On the greatest prime factor of \(\prod_{k=1}^{x} f(k) \)

by

P. Erdős (Budapest) and A. Schinzel (Warszawa)

In memory of Trygve Nagell

Let \(P(n) \) denote the greatest prime factor of \(n \). T. Nagell was the first to give a non-trivial lower bound for \(P(\prod_{k=1}^{x} f(k)) \), where \(f \) is an arbitrary irreducible polynomial of degree greater than 1. In [5] he proved

\[P(\prod_{k=1}^{x} f(k)) > c(f, \varepsilon) x^{(\log x)^{1+\varepsilon}} \text{ for all } \varepsilon > 0. \]

In 1951 the first named author improved considerably the above inequality by proving that for \(x > x_0(f) \)

\[P(\prod_{k=1}^{x} f(k)) > x(\log x)^{c(f) \log \log x} \quad \text{with } c(f) > 0. \]

In the same paper [1] he has also claimed that

\[P(\prod_{k=1}^{x} f(k)) > x \exp((\log x)^{\delta(f)}) \quad \text{with } \delta(f) > 0. \]

Our efforts to reconstruct the proof of the latter estimate have been unsuccessful. Instead we have proved the following

Theorem 1. Let \(f \in \mathbb{Z}[x] \) be an irreducible polynomial of degree \(l > 1 \). There exists an absolute constant \(c_1 > 0 \) such that for \(x > x_1(f) \)

\[P(\prod_{k=1}^{x} f(k)) > x \exp(\exp(c_1(\log \log x)^{1/3})). \]

In the sequel we shall denote the \(n \)th iterate of \(\log \) by \(\log^{(n)} \), the number of solutions of the congruence \(f(k) \equiv 0 \pmod{m} \) in the interval \(1 \leq k \leq x \) by
\(q_n(m) \), the number of divisors of an integer \(n \) in a set \(S \) by \(d(n, S) \) and we shall put:

\[
q_n(m) = \varphi(m).
\]

\(c_1, c_2, \ldots, x_1, x_2, \ldots \) will denote positive constants, in general depending on \(f \).

Theorem 1 is an immediate consequence of the following two theorems.

Theorem 2. Under the assumptions of Theorem 1 the number \(N(x) \) of positive integers \(k \leq x \) such that

\[
d\left(f(k), \left\lfloor \frac{x}{2^r} \right\rfloor \right) \geq 1
\]

satisfies for \(x > x_2 \)

\[
N(x) > \frac{x}{\log x} \exp(c_3 (\log x)^{1/3}),
\]

where \(c_3 \) is an absolute constant.

Theorem 3. Under the assumptions of Theorems 1 and 2

\[
P(\prod_{k=1}^{x} f(k)) = x \exp\left(\frac{\log x}{x} - N(x)\right)
\]

for \(x > x_3 \).

The proof of Theorem 3 follows closely the proof of (1) given in \([1]\). It is clear from this theorem that in order to prove (2) it would be enough to show that

\[
2x \frac{\varphi(m)}{m} \geq \varphi_4(m) \geq \frac{1}{2} \frac{x}{m} \varphi(m).
\]

Lemma 1. If \(x \geq m \) we have

\[
2x \frac{\varphi(m)}{m} \geq \varphi_4(m) \geq \frac{1}{2} x \frac{\varphi(m)}{m}.
\]

Proof. We have for \(x \geq m \)

\[
\frac{x}{2m} \varphi(m) \leq \frac{x}{m} \varphi(m) \leq \varphi_4(m) \leq \frac{x}{m} \varphi(m) + \varphi(m) \leq \frac{2x}{m} \varphi(m).
\]

Lemma 2. If \(z \geq 2y, y > y_1 \) we have

\[
2 \log \frac{\log z}{\log y} \geq \sum_{\gamma < p \leq x} \frac{\varphi(p)}{p} > \frac{1}{2} \log \frac{\log z}{\log y}.
\]

Proof. We shall use the prime ideal theorem in the form

\[
\sum_{\gamma < p \leq x} \varphi(p) \log p = y + O(\gamma^{-c_y \sqrt{\log \gamma}})
\]

(see \([4]\), Satz 190).

By partial summation we obtain

\[
\sum_{\gamma < p \leq x} \varphi(p) \log p = \log \log y + c_4 + O(\gamma^{-c_y \sqrt{\log \gamma}}),
\]

hence

\[
\sum_{\gamma < p \leq x} \varphi(p) \log p = \log \log y + O(\gamma^{-c_y \sqrt{\log \gamma}})
\]

and since for \(z \geq 2y \) the main term dominates the error we get the desired bounds.

Lemma 3. Assume that \(f \) is primitive. If \(P \) runs through all integers composed of \(n \) distinct prime factors we have for \(y \geq y_2 \)

\[
\sum_{\gamma < p \leq x} \varphi(P) \leq \frac{c_5 \log y + c_6 y^{n-1}}{(n-1)! \log y}
\]

Proof. Since \(\varphi(m) \) is multiplicative, we have \(\varphi(P) \leq P \). On the other hand, for the number \(\pi_n(x) \) of positive integers \(\leq x \) composed of \(n \) distinct prime factors we have the inequality (see \([3]\))

\[
\pi_n(x) \leq \frac{c_7 x \log x + c_8 y^{n-1}}{(n-1)! \log x}
\]

Hence

\[
\sum_{\gamma < p \leq x} \frac{1}{y} \pi_n(y) \leq \frac{c_9 \log y + c_8 y^{n-1}}{(n-1)! \log y}.
\]
Remark. The formulation of Lemma 3 and its proof have been corrected following a suggestion from G. Tenenbaum.

Lemma 4. Let \(c > 0 \), \(r = \lceil c \log_2 x \rceil^{1/3} \), \(A(c) \) be the set of all integers in the interval \([x/2, x]\) of the form
\[
pq_1 \cdots q_r,
\]
where \(p, q_1, \ldots, q_r \) are primes and for \(i = 1, 2, \ldots, r \)
\[
\exp \left(\frac{1}{2(2r + 7)} \log x \right)^{1/2r} < q_i < \exp \left(\frac{1}{2(2r + 7)} \log x \right)^{1 - \frac{1}{2r}}.
\]
The number \(N_0(x) \) of positive integers \(k \leq x \) such that
\[
d(f(k), A(c)) > 2lr! (2r + 7)^{r + 1}
\]
is \(o \left(x/(\log x)^{r + 2} \right) \).

Proof. We shall assume throughout that \(x \) is sufficiently large and without loss of generality that \(f \) is primitive. Then if \(p, q_1, \ldots, q_r \in [x/2, x] \) and \(\forall i \) satisfy the inequalities (3) we have \(p > x^{1/2} \). On the other hand for \(k \leq x \)
\[
|f(k)| < c_k x^l,
\]
hence \(f(k) \) can have at most 2\(l \) prime factors greater than \(x^{1/2} \). Therefore, (4) implies that \(f(k) \) has more than
\[
R = r! (2r + 7)^{r + 1}
\]
divisors in \(A(c) \), of the form \(pq_1 q_2 \cdots q_r \), where \(p \) is fixed.

Consider the family of sets \(\{q_1^{\alpha_1}, \ldots, q_r^{\alpha_r}\} \) (\(1 \leq \alpha \leq R \). By the theorem of Erdős and Rado [2] the family contains a \(\alpha \)-system of cardinality \(2r + 7 \). Let the common intersection of any two distinct sets of this \(\alpha \)-system be \(\{p_1, \ldots, p_s\} \), where \(0 \leq \delta < r \). Let \(s \) be the integer defined by
\[
2^s - 1 < \frac{x}{p_1 \cdots p_s} < 2^s.
\]
By the condition \(pq_1 q_2 \cdots q_r \in A(c) \) \(f(k) \) has at least \(2r + 7 \) pairwise coprime divisors in the interval \([2^{-2}, 2^2]\), each divisor consisting of \(r - \delta \) distinct prime factors all in the interval
\[
\left(\exp \left(\frac{1}{2(2r + 7)} \log x \right)^{1/2r}, \exp \left(\frac{1}{2(2r + 7)} \log x \right)^{1 - \frac{1}{2r}} \right)
\]
and all but one less than
\[
\exp \left(\frac{1}{2(2r + 7)} \log x \right)^{1 - \frac{1}{2r}}.
\]

Hence
\[
s \geq \frac{(\log x)^{1/2}}{2(2r + 7) \log 2} = s_0
\]
and
\[
N_0(x) \leq \sum_{s = 0}^{r - 1} \sum_{\delta = 0}^{s - 1} q_0 \left(P_1 P_2 \cdots P_{2r + 7} \right) \,
\]
where the sum \(q_0 \) is taken over all sets of \(2r + 7 \) pairwise coprime integers \(P_1, P_2, \ldots, P_{2r + 7} \) in the interval \([2^{-2}, 2^2]\), each consisting of \(r - \delta \) distinct prime factors of the size described above. For every such set we have
\[
P_1 \cdots P_{2r + 7} < x^{1/2} \exp \left(\frac{r - \delta - 1}{2} (\log x)^{1 - 1/2r} \right) < x,
\]
thus by Lemma 1
\[
q_0 \left(P_1 P_2 \cdots P_{2r + 7} \right) < 2 e^{2 r - 2} P_{2r + 7}^{r - 1} P_1^{2r + 7} \frac{q_0(P)}{P},
\]
and by (6)
\[
N_0(x) \leq \sum_{s = 0}^{r - 1} \sum_{\delta = 0}^{s - 1} 2 x \sum_{P_1, \ldots, P_{2r + 7}} \frac{q_0(P)}{P} \leq 2 x \sum_{s = 0}^{r - 1} \sum_{\delta = 0}^{s - 1} \frac{q_0(P)}{P}^{2r + 7},
\]
where \(P \) runs through all integers \(P \) in the interval \([2^{-2}, 2^2]\) consisting of \(r - \delta \) distinct prime factors. By Lemma 3 we obtain
\[
\sum_{P} q_0(P) \leq c_0 \frac{r - \delta}{(r - \delta - 1)!} \log 2^s \leq c_0 \frac{r - \delta - 1}{(r - \delta - 1)!}.
\]
Hence
\[
N_0(x) \leq 2 x \sum_{\delta = 0}^{r - 1} \frac{c_0 (r - \delta - 1)!}{s^{2r + 7}} \sum_{s = 0}^{r - 1} \frac{(\log x)^{r - 1}(2r + 7)}{s^{2r + 7}}.
\]
For \(s > s_0 \) we have
\[
\log s > \log (s_0 - 1) > 2r + 7 > 2r + 5 \quad (r - 1) > r - 1.
\]
Therefore, on this halfline \((\log s)^{r - 1}(2r + 7)/s^{2r + 7} \) is decreasing, since
\[
\frac{(\log s)^{r - 1}(2r + 7)}{s^{2r + 7}} < \frac{d}{ds} \left(\frac{(\log s)^{r - 1}(2r + 7)}{s^{2r + 7}} \right).
\]
Since
\[
\log s > \frac{2r + 7}{2r + 5} (r - 1),
\]
It follows that
\[
\sum_{a \geq a_0} \frac{(\log 2)^{\nu - 1}(2r + 7)}{3^{2r + 7}} \leq \int_{s_0 - 1}^{\infty} \frac{(\log s)^{\nu - 1}(2r + 7)}{s^{2r + 7}} ds
\]
and by (7)
\[
N_0(x) \leq 2x(c_9 \log x)^{2r + 7} \exp O\left(\frac{r^2 \log x}{(\log x)^{r - 1}}\right) = o\left(\frac{x}{(\log x)^{r + 2}}\right).
\]

Proof of Theorem 2. For \(k \leq x\) by (5) \(f(k)\) has less than \(c_{10} \log x\) prime factors. Thus we have in the notation of Lemma 4
\[
d(f(k), A(c)) < \left(\frac{c_{10} \log x}{r + 1}\right)^{2r + 7} = \frac{c_{10}^{2r + 7}}{(r + 1)!} (\log x)^{r + 1}.
\]
From Lemma 4 and (8) we obtain
\[
\sum k d(f(k), A(c)) = o\left(\frac{x}{(\log x)^{r + 1}}\right),
\]
where in \(\sum\) \(k\) runs through all positive integers \(k \leq x\) with \(d(f(k), A(c)) > 2r!(2r + 7)^{r + 1}\).

On the other hand, by Lemma 1
\[
\sum_{k=1}^{x} d(f(k), A(c)) = \sum_{a \in A(c)} \frac{\varphi(a)}{a} = \frac{x}{2} \sum_{a \in A(c)} \varphi(a).
\]
We evidently have
\[
\sum_{a \in A(c)} \frac{\varphi(a)}{a} = \sum_{q_1} \frac{\varphi(q_1)}{q_1} \sum_{q_2} \frac{\varphi(q_2)}{q_2} \ldots \sum_{q_r} \frac{\varphi(q_r)}{q_r} \sum_{q_{r + 1}}^{\prime} \frac{\varphi(p)}{p},
\]
where the sum \(\sum_{q_i}\) is taken over all primes \(q_i\) in the interval (3) \((1 \leq i \leq r)\) and the sum \(\sum_{q_{r + 1}}^{\prime}\) is taken over all primes \(p\) in the interval
\[
\frac{x}{2q_1 \ldots q_r} \leq p \leq \frac{x}{q_1 \ldots q_r}.
\]
It follows from Lemma 2 that
\[
\sum_{i=1}^{r} \frac{\varphi(q_i)}{q_i} > \frac{1}{4r} \log_2 x \quad (1 \leq i \leq r),
\]
\[
\sum_{r + 1}^{\prime} \frac{\varphi(p)}{p} > \frac{1}{2} \log \left(1 + \frac{\log 2}{\log(x/2q_1 \ldots q_r)}\right) > \frac{\log 2}{2} \log x.
\]
Therefore,
\[
\sum_{a \in A(c)} \frac{\varphi(a)}{a} > \left(\frac{\log_2 x}{4r}\right)^r \frac{\log 2}{2} \log x
\]
and by (10)
\[
\sum_{k=1}^{x} d(f(k), A(c)) > \frac{2}{4r} \log x \left(\frac{\log_2 x}{4r}\right)^r.
\]
Since \(r = o(\log_2 x)\), it follows from (9) that
\[
\sum d(f(k), A(c)) > \frac{x}{6 \log x} \left(\frac{\log_2 x}{4r}\right)^r,
\]
where \(\sum\) is taken over all positive integers \(k \leq x\) such that \(d(f(k), A(c)) \leq 2r!(2r + 7)^{r + 1}\).

From (11) we obtain
\[
N(x) > \frac{1}{12r!(2r + 7)^{r + 1}} \log x \left(\frac{\log_2 x}{4r}\right)^r
\]
\[
> \frac{x}{\log x} \exp \left(r \left(3 \log x - 3 \log r + 1 - \log 8 + O\left(\frac{\log r}{r}\right)\right)\right)
\]
\[
> \frac{x}{\log x} \exp \left(c(\log_2 x)^{1/3} \left(-3 \log c + 1 - \log 8 + O(\log x)\right)\right).
\]
Choosing \(c = \sqrt[3]{e}/8\) (the choice \(c = \sqrt[3]{1/(8e^2)}\) is optimal) we obtain the theorem.

Remark. If instead of the theorem of Erdős and Révész we use their conjecture \(r!(2r + 7)^{r + 1}\) is replaced throughout by \(2(2r + 7)^{r + 1}\) and the above proof for \(r = \left[\frac{1}{2} \log_2 x^{1/3}\right]\) gives
\[
N(x) > \frac{x}{\log x} \exp \left(c_{11} \left(\log_2 x\right)^{1/2} \log_4 x\right)
\]
for \(x > x_4\),
where \(c_{11}\) is an absolute constant.

We proceed to the proof of Theorem 3. Denote by \(U\) the set of all integers \(u\) of the interval \([x/\log x, x]\) for which \(f(u)\) has no prime factor satisfying
\[
x < p \leq c_{12} x, \quad \text{where} \quad c_{12} = 2c_8.
\]

Lemma 5. \(\text{card } U > x - c_{13} x/\log x\).
Proof. Clearly
\[
\text{card } U = [x] - \left\lfloor \frac{x}{\log x} \right\rfloor - \sum_{p \leq \sqrt{x}} (\varphi(p) - \frac{x}{p \log x}) > x \frac{x}{\log x} - 1 - \ln(c_{12} x) > x - c_{13} \frac{x}{\log x}.
\]
For \(k \leq x \) put
\[
|f(k)| = A_k B_k, \quad \text{where } A_k = \prod_{p \mid f(k)} p^k, \quad B_k = |f(k)|/A_k
\]
and let
\[
P \left(\prod_{k=1}^x f(k) \right) = P_x.
\]

Lemma 6. For all \(u \in U \)
\[
A_k > \frac{x^t}{2(\log x)^t P_x^{t-1}}.
\]
Proof. Since by the definition of \(U \): \(x/\log x < u \leq x \) we have for \(x > x_s \)
\[
\frac{1}{2} \left(\frac{x}{\log x} \right)^t < |f(u)| < c_8 x^t.
\]
Further, \(f(u) \) has no prime factor in the interval \((x, c_{12} x) \). Therefore by (12) and the choice of \(c_{12} \), \(B_k \) can have at most \(l-1 \) prime factors, multiple factors counted multiply. By (13) all prime factors of \(f(u) \) are at most \(P_x \), thus
\[
B_k \leq P_x^{l-1}.
\]
Hence
\[
A_k = |f(u)|/B_k > \frac{x^t}{2(\log x)^t P_x^{t-1}}.
\]

Lemma 7. Let \(u \in U \) be such that \(f(u) \) has a divisor in \([x/2, x]\). Then
\[
A_k > \frac{x^t}{2(\log x)^t P_x^{t-2}}.
\]
Proof. By the definition of \(U \) all prime factors of \(B_k \) are greater than \(c_{12} x \). Since \(f(u) \equiv 0 \pmod{d} \) for some \(d \in [x/2, x] \) we have by (12), (14) and the choice of \(c_{12} \)
\[
B_k < 2c_8 x^{t-1} = (c_{12} x)^{t-1}.
\]
Thus \(B_k \) can have at most \(l-2 \) prime factors, multiple factors counted multiply. Thus by (12) and (13)
\[
A_u = \frac{|f(u)|}{B_u} > \frac{x^t}{2(\log x)^t P_x^{t-2}}.
\]

Lemma 8.
\[
\sum_{k=1}^x \log A_k < x \log x + c_{14} x.
\]
Proof, see Nagell [6], pp. 180-182.

Proof of Theorem 3. The number of \(u \in U \) for which \(f(u) \) has a divisor in \([x/2, x]\) is at least equal to \(N(x) - (x - \text{card } U) \), hence by Lemma 5 is at least \(N(x) - c_9 x/\log x \). From Lemmata 5, 6, 7, and (8) we now obtain
\[
x \log x + c_{14} x
\]
\[
\geq \sum_{n \leq x} \log A_n > \left(x - c_{13} \frac{x}{\log x} \right) (\log x - \log_3 x - (l-1) \log P_x - \log 2)
\]
\[
+ \left(N(x) - c_{13} \frac{x}{\log x} \right) \log P_x
\]
\[
> \log x - \log_3 x - (l-1) \log P_x - c_{13} \log P_x
\]
\[
+ c_{13} (l-1) \frac{x}{\log x} \log P_x + N(x) \log P_x - c_{13} \frac{x}{\log x} \log P_x
\]
\[
> \log x - \log_3 x - (l-1) \log P_x - (c_{13} l + 1) x + N(x) \log P_x.
\]
Hence
\[
(l-1) x \log \frac{P_x}{x} > N(x) \log P_x - \log_3 x - (c_{13} l + c_{14} l + 1) x
\]
By Lemma 2 for \(x > x_\gamma \) there is at least one prime \(p \in [x/2, x] \) with \(\varphi(p) > 0 \), hence \(P_x > x/2 \). On the other hand, by Theorem 1 \(x \log_2 x = o(N(x) \log x) \).
Thus for \(x > x_\gamma \)
\[
\log x - \log_3 x + (c_{13} l + c_{14} l + 1) x < \frac{1}{7} N(x) \log x - N(x) \log 2
\]
and the inequality (15) gives
\[
(l-1) x \log \frac{P_x}{x} > \frac{l-1}{l} N(x) \log x
\]
and the inequality (15) gives
\[
P_x > x \exp \left(\frac{\log x}{lx} N(x) \right),
\]
which was to be proved.
References

Received on 21.2.1989
and in revised form on 28.4.1989