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CM-fields and exponents of their ideal class groups
by

Kuniakl Horie (Yamaguchi) and Mitsuko Horie (Fukuoka)

By an algebraic number field, we shall mean a finite algebraic extension
Over the rational number field Q. All such fields will be supposed to lie in the
COmplex number field C. Let j denote the complex conjugation of C. An
Algebraic number field k is called a j-field when k is invariant as a whole under
Jie, k! = k and when gj = jo on k for all isomorphisms ¢ of k into C. Then
4 j-field is either a totally real algebraic number field or a CM-field, namely,
? totally imaginary quadratic extension over a totally real algebraic number
leld,

Let | be-a fixed prime number. For any algebraic number field F, let Cp
denote the ideal class group of F, A the Sylow [-subgroup of Cg, kg the class
Mumber of F, and s, the order of A;. The exponent of each finite group G will

denoted by exp G. In the present paper, we shall first prove the following

THEOREM 1. Let k be a j-field; let r, m, and n be natural numbers. Then only
@ finite number of CM-fields K have the following two properties:

(i) hy/sy <m and expAg <,

(ii) there exists a sequence k =k, c k, = ... = k, = K of j-fields such that
Or each ve{l, 2, ..., n}, k, = k,— or k,/k,_, is a cyclic extension of degree .

Now, for each (multiplicative) abelian group M on which j acts, we put
M = {peM| p=p"}.
For any j-field F, we let
hi = hp/hg.

“here F* denotes the maximal real subfield of F; hy is known to be an integer.
Urthermore, as j acts on A, in the obvious manner, we can define

sr = |Ag|.

In the case | > 2, this becomes the highest power of [ dividing h and we can
Prove the following result which is more precise than Theorem 1.
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THEOREM 2. Assume | > 2. Let k be a CM-field and r, m, and n naturdl
numbers. Then only a finite number of CM-fields K have the following two
properties.

(i) hg/sx <m and expAg < I,

(i1) there exists a sequence k =k, c k; < ...
that for each ve{l, ...

We shall also have

<k, = K of CM-fields such
,n}, k, = k,_, or k/k,_ is a cyclic extension of degree |

THEOREM 3. Let k be a j-field and m a natural number. Then there exist only
a finite number of CM-fields K which are abelian l-extensions over k such that
hg/sy <m and expAg < L.

THEOREM 4. Assume | > 2. Let k be a CM-field and m a natural number:
Then there exist only a finite number of CM-fields K which are abelial
l-extensions over k such that hg/sx <m and exp Agx <L

Furthermore, in the last section of the paper, we shall give an explicit
estimate for the conductor of an imaginary cyclic field, of degree a 2-powef
> 4, whose ideal class group has exponent 1 or 2. Here, by a cyclic field, wé
mean of course a finite cyclic extension over Q. A finite abelian extension over
@ will be called an abelian field.

Throughout the paper, the notations Ry, Dy, and Dy, stand respectively
for the regulator of an algebraic number field K, the absolute value of the
discriminant of K, and the absolute norm of the relative discriminant of K ovef
a subfield k of K. If K/k is an abelian extension of algebraic number fields, the?
we write fx, for the absolute norm of the conductor of K/k.

We conclude this introduction with mentioning some results related to the
above ones. Chowla showed in [3] the finiteness of the imaginary quadrati"
fields with ideal class groups of exponent 2. This finiteness theorem has becf
extended by Boyd-Kisilevsky [1] and also by Weinberger [12] to th¢
imaginary quadratic fields with ideal class groups of any given exponent (partly
under conjectures in number theory such as the generalized Riemann hypoth-
esis), by the second author (née Hamamura) of the present paper to th¢
imaginary abelian fields F with genus numbers equal to h, (cf. [6]), and by
Earnest—-Korner [4] to the totally imaginary quadratic extensions, over a fix
totally real algebraic number field, having ideal class groups of exponent 2"
where 7 is any given natural number. It might be quite natural to ask whethef
only finitely many imaginary abelian fields have ideal class groups of exponv‘:ﬂt
equal to a given natural number. Recently a study of this problem has bee?
made by Earnest [5].

Acknowledgements. It is a great pleasure to express our heartfelt gratllud"'
to Professor K. Iwasawa who has kindly introduced us to the study in this
paper. We are also grateful to Professor Y. Morita for very important
comments.
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1. For any algebraic number field K, we let
By = {aeAy| d' =1}

and if k is a subfield of K such that K/k is a cyclic extension of degree I, then we
Put
AKH( = {aEBﬂ ata_“l_l == l}

Where ¢ is a generator of Gal(K/k). Obviously Ak, does not depend on the
choice of 6.
To prove Theorem 1, we prepare some lemmas.

Lemma 1. Let K/k be a cyclic extension of degree | of algebraic number
ﬁﬂ'ds_ Then

(i) rank By < rank A, +rank Agy,

(i)  |Bgl < |BullAxul < silAxul-

Proof. Let ¢ be a generator of Gal(K/k). Since

o'~ ) elZ[Gal(K/K)],

'€ N By < By for any element a of By. Hence the mapping
a“ - l]l - I.’

@—1)""—(1+0+ ... +
We see that a V"
ar— a€eBy,
defines a homomorphism By — B,, which induces an injection
By/Axx S By.
This proves Lemma 1.

LeMMA 2. Let K/k be the same as in Lemma 1 and let t denote the number of
Primes of K ramified for K/k. Then

IAxﬂJ < (s, '")'_l-

Proof. Indeed

-1

_ T1iBg~v B
y=1

<|By/Bx |7t ={aeByl a" " = 1}

and the righi-hand side of the above does not exceed (s, [') ~* by the ambiguous
Class number formula. '

| Al = |By/BE V"

LEMMA 3. Let k, r, and n be the same as in Theorem 1. Let
k= kﬂ c .Fcl . < k, be a tower of algebraic number fields such that, for each
Ye{l,...,n}, k, = ky—, or k/k,_, is a cyclic extension of degree |. Then

(1) ord,h,_ < (I [] r)ord,h,+ y -1y, _[1 r
v=1 v=1 i=v
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where

r,=ord,(exp4,), ve{l,...,n},
and each t, denotes the number of primes of k, ramified for k/k,_,.

Proof. For the proof of this lemma by induction on n, it suffices to prové
(1) with assuming that

ord,h, <1 T] r,]orcl,ht+"ii p=1-va—1)e, ] r.
v=1 v= i=v
Since s, < |B, |, we have, by Lemmas 1, 2,
ord, h, < r,(ord,|Ayu,_,|+ordhy )
< r,((I—1)(ord by, _, +t,)+ord by )
=r,lord b, _ +(-1)t,r,
Hence the above hypothesis implies that

n—1 n—1 n
ord b, <Ir, ("' [] r)ord b +(1=1) (Y ", [1rite,ry)
v=1 v=1 i=v

=]

v=1

ryord b +(1-1) S mve [T r.
v=1

i=y

Thus the lemma is proved.

The following lemma is a corollary of the Brauer-Siegel theorem
(Theorem 2 in [2]).

LemMaA 4. Let K range over a sequence of CM-fields such that Dy — c© with
[K:Q] bounded. Then Dy/Dy.— 0 and
log hx

loghg ~log/Dg/Dg+, i€, ——F——=—1.
log./Dg/Dy-

Proof. Let & be any positive number < 1/4. By the Brauer-Sieg¢!
theorem, there exists a positive number D, depending only on & such that
Dy*z_‘ ﬁ hx+ Rxf \<.. Dk’%"'e

if Dg. > D,. Of course
D&l—s)}l < hK RK < D&l +¢},|'2’ DK > 1.

Since DK/DK+ - Dxﬂ(ﬁ DK“‘ = Dxa-, we have

R DD y-2 < iz < Re

‘2’ Ry Ry

(DK/DK*)UZ*-Z!
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n case Dy+ = D,; we have otherwise

®) D"
hx"‘ RK

Dg.;l‘ €)/2

(Dy/Dy ) ™2 < b < 4 (Dy/Dg )1 +912,

x+ Ry

However, as is well known, 21" 2~ R,../R, = 1 or 2Z'and, as follows from the

ermite—-Minkowski theorem, the value hyx. Rg. is bounded if K varies,
Satisfying Dy+ < D,. Hence, by the hypothesis that [K:Q] is bounded, the
ove inequalities (2), (3) induce

. log hx . : log hx
liminf————2>1, limsup————==<1.
x log./Dy/Dg- x  log./Dy/Dxg-+

Therefore we obtain the lemma.
Finally we add an elementary lemma.

LeMMA S. Let K/k be an extension with |-power degree of algebraic number

felds, Then:

(i) h/s, is a divisor of hy/sg,

(i) expA, <[K:k] expAy.

Proof. Let : be the canonical homomorphism C,—Cy and N the
Omomorphism C;—C, induced by the norm map for K/k, so that

N(i(0) = &4, ceC,.

Singe [K :k] is prime to hy/s, = [C,: A;], Noi then defines an automorphism of
/4,. Hence 1 induces an injective homomorphism C,/4,— Cg/Ag and, in
Particular, the assertion (i) is proved. On the other hand,

ak:BepAx — N(1(a)*P4%) = 1, aeA,.

This proves (ii).
Proof of Theorem 1. Let K be a CM-field and assume that K has the
p’_"“.PCrties (i), (ii) of the theorem. Let u be the number of distinct rational primes
Widing Dg,. For each ve(l, ..., n}, let r, = ord,(exp 4,,), let t, denote the
?“mper of primes of k, ramified for k,/k,_ ;, and let §, = 1 or 0 according as the
Uinite primes of k,_, are ramified in k, or not. Since
t, < [ky-1:Q1(u+3,) <P 1[k:Q)(u+6,), ve{l,..., n}

ad since each r, is at most equal to r+n—yv by (ii) and Lemma 5, it follows
Om Lemma 3 that

ord, hy < a,+a,0+a,u,
wi.lh 1K 1 2 2
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and

a, = P‘(l:l (r+n—v)) ord, h,,

v=1

a,=(I—1)I"'[k: Q] z lﬂ[(r+u-i).

v=1i=vy

Note, in the above, § = 0 or 1. Therefore we see that
(4) log hy

where ¢ = (a,+a,0+a,)logl+logm.
Next, let ¢ be an arbitrary positive number < 1. By (ii), Lemma 4 implié’
that, when D is sufficiently large,

loghg > (1—¢)log,/Dy/Dg+ =

< log sy +logm < cu,

logD
so that, by (4),
(5) cu > %logDK
and, hence, u is positive. As
log Dy = log Dgy > i: logi> ulogu—u,

i=]

we then also obtain, from (4),

+1.

4c
logu <
1—e

1-¢ ;
cu > ——4—(u logu—u), ie,
This, together with (5), shows that
408[1'41:}(1—:)
logD, < ——8M—,
S 1-¢
which completes the proof of Theorem 1.
COROLLARY 1. Let k, r, m and n be the same as in Theorem 1. Then ther
exist at most finitely many CM-fields L with the following properties:

@  hfs, <
(i) L is a composite field of CM-fields which have the same property as
K in (1) of Theorem 1.

Proof. Let & be the set of CM-fields L with the above properties (i), (i?);

let A be the set of CM-fields K satisfying (ii) of Theorem ! and contained 19
some field of .&.

m and exp A, < I,
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Let us take any CM-field K in X, so that K < L for some L in .#. There
CXists a finite subset & of X containing K such that L is the composite of all
fields in &. Let I denote the maximal unramified abelian l-extension over
L and Jet © be the Galois closure of L over k. For any CM-field K’ in &, there
®Xists a tower of j-fields k=kyc ki< ... ck,=K' with each k/k,_,,
Ye{l, ..., n}, a cyclic extension of degree dividing 1. Since ¢'e Gal(Q/k}) for
Every aeGal(Q/k y) and every ve{l, ..., n}, each teGal(Q/k) satisfies

t'"EGal(Q/K’).
Hli':llt.:e, for all TeGal(Q/k),
"e (| Gal(@/K') = Gal(Q/L)

K'ey

and, by class field theory, the property exp 4, < I implies that

""" e Gal(Q/L) < Gal(Q/K),

Where K denotes the maximal unramified abelian l-extension over K. In
Particular,

a"*"eGal(Q/K) for all oeGal(Q/K).

This means, again by class field theory, that

(6) expA, < I'.

Furthermore we obtain, from (i) of Lemma 5,
hi/se < hyfs, < m.

Theorem 1, together with this and (6), shows that " is a finite set. As every
fielq in & is a composite field of CM-fields in %", . is also a finite set and the
“Wrollary is proved.

Note that, in Corollary 1, an [-extension L over k has the property (ii) if
®XpGal (L/k) < I with L/k abelian. In particular, we have

COROLLARY 2. Assume | = 2. Let r, m, and n be natural numbers. Then there
€Xist only a finite number of CM-fields L which uare abelian 2-extensions over
such that

exp Gal(L/Q) < 27, expA, <2

hy /sy <m

Proof of Theorem 2. Theorem 2 can be proved similarly as Theorem
by using Lemma 4 and the following Lemmas 6, 7, 8.

LEMMA 6. Let | > 2 and let Kfk be a cyclic extension with degree | of
CMfields. Then:

(i) rank Bx < rank A; +rank Agy,
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(i) Bkl < IB{||Agul < s¢ |Agul,
(i) Al < (s 1),
where t~ denotes the number of primes of K* ramified for K*/k* and

decomposed in K.

Proof. Noting that gj = jo on K for all o€ Gal (K/k), we can prove (i), (ii)
by a discussion similar to that in the proof of Lemma 1. Next, as in the proof of
Lemma 2, we can see easily that

|Akul < I{aeBg| @' = 1}'71.
On the other hand, by Lemma 1 of [8],
{aeBg| a® ' =1} <s I

Hence we obtain (iii) and the lemma is proved.

Just as Lemma 3 follows from Lemmas 1, 2, the next result follows from
the above lemma.

LEMMA 7. Assume | > 2 and let k be a CM-field. Let n be a natural number,
and let k=kyc k, = ... ck, be a tower of CM-fields such that, for each
ve{l,...,n}, k,=k,_, or k,/k,_, is a cyclic extension of degree I. Then

]_EI"J'",

i=v

n n
ord, by, < (I" [] rv) ord, by + 3 (1= 1)ty
v=1

v=1

where
r, = ord,(exp Ag), ' vel{l,..., n},

and each t; denotes the number of primes of k) ramified for k}/k}_, and
decomposed in k,.

LemMA 8. Let | > 2 and let K/k be an extension of CM-fields. Then the
homomorphism Ag — A induced by the norm map for K/k is surjective; i
particular, exp A, < exp Ax . If, furthermore, K has an l-power degree over K
then hi [sg is a divisor of hg/[sk.

Proof. In general, let F be a CM-field, let F denote the maximal
unramified abelian l-extension over F, and put A} = {a€ A4, ¢’ =a}. Let F

denote the intermediate field of F/F such that Gal(F/F’) is the image of

Af under the Artin isomorphism ¢: A4,— Gal(F/F). Since [ is odd,
Ap = Af x Af so that ¢ induces an isomorphism 4; = Gal(F'/F) and
jIFfoeojlF"=6"' for all 6eGal(F'/F).
Now, by class field theory, the norm map Agx — A; defines a homo-
morphism

A: Gal(K'/K)—Gal(k'/k), with Tm A = Gal(K'/k’'  K).
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Let 6 be any element of Gal(k'nK/k) and let j =jl(k nK). As K is
A CM-field, we have j'a = af. However, by (9), joj = ¢~ '. Therefore ¢ = 67,
Whence ¢ = 1. This means that k' N K = k, namely, that 1 is surjective. The first
Part of the lemma is thus proved. The proof of the last part is easy as that of

Mma 5.
2. For the proof of Theorem 3, we shall use the following lemmas.

LEMMA 9. Let n be a natural number and K/k an abelian extension of
YUgebraic number fields such that k=ky <k, < ... ¢k, =K, with each
ko, ve{l, ..., n}, a cyclic extension of degree . Let t, denote, for each
4§ . n}, the number of finite primes of k, ramified for k /k,_,. Then

i PY(1-1)t, < [K:Qlu

Where y is the number of rational primes dividing Dyp.

Proof. Note that each k,/k, ve {0, 1, ..., n}, is an abelian extension, and

te, . denote, for each prime p of k, the ramification index of p for k,/k. It then

Ollows that the number of primes of k, above p is at most equal to [k,: Q]/e, ,.
erefore, for each ve{l, ..., n},

(f—l)r;sz(e""-" _1)[k,:Q]=Z(#_ 1)

-] pv—1 ep.v P ep.v— 1 e&l.v

Where p ranges over the finite primes of k ramified in K; so that

. o 1 1 1
rYi-nr, < - < I——-—).
vgl ( ) Z Z (EP.W—I el"") ;( €p.n,

pv=1

Thi implies the inequality of the lemma, because the number of finite primes of
ramified in K is at most equal to [k:Q]u.

LemMA 10. For any abelian extension K/k of algebraic number fields,
DK”‘ ;f;[(:i k]ﬂl

Proof Let D be the relative discriminant of K/k and § the conductor of

/k. 1t is sufficient to show that D?/fiX: ¥ is p-integral for every finite prime p of

% However this follows from Hasse’s conductor discriminant formula (for the

%8¢ k = Q, see Lemma 1 of [11]; the general case can be shown quite
Similarly).

LEMMA 11. Let k be a j-field, and let K range over a sequence of CM-fields
Such that Dy— oo with K[k an abelian extension. Then

loghg ~log./Dy/Dg-.
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Proof. By Lemma 10, the assumption implies that [K : @]/log Dy —0 and
consequently that the Brauer—Siegel theorem can be applied to our sequence
K. The rest of the proof is almost the same as the proof of Lemma 4 (for th
case k= Q, see, e.g., Theorem 1 of [7]).

Proof of Theorem 3. Let k' be any unramified abelian [-extension o"ﬁr
k. Let o/ denote the set of CM-fields K which are abelian [-extensions over k'
contain no proper unramified abelian extension over k, and satisfy

he/sy <m, expAg<l.

Since there are only a finite number of unramified abelian extensions over k !
suffices to show that &/ is a finite set.

Take any field K in & different from k', so that Dg, > L. Let
n=ord,[K: k). We can take a sequence k' =k,ck, < ... ck, =K 0'
intermediate fields of K/k' such that each k/k,-;, ve{l,...,n}, is a cych®
extension of degree / for which some prime of k, is ramified. By class fiel
theory, the condition exp Ax < ! then implies exp A, </ for all ve{l, ..., n}-
Therefore we obtain, from Lemmas 3, 9, that

ord hg < P ord b+ Y, "*(1—1)t, < "ord, h,. +[K: Q] (u+1),

v=1

where each t,, ve{l, ..., n}, denotes the number of primes of k, tamified f0f
k,/k,_, and u is the number of rational primes dividing Dg,. Combining this
with logh, <logm+logs,, we have

loghy < logm+1" logs,. +(u+1)[K:Q]logl,
so that
) log hx < (u+1)[K: Q] log(l/ms,).
On the other hand, it follows from Lemma 11 that
loghy > loghg > §log Dy > log Dy
if Dy is sufficiently large. Then, by Lemma 10,

[K:Kk] K :k]

>— —_— — .
logh, > 16 T (ulogu—u)

log fxn =
This and (7) imply that
logu < 32[k: Q] log(l/ms,)+1,
log fx < 16 [k: Q] (u+ 1)log (I /msy)

if Dy is large enough. Consequently fx is bounded as K runs over all fields in
o/, namely, & is a finite set.
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From Theorem 3, we immediately obtain

COROLLARY 3. There exist only a finite number of imaginary abelian fields,
of 2-power degrees, with ideal class groups of exponents at most 2.

Proof of Theorem 4. Let o/~ denote the set of CM-fields K which are

dbelian l-extensions over k and satisfy
hg/sxk <m, expAgx <l

Let us take any K in &/~ with Dg, > 1, and let n = ord,[K :k]. By Lemma
8 and by exp Ax <1, exp A < I holds for every intermediate field k' of K/k.
erefore it follows from Lemmas 7, 9 that

ord;hg < I"ord,hy +[K:Q]lu
%here u is the number of rational primes dividing Dy,. Since
loghyx < logsg +logm,
We then have
loghz < u[K:Q]log(l/ms;).
On the other hand, Lemmas 10, 11 show that

[K:k] [K:k]
16 logfm > T

loghg > (ulogu—u), Dg> 1.

Thus, when Dy is sufficiently large,
logu < 16[k:Q]log(l/msg )+1,

log fyx < 16 [k: QJulog(l\/msy).
These imply that &/~ is a finite set, and Theorem 4 is proved.

3. In this section, we let [ =2 except for the final remark. For each
Ugebraic number field M, let {,, denote the Dedekind zeta function of M and
%y the number of roots of unity in M. If M is an abelian field, then we let § 1o

note the conductor of M: f,, = fue. The Riemann zeta function is denoted
by {, as usual: {(s) = {,(s), seC. Let K be a CM-field and let L(s), se C, denote
¢ Artin L-function for the non-trivial character of Gal(K/K ™) so that

Lx(s) = {x+(s) L(s), seC.

}Vﬁ denote by I'(s) the gamma function of seC. By Lemma 5 of [9], the
Ihl‘-qualil:g,'
T rol? ){xﬂm
L(1)> ¢ '——D§- ""'z(—
) e—1 K I'(e/2)¢(e),
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holds for every real number g in the interval [1+ (4log D)™ *,2], where
e (B, L __Tan
€= AeXP g T Hlog3 8logd (12

B, being the maximal real number such that L(8,) = 0. Note that f, <!
whence f§ < 1. On the other hand, it is well known that

)), B = max(B,, 1 —(4log D)~ ),

L) = 2plK*: 0] R, hx D,lﬁ (21{)"“ 0] hg
s wg Ri+ hg+ DY? ~ (Dg+ Dg+)''*
Therefore
@) hg = L(1)(Dg+ Dgjx+)? (2m) K" : @)
1-8 - ~1K*: Q]
1-e/2 pl 2+ 1-¢ a ‘
g (e—l)cD“ Dk (2" f(Z)C(e})

for any ge[l—(4logDy)™ 1, 2]. i

Now, we assume K to be an imaginary cyclic field of degree a 2-power Z
such that exp Cy < 2. It then follows from Lemmas 3, 8 of [9] that L(s) has no
zero for se[1—(4logDy) ™", 1), whence = 1—(4logDy)~'. Assume furthef
Dy > ¢°. Putting ¢ = 1 +(4¢c)™! in (8), we have

loghg > (log Dy) ™! D/* =16 pIK* 01,

I 1 1
—ogt2-uso 2 Vel 1ae—)
b= an-mor (L)1)

Let ¢ be any positive number less than 1/4—1/(16¢), D the positive number > ¢
such that ¢ = loglog D/log D, and u the number of rational primes ramified 1
K. In the case Dy > D, it follows from the above and Lemma 10 that

hg > D'l‘M—lmad—rb—[x«*:Q] > (j‘xlf‘t—lﬁch]—;b-—l}[K 101

where

Since log fx = ulog u—u, this together with (7) shows that if Dy > max(e‘, D).
then

1 | S
9) (u+1)log4 > (z—l—ﬁc—a)logfx—logb

1 1
> (Z—E—a)(ulogu—u)—logb.
Take the maximal natural number u* satisfying
(u*+1)log4 = (%_]IE_E) (u* log u* —u*)—logb.

We put
U g [4u"+l. b)lnlm—l,luﬁc}—n
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50 that, by (9),
Sk <0 if Dy = max(ef, D).

Finally let & = log(8536)/8536, ie., D = ¢®33, Then simple calculations
Show that

u* =758, 0 < %299,
Since ¢ < 112, we have proved the following result.
PRrOPOSITION 1. For any imaginary cyclic field K of degree a 2-power > 4,
fK < 94269

Assume next that K is an imaginary quadratic field, and let L(s), seC,
d‘?nﬂte (as before) the Dirichlet L-function for the quadratic Dirichlet character
With conductor —~Dy. Weinberger [12] has shown that if L(s) has no zero for
S¢[1—(410gDy)~*, 1), then expCy < 2 implies Dy < 5460.

Using a similar method as in [12], we can also show

if expCy < 2.

PROPOSITION 2. Let K be an imaginary biquadratic field and assume that the
Artin L-function L(s), s€C, for the non-trivial character of Gal(K/K™) has no
%ro in the interval [1—(4logDg)~*, 1). Then

L PexpC. g2

Proof. Let k and k' be the imaginary quadratic subfields of K: kk’ = K.
We suppose exp Cy < 2, so that

expCil4, expC,.l|4.

Replacing k by k' if necessary, we may further suppose exp Cy/|exp C,.
Now, in the case exp C, < 2, [12] shows that f, < 5460, f,. < 5460, and
henoe fx gﬁft' < 1191
Let us next consider the case exp C, = 4. It is then obvious that f, > 8, i.e.,
Iﬂgfk > 2. It also follows that h, <4°~' where v denotes the number of
ftional primes ramified in k. However, putting ¢ = 1/log f, in Lemma 9 of
10], we obtain, from our hypothesis,

h 0.655
i SO 0 (O
Wi elog /;

_ 0.655 \/f;
v-1 k
4 2}!*}-—118108‘&.
Rere, if p > 23, then f,/2 is at least equal to the product of 83°~ % and all prime

"umbers < 79, whence the right-hand side of the above exceeds 4*~', This
%ontradiction implies v < 22, so that we have fi <e’'?!, On the other hand,

Therefore
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since exp Cx < 2, K is unramified over k. In particular, f; = f, and therefore the
proposition is completely proved.

Remark. By means of Theorem 2 of [9], we can obtain for each ve{l, 2,
3, 4}, an upper bound of Dy for the CM-fields K which have the properties of
Theorem v but are not contained in any biquadratic field. However the
estimates are complicated; so we omit the details here.
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di-tse

ACTA ARITHMETICA
LV (1990)

Darstellung total positiver ganzer algebraischer
Zahlen als Summe N-freier Zahlen

von

RoTRAUT LAUN (Marburg)*

L. Einleitung. Evelyn und Linfoot untersuchten in einer Reihe von Arbeiten
[2]*[6] das asymptotische Verhalten der Anzahl A,, (v) der Darstellungen einer
natl:-irlichen Zahl v als Summe von m N-freien Zahlen fiir v— co. Eine
Wtiirliche Zahl heiBt N-frei, falls sie nicht durch die N-te Potenz einer

mzahl teilbar ist. Barham und Estermann [1] verbesserten die von ihnen
“zielte Asymptotik fiir m > 4. Mit Hilfe der Hardy-Littlewoodschen Methode
®thielten sie

=1

{I.] : g . -2+ 1N
) An) = iz SWHOV T loghy) - (m > 4)
Injt
(_1)m+l) ( (_”m )

S(v): = e it

oi= I1 (1+p) 1L (i
ung
(19 -

3, falls N=2,m=4,
2, sonst.

:“ (7] verallgemeinerten Evelyn und Linfoot die Fragestellung, indem sie fiir
% das asymptotische Verhalten der Anzahl A4,,(v; b, a) der Darstellungen

“Mer natiirlichen Zahl v als Summe von m N-freien Zahlen untersuchten,
Clche in einer festen Restklasse b (mod a) liegen. Man setzt voraus, daB (a, b)
“frei ist und daB v = mb (mod a) ist, da andernfalls 4_(v: b, a) = 0 ist. Mirsky
2] verbesserte ihre Asymptotik fiir m > 3.

Setzt man a = [] p§’, so erhielt er mit elementaren Methoden
=1

v\" ' 1
[13) A,.(v; b,a) = S(v: b, a) ((—) 0
a m—1).
e (m=1)
* Diese Arbeit ist eine gekiirzte Fassung meiner Dissertation. Herrn Prof. Dr. W. Schaal, der
Arbeit anregte, bin ich fiir seine vielfaltige Unterstiitzung und Betrcuung aufrichtig dankbar.

Ch Herrn Prof. Dr. J. Hinz danke ich fiir viele anregende Gespriche.

+0(V"'_2+rm—-1"1"n‘rr+‘)) (m=>3)
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