*}
$$

in the same way as above. Then our assertion follows immediately from (5), (8) and (9).
3. Proof of Theorem 3. In the cases $n=1$ and $n=2$, our assertion follows from (3), (6), (7) and the result of Pintz [2], because $S_{x}(1)=q B_{1, x}$ and $S_{x}(2)=q S_{x}(1)$.

If $n \geqslant 3$, our assertion follows easily from Theorem 2 and the result of Pintz [2].

References

[1] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Stud. 74, Princeton Univ. Press, 1972.
[2] J. Pintz, Elementary methods in the theory of L-functions VII, Acta Arith. 32(1977), 397-406.
[3] K. S. Williams, A class of character sums, J. London Math. Soc. 46 (1971), 67-72.
department of mathematics, toyo university
Kawagoe-Shi, Saitama 350, Japan

Indépendance linéaire
 des valeurs des solutions transcendantes de certaines équations fonctionnelles II

par

Jean-Paul Bézivin (Paris)

0. Introduction. Dans cet article, nous poursuivons l'étude commencée dans [2] des propriétés arithmétiques de certaines fonctions entières transcendantes.

Bien que tout ce que nous allons montrer soit valable pour un corps quadratique imaginaire, nous nous bornerons à considérer le cas du corps \boldsymbol{Q} des nombres rationnels, la généralisation à un corps quadratique imaginaire étant immédiate. Nous notons $\overline{\boldsymbol{Q}}$ une clôture algébrique de \boldsymbol{Q}.

Soit $u(n)$ une suite récurrente linéaire d'éléments de \boldsymbol{Q}, c'est-à-dire une suite d'éléments de \boldsymbol{Q} ayant une expression de la forme

$$
\begin{equation*}
u(n)=\sum_{i=1}^{s} P_{i}(n) a_{i}^{n} \tag{1}
\end{equation*}
$$

avec P_{i} appartenant à $\overline{\boldsymbol{Q}}[x]$, non nuls, et les a_{i} à $\overline{\boldsymbol{Q}}-\{0\}$. Nous supposerons dans tout cet article que $u(n)$ est non nul pour tout entier n.

Nous notons $A(n)$ la suite définie par
(2)

$$
A(n)=u(0) \ldots u(n)
$$

Les fonctions qui nous intéressent sont les fonctions de la forme
(3)

$$
f(z)=\sum_{n=0}^{\infty} z^{n} / A(n) .
$$

Nous supposerons aussi dans toute la suite que la suite $u(n)$ est non dégénérée, c'est-à-dire qu'aucun des a_{i} n'est une racine de l'unité différente de 1 , et de même pour les quotients a_{i} / a_{j}.

Sous ces hypothèses, la fonction $f(z)$ est une fonction entière de la variable Complexe z, et nous nous intéressons aux propriétés d'indépendance linéaire sur \boldsymbol{Q} de f et de ses dérivées aux points de \boldsymbol{Q}.

Les fonctions $f(z)$ satisfont à certaines équations fonctionnelles, voir [2], doù le titre. L'étude faite dans [2] concernait le cas où les polynômes P_{i} figurant dans l'expression (1) étaient constants.

