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FRANCOIS RAMAROSON (Washington, D.C.)

1. Introduction. Let E/Q be an elliptic curve with conductor N. Assumf:
that E admits a parametrization by modular functions and let ¢ be a Weil
Parametrization:

¢: Xo(N)—E

where X,(N) is the Shimura canonical model for the Riemann surface
#|T(N), quotient of the upper-half plane by the action by the group

Iy(N) = {(‘: 2)est (Z): ¢ =0 (mod N)}.

For simplicity let us assume that N is prime and let K be an imaginary
quadratic field in which N splits completely and with discriminant less than
._4.

In [1], Gross developed the theory of Heegner points on X, 0 (N). These
points are rational over abelian extensions of K, and via the Weil paramet-
rization mentioned above, they should contribute to the Mordell-Weil groups
of the elliptic curve E over these abelian extensions.

Let now p be a prime which is ordinary for E, this means that E has good
reduction at p and the trace of the Frobenius endomorphism of . the reduced
curve modulo p, is not divisible by p. For such a p, one can consider K, 'the
anticyclotomic Z ,-extension of K, which is contained in the union of all ring
class fields corresponding to the orders of K of conductor p", n = 0,1,2,.

The Heegner points are rational over these ring class fields an_d tht? Weil
Parametrization carries them over to E; taking norms gives points in the
Mordell-Weil group of E rational over K ,. The points so obtained in E(K)
fit together into an object called the Heegner module, which is a module over
the relevant Iwasawa ring A. '

In [6], Mazur made a precise conjecture concerning the structure of the
Heegner module, namely, under a technical assumption, that it is a cyclic
module of rank one, over the Iwasawa ring A.
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In this note, we study one of the first non-trivial cases and look at N = 19.
In this case the modular curve X (19) is of genus one, and hence it (or rather its
jacobian) is an elliptic curve. The Weil parametrization is of degree one
(identity) and the vanishing of the Heegner module could happen only upon
taking norms. However, under some conditions to be made precise, the
Heegner module is non-zero and is of rank one over the Iwasawa ring. Of
course, this implies that the Heegner points contribute significantly to the rank
of the curve over the various layers of the anticyclotomic extension.

In Section 2, we construct the Heegner points and define the Heegner
module, we also study the effect of the Hecke operator on these points. We
prove, under some conditions, a non-vanishing result for the norms of Heegner
points and thereby deduce Mazur’s conjecture in this case. In Section 3, we
obtain lower bounds for the rank of the Mordell-Weil groups over the
anticyclotomic layers.

Finally, we gratefully thank Howard University for support under grant
FY85FRP-AASQ.

2. The Heegner module & (K ) (see [1], [6]). Let @ = Z+ Zw be the ring
of integers of K, for some w in K. For each n > O,let 0, =Z+2Zp"w, O, is an
order of conductor p". Assume that 19 splits in K as (19) = A"+ #'; then, in @,
it splits as (19)= A,- 4% where A pa=AH N0, and N =A4"N0O,. Let
H, = K(j(0,)) be the ring class field of ¢, and H_ = (JH,. H, contains the

anticyclotomic Z -extension of K, denoted K. Let K, = K_ N H,,n>0 and
I'=Gal(K_/K,) ~ z,.

Using the notation of [1], let (@,, A;, [@,]) be a Heegner point of level p".
If oo denotes the cusp at infinity, then the divisor (@,, A, [0,1)—(c0) defines
a point x,eE(H,). Let e, = Ny i, (x,)= Y x5, where the sum is over

oeGal(H,/K,), then e,e E(K,). ;

Let &(K,) be the submodule of (E(K,)®Z,)|iormions generated by fef:
oeGal(K,/K)}.

Let T, be the pth Hecke operator. As a correspondence on X 0(19), it

stabilize the divisors supported on Heegner points. We have the following
formulas:

5O, 4,.[0,)

o

= (0N+1l -/Vn+l’ [@n+l]}+{0n—ls JV._I, [ﬂ)n—l])'i',,i ((9n+i- '/’/n+h [L}])
j=1

valid for n > 1, where L, is a lattice of index p in @, and is a proper 0, , ,-lattice
(see [3]). For n =0, we have

(0, LD = €1, 4, [OD4Y, (01 K, LD
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if p stays prime in K;
p-1
=(C,, 4, [0+, 4 [2D+ ¥ (0, M, [L]])
Jj=1

if p ramifies in K as (p) = 2%,
p—1
=(0,, 4, [O,D+(0, & [Z]+(O, ¥/ [P ]+ ‘22 (0,, A7, [LD
jo
if p splits in K as (p) = 2 2" ‘
As an endomorphism of E, T, satisfies:

T,(x)=a,x, xeE
where @, = 1+p— # (E(F,)). If we combine the above, we obtain the fol-
P
lowing:
for n>1

a, X, = Nu,. |.fH..(xn+ )+ X3 in E(H,)

along with the appropriate formulas for n = 0. Taking norms to K, we obtain:

for n>1
| a,e, = Nk, k. (€n+1)T+er-y
along with the appropriate formulas for n = 0. _ _ _
Let ¢(p) = 0, 1 or — 1 according to whether p ramifies, sphfs or stays prime
in K. After some manipulation of the formulas above, one obtains the following
result of Mazur [6].

THEOREM 2.1. Suppose that a, is congruent to neither 0 or 1 +¢ (p) (mod p).
Then;

Nex.8(K,)=6(K,), m=n20.

Assume now that a,# 0 or 1+e(p) (mod p). The Heegner module is
defined to be:

&(K,) = lim &§(K,)

where the projection maps are the norm maps. _ ke of

Let A be the Iwasawa ring Z,[[I']], then &(K) is a frefz A-module o
rank O or 1. Mazur’s conjecture is that the rank is 1 [6]. Equivalently, there
exists n for which e, # 0 in &(K,). In some special cases one can show that
e, #0 for all n (see also [5]).

THEOREM 2.2. Assume that 19 splits in K and that p > 3, p # 19. Suppose
that 3 does not divide h(p—¢(p)), where h is the class number of K. Then e, # 0
in &(K,), for all n20.
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The Gross-Zagier theory and the Birch-Swinnerton-Dyer conjecture
imply:

CoRrOLLARY 2.3. For n = 0, the L-function of E over K, has a simple pole at
s=1 and e, generates a subgroup of finite index in E(K).

Proof of Theorem 2.2. Let n > 0. We show that e, is not a torsion
point in E(K,). Suppose it is torsion, and let r be its order. We need a lemma:

LEMMA 24. If k > 0 is an integer such that ke, = 0, then 3 divides k. In
particular e, # 0 in E(K,).

Proof. If ke, =0, then kej = 0. In particular, the Heegner divisor:

D = k Z (039 '/‘:5 [@n])a—[Hn:Ku] (m)

oeGal(Hn(Kn)
and its complex conjugate:
D=k Y

oeGal{Hn/Kn)

are linearly equivalent. Hence there exists a function f on X, ( 19) such that:

D = D' +(f).

(Gm '/11:' ’ [@n])’ - [Hn:Kn] (fﬁ)

A(z) \'1®
4(19z)
is: (g) = 3((0)—(o0)); (0, oo are the cusps). By Weil reciprocity (see [7]) we get:

40,)\'"* ) _ A(0,) /o
NH...FK-[(A Mﬂ) ] = NH..IK-.[(_—_A(A;‘)) ] u?

for some ue K,. Looking at the ideals generated by both sides (see [4]) and
recalling that 3|h(p—e(p)), we see that 3|k.

We now continue the proof of the theorem. By Lemma 2.4, 3 divides r, say,
r=73r, with 3 fr,. Letr, e, = ¢, so that 3°¢, = 0. We claim that ¢, ¢ E(Q). If
e,€E(Q) then r, (e,—e;) = 0, but by the proof of Lemma 2.4, this implies that
3 divides r,. Therefore e, ¢ E(Q). Let F be the field generated by ¢, and all of its
Q-conjugates. Then F/Q is Galois F = K, and we have the diagram:

QED] K,
N

Letg(z) =

» then g(2) is a modular unit in Q (X, (19)) whose divisor

F

|

0
where Q(E[37]) is the field of 3%-division points on E. K /Q is Galois dihedral
and F/Q is Galois, therefore Gal(K,/F) is a normal subgroup of the dihedral
group Gal(K,/Q). Hence, Gal(K,/F)~ Z/p°Z, 1 < b < n, and in particular
F contains K,
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Q(E[3]) K,
N/

The criterion of Neron-Ogg-Shafarevich and the fact that 19 splits in K now
imply that d, = —3 which is against our assumption that d, < —4. dg =
discriminant of K). This ends the proof of Theorem 2.2.

COROLLARY 2.5. The Heegner module & (K ) is a free A-module of rank 1.

3. The rank of E over K . In this section we work under the conditions of
Theorem 2.1 and 2.2. In particular, e, is of infinite order for all n>0,
Ny k. 6(K,)=&(K,), m>n>0and 6(K,) is a free A-module of rank one.

LemMa 3.1. For every integer n> 1, the following are equivalent:
(i) e, is rational over K,_,,

(i) pe,€&(Ks-1),

(iii) for every integer k =1, p*e,e&(K,-1),

(iv) 6(K,-1) = pE(K,),

(v) there exists a€Z,, a # 0 such that ae, €6 (K,-1)

The proof is straightforward.

TueoREM 3.2. There exists an integer mg, such that, for all n > my, e, is not
rational over K,-,.

Proof Assume the contrary, then we can find a strictly increasing
sequence of integers: n, < n, < n, < ... such that e, is rational over K, ;.
Let us denote the norm from K, to K, by N, where m > n. Then by
induction on k, we obtain:

& (Kpo-1) = P (Kpp) = PNyjno 6 (K ) = P* Ny = 1jng 6 (Kp)) = .-
=P "Ny, — 1m0 - ONpe—1jm, 6 (Ky)  for all k.
Here N, —1/no0 --- ONp—1/m- € (Ka) 1s 2 submodule of
8 (K,) 0 UE (Kn)) ® Z )\ torsion] -

Therefore, looking at e,,- | €& (K,,—1), Which is not zero, we get: for every k,
there exists yy €(E(Knp)® Z,)lorsion Such that

en-1=P"" Y

But this is clearly impossible since (E(K,.)® Z,)liorion 18 @ finitely generated
frec Z,-module. This ends the proof of Theorem 3.2.
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THEOREM 3.3. There exists an integer m, and a constant ¢, depending only
on my such that for all n = my:

rank E(K,) = p"—c.

Proof. Clearly it is enough to prove the same statement as in the
theorem with E(K,) replaced by & (K,). We do this by induction on n. Let mg
be as in Theorem 3.2 and let ¢ = p™—1. The statement is clearly true for
n =m, since e, is of infinite order. Assume that rank&(K,-;) = p" ' —c.

The Gal(K,/Ko)-module &(K,)®Q, decomposes into:

E(K)®Q,~(6(K,-1)®Q,)®M

where M is a stable Gal(K,/K,)-module. We make two remarks:

(1) by Theorem 3.2, dimM > 1.

(2) if ve M and v* = v for all ceGal(K,/K,-,), then v = 0. Let N be any
non-zero, irreducible factor of M. Then we have the eigenspace decomposition:
N®C = @ N* where y runs through the characters of Gal(K,/K,). By the
second remark, N* = 0 if y is equal to one on Gal(K,/K,-,). Moreover, for
Galois-conjugate characters y and y*, dim N** = dim N?*, therefore, we see that
dimN = p"—p"~'. Now it follows that

rank &(K,) = rank & (K, - ;) +dim M
? pn‘—l_c_l_pn___pu-l 3 p"—(.‘.
This ends the proof of Theorem 3.3.

Remark 3.4. For a different point of view on the growth of the ranks of
Mordell-Weil groups, see M. Harris [2].
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Congruences for the Stirling numbers and
associated Stirling numbers

by
F. T. HowaArDp (Winston-Salem, N.C)

1. Introduction. In [3] it is proved that if k+n is odd then the Stirling
number of the first kind, s(n, k), is divisible by the odd part of n—1, and the
Stirling number of the second kind, S(n, k), is divisible by the odd part of k.
These results can be improved; we show in this paper, for example, that if k+n
18 odd,

(1.1) s(n, k)=0 (mod (;))
(1.2) S(n,k)=0 (mod (IHZ- l))

Congruences such as (1.1) and (1.2) are apparently not well known. A few
congruences for prime moduli can be found in [2], pp. 218-219, 229 and [4},
P. 81. Carlitz [1] worked out a method for finding congruences for
S(n, k) (mod p), where p is prime, and he found the residues of S(n, k) for
P=2, 3 and 5. Carlitz also proved some formulas for special cases such as
S(n, pk).

: fn )the present paper we prove (1.1), (1.2) and other congruences for the
Stirling numbers and associated Stirling numbers. In particular, we show_ hpw
to find congruences (mod p) for the Stirling numbers and associated Stirling
numbers, and we illustrate our method by finding the residues for p =2, 3
and 5. To the writer's knowledge, these congruences, with the exception of
Carlitz’s results for S(n, k), have not been published before.

2. Stirling numbers of the first kind. The numbers s(n, k) can be defined
by means of

@1 x(X+1)...(x+n—1)= Y s, k)x*
k=0
or by the generating function

- <]

(22) (—log(1—x) = k! Y s(n, k)x"/n!.

n=k
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