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if D > D, (¢). It follows from Burgess’s inequality [1] that if D > D, (¢), the?

N+H 1
| ¥ xm) SZ:;‘H
n=N+1

for H> D"*®/% Thus, by partial summation, we get

) _

n>pliteya N

M+ > %Q < %slogD+1.

DllteldecpnsD n D<n

@)

Taking
Dy (e) = max {D, (¢), D,(e)},

our assertion follows immediately from (3) and (4).
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On the Kummer-Mirimanoff congruences
by

TaxkAsH! AGOH (Chiba)

L Introduction. Let p be an odd prime, Z the ring of integers, Z,, the ring of

:1; Tational numbers which are p-integral, B,, the mth Bernoulli number defined

1) = ¥ Bkt
k=0
4d ¢, (v) the Mirimanoff polynomial, ie.,
p—1
e,)= Y "' (neZ).
i=1

\Ye denote by [f(v)]§” the value of d™{f(v)}/dv™ at v =0 for the m-times
€rentiable function f(v) of v.

In 1857 Kummer [7] showed that if v and ¢ are units in Z, such that
+@°—1 =0, then the following congruences hold for t = v, g:

(&) [U,0)]¢~2 =0 (mod p),
.) By [U,(0)1¢ 12" = 0 (mod p),

Where U (v) = 1/(1—te*) and g = (p—3)/2.

th In [5] Hasse gives the proof of this result by using the reciprocity law for
€ power residue symbol (see also the proof of Inkeri [6]).

- Here we should note that (v (1)]§ may be replaced by ¢, (t)ifi > 1 and

ll'ea?’ 1 (mod p) (see Lemma 4_ in § 2). Th_us, in the above congruences we shall

[U,(v)]§ and @;4,(t) without distinction.

abo On the other hand, Mirimanoff [10] made the full observation for the
N ve r;esult and proved that the congruences (K,), m=0, 1, ..., g, hold for

"o :'Wlth t'#0, 1 (mod p) if and only if the following congruences hold for

m=1,2,...,49,

)

@p-1(t) =0 (mod p),
M)

(pm+1(t)¢p—1—m(t)50(m0dp)s m=l,2:---’g-
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The congruences (K,) and (M,)(m=0, 1, ..., g) are the so-called Kunt-
mer-Mirimanoff congruences. A basic relation between B;@,-;(t) and
@i()@,-i(t) may be given by the following congruence (see the proof of
Theorem S in § 3)

141 1—t?P 2 ™(p—1—m
T‘Pp—n(t)'i'm—H ng ( J )B;‘Pp—jti)

[

m+1 m
= 3 (") #i00p-0) (mod.
where t #0, 1 (modp) and m is any integer with 1 <m < p—4.

The main purpose of this paper is to derive some congruences which have
the same solutions as those of the Kummer—Mirimanoff congruences. Further-
more, by using these congruences we shall study the first case of Fermat’s last
theorem. Here, we note that some kinds of congruences stated in this paper aré
already known, however all of them are obtained by different ways.

2. Some preliminaries. We shall give some lemmas related to the Bernoulli
numbers and Mirimanoff polynomials.

Lemma 1. Let S, (p)=1"4+2"+ ... +(p—1)" for meZ. Then. S,.(7)
=0 (modp) if (p—1)¥m, and S,(p)=p—1(modp) if (p—1)Im.

Proof. Let r be a primitive root of p. If rk = k (modp), 0 <k < p="
fork=1,2,...,p—1,then {T,2, ..., p—1} ={1,2, ..., p—1}, hence rS,,(?)
=5,(p) (modp). If (p—1)km, then r™# 1 (modp), which gives S,(P)
= 0 (mod p). The assertion for the case (p—1)|m is trivial. »

The theorem of von Staudt—Clausen completely describes the denomina-
tors of non-zero Bernoulli numbers. That is, if m > 1, then

Bym = cam— Z (I/PL
(p—1)2m
where c,,, is some integer and the sum is taken over all primes p such that

(p—1)2m.

As a consequence of this, we see that

LemMA 2. Let m> 1. If (p—1)x2m, then B,,eZ, If (p—1)2m, thent
pB3.€Z,, more precisely pB,,, = —1 (mod p).

LEMMA 3. Let m=1 and p—12 k2= 1. If (p—1) 4 m, then

-1 m+1
(m+1)pz "=y (”‘“

)k‘iBm+ 1-j (mod p).
i=1

J
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Proof. Consider the identity
p-1
v Y €’ =(e’—e") B(v),
i=k

Where B(v) = v/(e"—1). Here we have
e

[U Z eiu](én+ 1) _ (m'l' l)pil im

i=k

and
[ —-eBONE =Y, (") @l-k)Bas,
=1\
I (p—1) 4 m, then pB, =0 (modp). So the lemma follows. m
LeMMA 4. Let t #0, 1 (mod p). Then
(1=1)[U,@)1 = 1
= @+ (1) (mod p)

if m=0,

if m>1.

p—1
Proof. The case m =0 is trivial. Let N, (v) = ¥ (te¥ 0 <k <p—1).

Si ' g
f;ﬁce {1 —(te")"} U, (v) = No,(v) and [N, (v)I§” = @p+1 (1) for m > 1, the lemma
ows, m

\ By_this lemma we know that if t # 0, 1(mod p), then we may replace
()18 by @i,(t) in the congruences (K,) (m=0,1,..., g).

al On the other hand, if we set 4,(t) = (1—¢)"** [U,(v)]§”, then, by direct
Culation (cf. Agoh [1], Mirimanoff [10])

i@ =Y bR —ty" k=t ¥ bPae—-1)""*= Y e,
k=1 k=1 k=1
Where

b;”:lgk:n(—l)‘(k)(k—i)” and ci“=‘Z(—l)f(m:|)(k—i}”.

i
i=0
F
om tht?se expressions of 4,,(t) we see that A, (z) = t™*! J_(1/t). Hence, it may
Permitted to replace t by 1/t in the congruences (K,) and (M,,).

=1
1 LeMMA 5. Let @yms () = Zj'"vj (1sk<sp-1, meZ). If t#0,
(modp) and m> 1, then "~

1 M fm
q’k.mﬂ(r)ElT{Z( )f.°a+1(t)k"'“t"+k"t*-rqom+1lt)} (mod p).

AE-AT
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Proof. For brevity, set U™ = [U,(v)]§”. Since
Ny ((v) = U (v) (te’) = U, (v) (",

using Lemma 4 we have

Geme1(t) = [N @I = 25 Y (”‘) U kmi— e U
i=o \F
t(m . t
== _:{Z (’:’)mf+1(:)k~-'+k"'}———l_trp.,.ﬂ(r) (mod p),
i=1
which shows that the lemma holds. =

3. Some results related to the Kummer-Mirimanoff congruences. In the
following we assume that p is an odd prime with p > 5. Let S and T be two sels
of some congruences with indeterminate t. Then the symbol “S = T” meat®
that if t = ' with ¢ # 0, 1 (mod p) is a solution of the system of congruences i
S, then t =t' is also a solution of the system of congruences in T

Let K={(K)i=0,1,...,g9} and M = {(M)| i=0,1,..., g} First we
shall prove

THEOREM 1. (1) For all i=1,2,..., 4,
K\{(K)} = {(K)}, M\{M)} = {(M)}.
(2) If t# —1 (modp), then
K\{(Ko)} = {(Ko)}s

Proof. Consider the identity

M\{(My)} = {(My)}.

B(w)U,(v) = 1_1—_z B(v)+ Tt—_t vU,(v).

Since [B(v)]¢" = B, using Lemma 4 it may be deduced that
(l—ut)[B(U]U,(D)]Sf_”—[B(v}—l—tvU,(v}]}{"“

= (1 —:)"il ("f')ﬂ,, Ue-1-"_{B,_,+(p—1)tUP~?}
i=0 N !

P& (p—1 t
={Z( ) )Be%—f(‘HBp—l}—{Bp—n+(P—1)l—_j(0p—1(1)}

=0\ 1
= 0 (mod p).

Here (p—.l) = (—1) (mod p), Byis, =0fori=1 and ¢,(t)=0 (mod p), sO we
I
obtain

1
(3.1) +1t

2(1—1) Pp-1(t)+ i; B, ¢,-2(t) = 0 (mod p).
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On the other hand, we have the identity

d
{Ur{u}}z = U:(”)""%{Ur(v]}-

It follows from Lemma 4 that

(1 _t)z [{U,(U}}z:uf_ 2!_(1 _t)z [UI(U)'F% U‘(u):ltp"i‘.]

1=y, ("7 upve- -1 —op U2+ Up)

i=0

p=3

=
= 3 (770001005104 20,10~ (1= {71 0) 0,0}

= (i;(lmﬂd p).
Noting that
(p—' )+( p-2 ) = 2(—1){(i+1) (mod p),

. i p—2—i
¢ can deduce

) (1400,-10+2 ¥ (=1F i+ Ders1(00p-1i(1) = 0 (modp).

=1
F )
fom (3.1) and (3.2) the results clearly follow. m

_Let k and m be integers such that 1 <k < p—1 and m < p—3. We now
Consider the following identity:

(3.3) ak,m.t (U] = Bk.m.l’ {v)+?m.t (U},
whﬁl‘e
aymy (V) = {B(v)e’} {@m+1(te)},
-1 ik
Bumi®) =0 T (X )i
ang i=1 j=0

Yma(V) = O+ (1) B(v).
Let B = B, for i #1 and B, = —B,. Since
[B()e']f = B; and  [@m+(te)] = k' Qs 1+:(0),
¥ may write

[me @] = rz_m(*’ -t "") Bi{k*~ 1" ().

i=0 i
Also we have
p-1
Bimi@I "™ =(p—1—m) ¥ Sy 2 mlik+ 1)1
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and
[}'m,l(v)]? ~1mm Bp— 1=mPm+1 (‘)

Noting that B,_,_,, = B,_;_, if m # p—2, we deduce from (3.3) that

p—2-m

34 Kme 0+ 3 (""_"")k"'""'-*‘{B;w,,-.-(z)}
i=1 i

=(-1 —m)’_’f i™Sp—2-mlik+ 1)

Here, consider the congruences

p—1
() Y i"S,-2-m(ik+ 1)t = 0 (mod p),
i=1
where 1 <k <p-1 and m < p—3. And set
K(@={K) i=0,1,...,a}, 0<a<x<y,
X,.0)={(Adml k=1,2,...,b}, 1<b<p-2
and

Yi(c) = {(Axm)l m=p—3—c, p—2—c, ..
Then we can state the following
TueoreM 2. (1) If 0 < a < g, then K(a) <> X ,-3-24(2a+1). In particuld’

»p-3},

K = X,(p—2).
(2 If 1<k<p—1 and 0 < a<g, then K(a) <> Y,(2a). In particular
K <= Y,(p-3)
Proof. By taking m = p—3 in (3.4), we have
p—1
(3.5) ko, ()=2 ) i?=3 8, (ik+1)t* (mod p).
i=1
Also, if 0 < m < p—4, then
P rem  l—m
69 -1-mk2 g, 0+2 3 (7T B, 0)
i=2

p-1 ¢
=2p—1—-m) ¥ i"S,_»_nlik+1)t' (mod p).
i=1
From (3.5) and (3.6) the assertion K(a) = X,-3-2,(2a+1) is obviov*
Conversely, assume the congruences in X,_3-2,(2a+1). If D =(q;)) is a matri*
of order 2a+1 with a; = i/ (1 <i,j<2a+1), then detD # 0 (mod p). Sin¢®

pk( ) we have X,-3-2.(2a+1)= K(a). The second assertion in (1) is
nolhmg but a special case for a =g. On the other hand the statement (%
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'mmediately follows from the congruences (3.5) and (3.6) with m=p—4,
p-s5, .. —3—-2a. =
By obscrvmg the case m < —1 in (3.4), we can also derive the similar
Tesults to Theorem 2. Especially, we shall treat here the case m = —1.
Let g,(r) be the Fermat quotient with base r > 2, i.e,, q,(r) = (r"" '—1)/p.
onsider the system of congruences

p—1
(Gy) Y g,()t' = 0 (mod p),
i=2

G,) il[’(m:”} =0 (modp), m=1,2,....0-2

Where [x] means the greatest integer in a real number x.
Letting G = {(G)| i =0, 1, ..., p—2}, we shall | ‘ove

THEOREM 3. K< G.

Proof. Let 1 <k<p—1 and take m = —1 in (3.4).

2, Lty .
37) k’¢,{£)+pZ (f’)k"“{ﬂi%-dn} =p ) ;S,.—.(EH ne.
: i=1 \ i=1
Here

B,_,=0, ¢,()=0,)=0(modp) pB, = —1(modp), k" '=1(modp)
and

(P) = {(—1)"Yi}p (modp?) for i=2,3,...,p-3,
0 we have
k? @ (t) + Z ( )k" {Bi@p-i(0)}
~k?,(1)+pk*™" By 01 () + z ( )k" (B, @p-i(0)} + PkBy-1 @4(0)

}il

SIK'Y 4,006 +Pk B 0pos(04p T, ke (B @p-i0) (modp?).

r=32 i=2

MSO, the number of elements in the set {1, 2, ..

., ik} which are divisible by p is
ik/p], hence

Sp-1(ik+1)= ik—[%] (mod p).
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This gives

s vt e |

p—1 i p-1 i
pkeo,()—p Z %l:%];fs —p E }I:ﬁ]p (mod p?).
i= i

1 =1 4

Consequently, we have, from (3.7)

B3) 3K g0+ T ke (Bigp-i0)

= kpi qp(r]t'+pi 1I:Ejlt' (mod p).
r=2 i=t LD

If we assume the congruences (K)) (i=0,1,..., g), then

3 e k]
kY g+ ) —.[—}' =0 (mod p).
i=2 i=t P
r—1 :
Since Y (1/i)[i/p]t' = 0, we have (G,), which gives (G,) (m=1,2,..., p—2)
i=1
Conversely, assume the congruences in G. Then it follows from (3.8) that

By the same reason as stated in the pl’;)Of of (1) of Theorem 2, we can derive the
congruences in K. This completes the proof of the theorem. m
The congruence (G,-,) is equivalent to (K,) and (M,). In fact, since

(/M Lip—1)/p] = G—1)/i
(G,-2) becomes

fori=2,3,...,p—1,

i1,
3 ——t'= 0,(0=@p-1() = —¢p-1(0) = 0 (mod p).
i=2

We can rewrite the coefficients of congruences in G using the Ferma!
quotients. Let 1 < i, k < p—1. Then there exist unique positive integers ¢;(K)
and d;(k) such that ki =c;(k)p+d;(k) and 1| <d;(k) < p—1. Consider the
congruences

(GL) o T Tty
i=1

and put G' = {(G) i =0, 1, ..., p—2}. Then we have

On the Kummer—Mirimanoff congruences 149

THEOREM 4. G<=G'.

Proof. Since ¢;(k) = [ki/p], it follows that

ki

(kiyp~ ! —dy(ky~* = —(ki)"‘l[i]p (mod p?).

NOting that kP! ¢, (t) = ¢@,(t) (mod p?), we have
p—1

p-1 ) ny
Y {(kiyp~t—d kP e = g0 — ¥ ikt
i=1 i=1

= i ! —1\ i 2
=Y (@ -1+ 3 (1—di(ky)e (mod p?).
i=1 i=1

Hence
2, Pl o P [k
kY g, 3. a,(d0) fh=-3% _i[F
i=1 i= =
Since q,() = q,(di(1)), we may rewrite the congruences of G as those ofr G.»m
We report here that the congruences in the above systems G af‘d G’ were
introduced in a paper of Fueter (see (VI) and (VII) in [2]). To obtain them he
used a clever-method in the theory of cyclotomic field defined by a primitive
Pth root of unity. However, we derived them by quite different ways.
As stated in Section 1, the following theorem has been prgved by
Mirimanoff [10] (see also Ribenboim [11], p. 139-148). We shall give here
4 simpler and direct proof using (3.4).

]t‘ (mod p).

THEOREM 5. K< M.

Proof, Let 1 <m<p—4 and take k=1 in (34)
p—2-m p—l—m p—l'm . ;
69) 4,0+ % (71 ")Biop-il) = 0 =1-m) T 7 Syamnli DL
i=1

Since p—1—m>3, by Lemmas 1 and 5

(0—1—=m)'Y " -mli+ 1)t = (p=1 —m):;j*"*-”w,-m 0

=

[l

l"_( j:l i=1 i

—l-mlX2
. s

1—t (”_I)fpu 1(‘)‘9;:—1—i(f)""Pp—l(3)—Sp—z~m(P)f(0m+ 1(”}
_ L\

il

p—1—m
1—t

[

E (m) Pi+ 1) Pp-1 —t(‘)"‘p;l“:E @p-1(1) (mod p).

iz M 1-t
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Hence, from (3.9)

1 p=2-m, o
610 5000+ 3 (") B0

L )_:()fp.+.(r)¢, 1 —t) (mod p).

If we assume the congruences in K, then, by taking successively m = 1, 2, ..., 4
in (3.10) we can deduce ¢;(t)@,—-:(t) =0 (modp),i=1,2, ..., g. Conver
sely, assume the congruences in M. Then, by taking m = p—4, p—6, ..., !
successively we have B;¢,_(t) = 0 (mod p), j = 2, 4, ..., p—3. This completes
the proof of the theorem. m

Incidentally, we see from (2) of Theorem 1 that if t # —1 (mod p), then
K\{(Ko)} == M\{(M,)}.
Let 2<k<p-1 and |m < p—2. We observe the identity

(3.11) Okt (V) = €k m(0) + Niemae(0),

where

Okmi(t) = Qo 1 () —1e" U, (v)},

p=1 p-1 .
ak.m.l(v) = Z (Z jm eljtk-lH;}.,) f‘,
i=0 j=i

nk.m.l(v) = —Pm+1 (e(*_ ”D] U:(l’]'
By taking m = p—2 in (3.11) and substituting v = 0 we have
r p—1 p—1 3
1% 0= Z (ZJ' )I'——- p-2(P),
which gives, by Lemma 1,

P—1 p—1

T 01l = — Z(Z}’ 3¢ (mod p).
i=1 j=

(3.12)

If —(p—2)<m<p-3, then
[6k.m.l (U)]g_ R

—-2—m (0) . pP—2—m\ ; (p—2-m—1i)
=k, (OU-UP)— F ( . )k Ores 1 41(8) US

i=0 !

= “113{"’_2 "y 00+ Z (,, ” m)k"qs',..+1+.-{t)fp,,_1_,,._,-(z}} (mod p),

p=1 p—1

[etm @]F ™2™ = (k=1"27"S, ,(p)+ ¥, { ¥ "{jlk—1)+i}P~2"m} ¢

i=1 j=i
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ang
P.’z 2 m=i
Dm0 = = 3 (727" =S 0
i=0

Here Sm+i(p) =0 (mod p) unless m+i =0 (mod p—1). Thus

Ul (018 ~2 ™
f l<sm<p-3,

0 (mod p)
_{(" 2""')0(—1) "'—qo,, (1) (modp) if —(p—2)<m<0.

From (3.11) we obtain: if 1 <m < p—3, then

R P Ty
1—t? -t =%

(”'zj_m)k‘ Pt 141 0p= 1 - mill)

-1 p-1

= E{ZJ {jk=1)+i}*"2"™} ¢ (mod p).
Also, if —(p—2) < m <0, then

3.19) {k" 2- "'H.( )(k—l} }_‘l__t‘pp—l(t)

l P"i_m(p_zi_m)ki Pt 1+i(0)Pp-1-m-ill)

+—
1—t =%

= —pf [Pff"'{j(k—ilﬂ}*'"z‘"'} ¢ (mod p).
=1

i j=i
Consider the congruences
p—1 p—1 i
(%) ): (Y j{jtk=1)+i}P"2""} ' = 0 (mod p),

= j=i

Where 2<k<p—1 and |m < p—2. Here, note that if m = p—2, then the
%“gruenoe (Ty..) does not depend on k.
Letting

M{a) =
P.b)={Tis)l k=2,3,..., b},
Qulc) = (i)l m=p—2—c, p—1—c,

¥ may siate the following theorem:

{(M')l i=0, l!""a}’ 0<axy,

Wp=2}, 0<Le<yg,
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THEOREM 6. (1) If 0 < a <g, then M(a)<>P,_,_,(a+2). In particular,
M < P 1y2((p +1)/2).

2 If 2<k<p—1and 0< a<g, then M(a)<>Q,(a). In particular,

M 0,((-3)2).

Proof. Observe the congruences (3.12) if a=0, and (3.13) with
m=p—2—aif 1 <a<g. Since p,{’(a_'), by the same reason as stated in th
proof of (1) of Theorem 2 we can prov:’: the first statement. On the other hand:
from (3.12) we know that M(0)<>(Q,(0). Next, take successively m = p=3

p—4, ..., p—2—ain (3.13), where 1 < a < g. Then we know that the assertio?
in (1) for integers a with 1 < a < g clearly follows. On the other hand, sin®

PX (") (0 <i<j<a), we may deduce the second statement. m
I

For the case —(p—2) < m < 0 we can give the similar results to Theore®
6 by using (3.14). However, we shall discuss here only the case m = —1 an
derive the equivalent system to Le Lidec’s ([8], [9]). We do not enter int0
details, but it is easily seen that the congruences in the system L of the nex!
theorem are essentially the same as Granville’s variants ([3], Theorem L3-8
p. 80) for the Le Lidec congruences. We emphasize that these congruences cat
be obtained by observing a special case of (3.14) for m = —1.

Let 2<k<p—1 and g(k) be an integer such that (k—l)g("‘)
= —1 (mod p). Also, let «,(k) be an integer such that mg(k) = a,(k) (modl’]
and 1 < e (k) <p—1 for each m=1,2,..., p—1. We set

on(k) if o, (k) > m,

Bl = {0 if o, (k) < m.

Here, the case o, (k) =m does not occur because p X k.
Consider the system of congruences

(Lo) @p-1(t) =0 (mod p),

L) Y B+ 1)E =0 modp), n=1,2,...,p-2.

Letting L= {(L)] i=0, 1,2, ..., p—2}, we shall prove the following theore™”
THEOREM 7. M <= L.

Proof. Set m= —1 in (3.14). Noting that (p_.l) = (—1)' (mod p) and
0,(t) = ¢,(t) = 0 (mod p), we have
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N2 ey
(.15 {:+(l—k)}1—l—tq>p-1(t)+l—; Y (=1 K@) pp-i(t)
= —ti=2

p—1 p—l]

= %1k }{j(k—l)ﬂ}”'}t‘ (mod p).

i=1 j=i

S“DpOse that j(k—1)+i = 0 (mod p). Since (k—1, p) = 1, there exists an integer
9(k) > 0 such that (k—1)g(k) = —1 (mod p). Hence ig(k) = j (mod p). Conver-
Sely, if ig(k) =j (mod p), then j(k—1)+i=i{(k—1)g(k)+1} = 0 (modp). So,
Using Lemma 3 and (3.1) we have

s {’fl{f{k—mf}”"}r‘

i=1 Lj=iJ

pil {pi )17} t,-_fi Bkt

i=1 Lj=i

p—1 {Pi‘ (p-:l) Bp—]"rjr} ‘i_li: ﬁi(k)ti

i=1 Lr=1

{p}_f (le) Bp—l-rtp.n(t)Jr(i:;)Bl qo,,_,(c)}—z k)t

r=2

I
g

H

t p-
-—-]_I Pp- l(t}_ Z ﬁltk) t! [mOd p),

B i=1
because B, ¢,(t) = 0 and B, ¢,(t) = 0 (mod p). Consequently, it follows from
3.15) that ,

'S (1K 00 9y + (1=K o,1() = (1=0) Y. B¢ (modp).
i=2 i=1

8Y this congruence we see that the theorem holds. = )

We shall give some notes on the congruences in the system L.

For m=1,2,...,p—1, it follows that a,(k)>m if and only if
%_,.(k) < p—m. Therefore, in the congruence (Li-,) (k # 1) one of terms
Bulk)t™ and B,-n(k)t"~™ (1 < m < (p—1)/2) inevitably vanishes.

Let k and k' be integers such that 2 <k, K’ <p—1 and kk' =1 (mod p).
We have (1—k)a,, (k) = m (mod p) and similarly for k', which give a,,(k)+a,, (k)
Sm (modp) for m=1,2, ..., p—1. If a,,(k) < m, then &, (k") = m—a,(k) < m.

80 if a,(k)>m, then a,(k)=p+m—a,(k)>m On the other hand, if
“w(k) > m, then B,,(k) = (1 —k)(1/m) (mod p), hence (Lg-1)(k # 1) is equivalent
‘o the congruence of the form

P-1z
——%*) = 0 (mod p),

Z o
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where a;(k)e{l, 2,..., p—1} and a;(k) # a;(k) if i # j. Consequently, we s¢¢
that if kk’ = 1 (mod p), then (L,_,) is equivalent to (L, _,). For a given k, the
integer k' such that kk' = 1 (mod p) is uniquely determined. Also k> = 1 (mod p)
if and only if k = p—1. Therefore, the system L contains at most (p+ 1)/
(= 14+(p—3)/2+1) independent congruences.

4. The first case of Fermat’s last theorem. We can directly use all of results
stated above as criteria for the first case of Fermat’s last theorem.
Suppose that the equation

(4.1) xP+yP+22P =0, pfxyz,

holds for integers x, y and z prime to each other. If ¢’ = — y/x, then from the
assumption we have ' # 0, 1 (mod p), so t = ¢’ is a solution of the systems K
M, Xo(p=2), Yi(p—3), G, G, P—1)2((p+1)/2), Qi((p—3)/2) and L. Also W€
may state that, by symmetry, all of elements ¢ in the set

are solutions of these systems If t' = —y/x, then the elements of W aré
congruent modulo p to those of the set

o1 , =1 ¢
Ha—-{t,g,l—t,l_[,, o e modp},

since x+y+z =0 (mod p).

If ' = —1 (mod p), then we may take t'€ H with ¢’ = 2, 1/2 (mod p) instead
of ¢ = —1 (mod p). So, by Theorem 1 it can be confirmed that there exists 20
element t' of H such that ¢t = t' is necessarily a solution of (K,) (or (M,)) if onl_S'
t=1is a solution of (K,) (or (M,)) for m=1,2,...,9. We add that !
“= —1 (mod p), then the systems K and M are of no interest as criteria ©
(4.1). In fact, if = —y/x= —1(modp), then x? = y? (modp?), henct
4,(2) =0 (mod p). Therefore, by Lemma 2 ¢, ,(—1)= 2q,(2)(p3,_1)
= —24,(2) =0 (modp), and also ¢,(—1) = {2(1-2")/m}B,, = 0 (mod p) fof
odd integers m with 3 < m < p—2. So the congruences in the systems K an
M clearly hold for ¢t = ¢ such that ¢ = —1 (mod p).

By making use of Theorems 3 and 7 we shall prove the following theorem:

THEOREM 8. If the equation (4.1) is satisfied in integers x, y and z prime 10
each other, then t = ' e W is a solution of the following congruences:

M) Y 4,0 =0(modp).

i=97

@ Y St=0(modp)

0O<i<pf2 t
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1. 1.
(3) Z -t'— —t' =0 (mod p).
pla<i<ppy ! 2p/3<i<3pal
1
4 Y, —t =0 (modp).
e

(5) b 3 l,t‘— Y. l,t‘ = 0 (mod p).
pia<i<pz} plz<i<zp/al
iodd izeven

Proof. Since p ¥ xyz, we may assume here ¢’ # 0, 1 (mod p).

(1) Granville and Monagan [4] showed that if the equation (4.1) holds,
hen q,(r) = 0 (mod p) for all integers r with 2 < r < 97. So we know from (G,)
that (1) holds for ¢ = ¢.

(2) By (M) and (G,) the congruence (2) clearly follows. We can also deduce
@ directly from (L,), since g(2)= —1 (modp) and «,(2)=p—m>m for
M|, 2,...,(0=1)2.

(3) By (G,) and (G,) we have

1 i
pl4<i<pf2 i

Also, by (G,) and (G)

l_t‘ = 0 (mod p).
pl2<i<3p/4

1

B!

pra<i<pi2 !

i_t‘ = 0 (mod p).
piz<i<2p/3t
From these congruences we obtain (3).
(4) Consider the congruence (L,-;). We have g(p—1) = (p+ 1‘)/2 (fnod P
:‘ﬂm{p— 1) = (p+m)/2 > m if m is odd, and a,(p—1) = m/2 < m if m is even.
€hce

2 i
——t' =0 (mod p),
ﬂ(;(pp i[ {m p)
iodd

“hich yields the congruence (4). Incidentally, we may further add the
ongryuence @p-1(—1) = 0 (mod p), since the left hand side of (4) is equal to
12 (0, )= 9p-1(—1)}.

(5) We observe here the congruence (L,). Since g(3) = (p—1)/2 (mod p), we
%¢ that if m is odd, then ,,(3) = (p—m)/2, 0 &,(3) > m if and only if p/3 > m.
MSD, if m is even, then «,(3) = (2p—m)/2, hence a,(3)>m if and only if
?/3 > m. Thus the congruence (L,) may be written as follows:

p .
Yy —t+ Y ——t'=0(modp).
o<i<paP ! 0<}i<2p;32P_'
irodd teven

Ushlg this and (2) the result follows immediately.
This completes the proof of the theorem. m

4
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CM-fields and exponents of their ideal class groups
by

Kuniakl Horie (Yamaguchi) and Mitsuko Horie (Fukuoka)

By an algebraic number field, we shall mean a finite algebraic extension
Over the rational number field Q. All such fields will be supposed to lie in the
COmplex number field C. Let j denote the complex conjugation of C. An
Algebraic number field k is called a j-field when k is invariant as a whole under
Jie, k! = k and when gj = jo on k for all isomorphisms ¢ of k into C. Then
4 j-field is either a totally real algebraic number field or a CM-field, namely,
? totally imaginary quadratic extension over a totally real algebraic number
leld,

Let | be-a fixed prime number. For any algebraic number field F, let Cp
denote the ideal class group of F, A the Sylow [-subgroup of Cg, kg the class
Mumber of F, and s, the order of A;. The exponent of each finite group G will

denoted by exp G. In the present paper, we shall first prove the following

THEOREM 1. Let k be a j-field; let r, m, and n be natural numbers. Then only
@ finite number of CM-fields K have the following two properties:

(i) hy/sy <m and expAg <,

(ii) there exists a sequence k =k, c k, = ... = k, = K of j-fields such that
Or each ve{l, 2, ..., n}, k, = k,— or k,/k,_, is a cyclic extension of degree .

Now, for each (multiplicative) abelian group M on which j acts, we put
M = {peM| p=p"}.
For any j-field F, we let
hi = hp/hg.

“here F* denotes the maximal real subfield of F; hy is known to be an integer.
Urthermore, as j acts on A, in the obvious manner, we can define

sr = |Ag|.

In the case | > 2, this becomes the highest power of [ dividing h and we can
Prove the following result which is more precise than Theorem 1.
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