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A note on the Hasse principle
by

NGUYEN Quoc THANG (Hanoi)

L Introduction. A celebrated theorem of Hasse-Minkowski states that
Over a global field k, any quadratic form, representing zero everywhere locally,
Tepresents zero globally (in this note we always understand zero to be
on-trivial). This is the so-called Hasse principle for quadratic forms. It is
Natural to ask whether or not the Hasse principle still remains true for a system
of Quadratic forms over global fields. The first counter-example to the Hasse
Principle for systems of quadratic forms was constructed by Iskovskikh [14]
Over the rational numbers Q and later other counter-examples have been found
(see [2], [41-[12], (171, [18], [22] and references there),

In this note we are interested in the validity of the Hasse principle for
$ystems of quadratic forms over any global field of characteristic p # 2; we give
anj)ther approach to this, based on a simple connection between the Hasse
Principle for varieties and the (cohomological) Hasse principle for algebraic
8roups. We have '

THEOREM. Let k be any global field of characteristic p # 2 and m any
"atural number. Then there is a k-variety X, defined by a system of m(2m+1)
Wadratic forms in 4m? + 1 variables, for which the Hasse principle does not hold.

It may be that using the arguments given here, it is possible to prove the
alogous statement for the case chark = 2 too. Finally, we will give various
E“Ul'lter-examples, including a minimal possible one over a global field of any

aracteristic.

It is worth mentioning here that the systems constructed here are not
Obtained from the known counter-examples just by adding to the latter
? number of quadratic forms, so they are non-trivial in a certain sense.

II. Definitions, notation. In this paper, k will be a field, k-algebraic
8roups are always linear algebraic k-groups, considered as matrix groups under
SOme matrix representation in some linear group GL,. If G is a k-group, G,
o:nmcs the connected component of G. k always denotes the algebraic closurc

k, Gal (k'/k) is the Galois group of the extension k’ > k, M, (k) is the algebra
OF all nxn matrices with coefficients in k, and ux, denotes the group (+1).
Or D a division algebra of finite dimension over its centre k, denote by
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Nrd: D — k the reduced norm, and if D is a quaternion algebra, J is its
standard involution. If & is a non-degenerate (skew-)hermitian form with
values in a division algebra D of finite dimension over its centre k, we denote by
GU (®) the k-algebraic group defined by the group of similitudes GU (&, D) of
the form &. Let m denote the homomorphism GU (@, D) — k™, mapping every
unitary similitude to its multiplicator (or similitude factor); we denote by the
same symbol the corresponding homomorphism GU(@®@K', D®L') — (k)"
for any extension k' o k. k, always denotes the completion of the field k at
a valuation v of k.

For a k-variety X, we say that X satisfies the Hasse principle if the
non-emptiness of X (k,) for all valuations v of k implies that X (k) is also
non-empty. For a k-algebraic group G, we denote by H!(k, G) (and if G is
commutative, by H'(k, G)) the l-cohomology set of G (the ith (Galois)
cohomology group of G). We say that the (cohomological) Hasse principle holds
for G if the canonical map

H'(k, G) > [[H' (k,, G)

is injective, where the product is taken over all valuations of the field k (cf. [20]).

III. Some remarks on the Hasse principle. Let
(*) 1-H-G-L-1

be an exact sequence of k-groups. We have the following commutative diagram
with exact rows: .
Gk) ™ L(k) % H'%,H = H'(,G)
1 [ 1 ¥
[1Gk) - [1Lk)>[]H k,, H) =[] H' k,, G).
v v v w

Consider the fibers X,:= n~'(4) for Ae L(k). They are k-subvarieties of G and
one may ask whether the varieties X, satisfy the Hasse principle. First we have
the following

PRoPOSITION 1. If, in the above diagram, the map B is injective, then
H satisfies the Hasse principle if and only if

n(G (k) = () (= (G (k) n L(k)).

Proof Assume that H satisfies the Hasse principle. Let 4 be in
N (= (G (k,) N L(k)).

We have p(6(4)) =38(4), hence 6(1) =0, ie. Aen(G(k). Conversely, if
xeH'(k, H) and y(x) =0 then 0(y(x)) = f(x(x)) =0, ie. a(x) =0 since p is
injective. Hence x = &(y), yeL(k). Thus y(8(y)) = d(y) =0, hence

ye()(r(G (k) n L(k)) = n(G (k)),

ie. y=mn(g), geG(k), hence x=0. m
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Remark. Note that
AER(G(k))ﬁXA(k] #J,
Ae(N(n(Gk) N LK) =X, (k)#S . Vo.

Hence we have the following
COROLLARY. The following three statements are equivalent:

@) 2e()(n(G (k) N L(x))\ n(G (k).

(]
(b) X, does not satisfy the Hasse principle.
(c) H does not satisfy the cohomological Hasse principle.

i Now if 7 (G (k)) is a normal subgroup in L(k), we may consider the factor
oup B = (\(n(G(k))nL(k)/n(G(k) and B can be considered as the

°§Strucuon for the family € = (X,: ZeL(k)) to satisfy the Hasse principle. In
1§ case we have

Tk PROPOSITION 2. In the above notation, if n(G (k) is a normal subgroup in

‘-'ﬂi:} and G satisfies the Hasse principle, then there is a bijection B« Il (H),

. ere Il (H) denotes the Tate-Shafarevich group of H, and this bijection carries
€ group structure of B onto I (H).

Proof. We have the following commutative diagram:

Lik) % H'Gk,H) S H'(k, G)

¥

[1Lk,) % [1H! k,, H) & [1H" (k,, G).

.l:l ;S clear that the correspondence x (G (k) & (x) determines a well-defined
axp _from I_,(k)/n(G(k)) to _H‘(k, H). For, L(k) acts on the set H* (k, H) and
20) Is the image of the trivial cohomology class under the action of x (see
T‘n})' and 5(x) = &(y) for x, ye L(k) if and only if x = y-n(g), where ge G (k).

Crefore, this map is injective. Now, if zelll(H) then y(z)=0 and

f((v(z])=e(a(z))=o, hence a(z)=0 and zed(L(K), z=o(p). Thus

%®) = 5(p) = 0, ie. pe()(n(G (k) L(K)). m

We now discuss the validity of the Hasse principle for some algebraic

Sroups over global fields.

Lemma 3 (cf. [13], [19]). Over an y global field k, any almost simple k-group

s satisfies the Hasse principle.

ndProof. Denote by G the k-universal covering of G and let F be the
amental group of G. We have the commutative diagram

H'(k,G) - H'( G - H(k F)
lr l‘! l”
[1H! &, & = [1H' (k,, G) — [[H2 (k,, F)
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with exact rows. It is well known that p and r are injective, hence by twisting,
we get the injectivity of q.

LEMMA 4. Let ® be a non-degenerate hermitian (or skew-hermitian) T-form
as in Section 11, and let k be a global field. Then the group GU (®),, satisfies the
Hasse principle over k.

Proof We use the exact sequence (x) above to deduce the following
commutative diagram:

0- H'(k, GU(@®), %4 H'(k,PGU(®))
P 19
0 - []H* (k,, GU(®),) =] [H" (k,, PGU(®),)

where G = GU(®),, H = G,,, L= PGU(®),. By Lemma 3, g is injective. If
xe H' (k, GU(®),) and 1 (x) = 0 then q(j(x)) =0, hence j(x) =0, ie. x =0. =
LemMma 5. If the group PGU (@) satisfies the Hasse principle then so does
the group GU (@)
Proof It is the same as that of Lemma 4.

IV. Construction of some special forms. In this section we will construct
a form @ such that thL: group GU () satisfies the Hasse principle over the
global field considered. Let k be a field of characteristic # 2, let G be a k-group
and F the group (+ 1) lying in the centre of G and defined over k, where G i
considered as a k-subgroup of GL, for some n, and | denotes the identity
matrix of GL,. Let G’ = G/F and let 1: G — G’ be the projection. First we need
the following lemma.

LemMA 6. ' 7' (k) = G(kyul)(geG(K): ¢° = —g), where k" runs over

X

all quadratic extensions of k contained in a fixed algebraic closure of k, and 0
denotes the unique non-triviul automorphism of Gal(k'/k).

Proof. Let gen ' (G'(k)). Then we have n(g)” = n(g”), or equivalently
g° = +g, for all ceGal(k/k). Let I' =(oeGal(k/k): g°=g). Clearly I' is
a normal subgroup of Gal(k/k) of index not greater than 2. Let k' be the
extension of k corresponding to I'. Hence [k': k] <2 and geG(K). If k' = k,
then geG (k). Otherwise, let ¢’ be the unique non-trivial automorphism of
Gal(k'/k). Then we have g = —g and the lemma follows. =

We shall now prove that over any field k of characteristic # 2, there is
a hermitian (or skew-hermitian) form @ such that PGU (®) (k) # PGU (®), (k)
From now on we consider only forms over a quaternion algebra D of type Dw
denoted by @. Let U(®) (resp. SU(®)) be the unitary (resp. special unitary)
k-group of the form ®. Then PGU (@) (resp. PGU (@)) is the adjoint group of
U (@) (resp. of SU (®)) and they are obtained by factoring the group U (@) (resp-
SU (@) by the subgroup (+1). From Lemma 6 we see that it is sufficient to
construct a form @ such that

7~ 1(PGU () (k) # n~ ' (PGU (®), (k)
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or equivalently, such that
[k k]1=2, FueU(®)K)N\SU(@@)(K): u® = —u, ceGal(k'/k), o # 1.

First we choose k' such that k' splits D. Then U(®)(k)=0(f, k),
$U (®)(K') = SO(, k') for some quadratic form f defined over k’. Moreover, it
Is clear that the following 2 statements are equivalent:

(1)  (ueO(f, K)\SO(f, k), u® = —u).
d\e/tju) =—landu= a\/ﬁ, where k' = k (\/{_?), \/6 satisfies

) (/0 = —./86, and a belongs to the group GO(J, k) of

similitudes of f, rational over k.

For ge GO(, k'), let m (g) be the multiplicator of g and let M (f) be the group
of all multiplicators of similitudes in GO (f, k). For u in (2) we see that since
4eO(f, k), 0e M (f) and m(a) = 67'. We know that (det(a))* = 6~ 2", where
M 1s the dimension of &, and clearly det(u) = —1 iff det(a) = —0~™. To show
the existence of u in (2), we need the following lemmas.

. LemMA 7 (cf. [21]). GO(f, k') is generated by O(f, k') and its intersection
With the groups of the form GO(f,, k)x ... xGO(f,, k'), where [ = i
;l; fsz_ ... L f,, is any orthogonal decomposition of f into subforms of dimen-

on 2.

LEMMA 8. Let ¢ be a quadratic form over k', ae M (¢p), dim (@) = 2. Then
there are a,, a,e GO (o, k') such that

det(a,) = —det(a,) = m(a,) = m(a,) = a.

Proof. Let aeGO(g, k'), « = m(a). Let {e,, e,} be an orthogonal basis
of the vector space associated with ¢, ¢(e,) =7, @(e,) = f. Then for

a= X Z lEk’
3 3 NV )

r },x2+ﬁy2=}'al
{EEGO(Q' “@- x-z+fy-t=0,

mia) =a
vz + pt* = pa,

We have

Where we can assume that By # O for simplicity. Clearly x-z =0« y-t = 0. If
X=1t=0, then yz = +py, and det(a) = F« The same holds if y =z = 0. If

X'y:2:1 # 0, then easy calculation shows that t = +x and yz = +fy, and the
®mma follows from this. m
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LEMMA 9. Let f be a quadratic form of even dimension 2m over k'. For every
o€ M (f) there are a,, a,e GO(f, k') such that

det(a,) = —det(a,) =a™, m(a)=m(a,)=u0.-

Proof. We proceed by induction on m. Lemma 8 settles the case of
m=1. Let m> 1. From Lemma 7 we deduce that there is

aeGO(f, k) (GO(f,, K)xGO(fy, K) x ... x GO(f,,, k)

such that « = m(a), ie. a =diag(b,, b,, ..., b,), where for all 1 <i<m
b,e GO(f;, k') and m(b,) = a. Since det(a) = [] det(b,), and by Lemma 8,

1<i<m

det (b)) = &, o, where g, = +1, we can choose ¢ such that det(a) equals o™ of
—a™ as required. =

Now we are able to find a form @ such that the group GU (®) satisfies the
Hasse principle.

LEMMA 10. Let k be any field of characteristic # 2 and let D be a non
trivial quaternion division algebra over k. There is a hermitian (or skew-
hermitian) form @ with values in D such that

PGU (®)(k) # PGU (@), (k).
Proof. As we remarked above, it is sufficient to choose @ such that if

S =®R®K, where D=(Q’E§), k'=k(ﬁ), then there issan element

ae GO (f, k) such that m(a)= 0", det(a) = —8 ™, where m = dim &. we
identify D® k' with the matrix algebra M, (k) in such a way that if {1, i, j, ij} 1
the canonical basis of D, i*=0, j*=n, and if x4, X;, X;, X3€k, then
X = Xxo+Xx,i+Xx,j+x;(ij) is mapped to the matrix

l:x(,+3|:l VO n(x,+x, \/(._?}]
Clearly, we can choose the form @ so that the matrix of the form f under th‘:
above identification has the diagonal form diag(a,, a;, ..., az,) such tha
dy-1 = —day for 1 <t <m. For example, we can take & = diag(l, —1,.--
if & is a hermitian form and & = diag(i, i, ..., i) if & is a skew-hermitian formi
The form f is then hyperbolic, hence M (f) = (k')*. From the proofs ©
Lemmas 8 and 9 it is easy to choose a as required. m 0

COROLLARY 11. With the notation as above, for the form ® in Lemma !
and for any extension K o k, we have PGU (®)(K) # PGU (@), (K). .

Proof. This follows from the fact that [PGU(®): PGU (®),] = 2, sinc®
[U@):SU(P)] =2. = o

Now we assume that k is a global field of characteristic # 2.

LemMa 12. For the form & as in Lemma 10, the group PGU (&) satisfies th
Hasse principle over k.
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Proof. Consider the exact sequence of k-groups
1 - PGU(®), - PGU(®) —» p, — 1.
From Lemma 10 it follows that we also have the following exact sequence:
1 - PGU (®), (k) » PGU(®) (k) = p, —» 1,
hence also the following commutative diagram with exact lines:

1- H? (k, PGU {@)0) - H! (k, PGU (d’)) - HY(k, Ha)
lﬂ [ 1?
1— H H! (ku, PGU {¢)0) — H H! (k,, PGU {45)) - n H! (kys 15).

We know that « is injective, and y is too because of the global square theorem,
hence f is injective as required. w

COROLLARY 13. With the notation as in Lemma 12, the group GU (&)
Satisfies the Hasse principle over k.

Proof. This follows from Lemmas S and 12. =

The following lemma will give us an explicit description of systems of
quadratic forms mentioned in the introduction.

LEMMA 14. Let ¢ be an m-dimensional non-degenerate skew-hermitian form,
defined over a D-vector space V, where D is a quaternion division algebra with
Standard involution J. Let m: GU (®) — G,, be the k-epimorphism associating to
Cvery similitude g its multiplicator m(g). Then for every Aek”*, the fiber
X, =m"'(4) is defined by a system of m(2m+ 1) quadratic forms in 4m?+1
Variables over k. .

Proof. Let {e,, e,, ..., ,} be an orthogonal basis of ¥ with respect to
® and let #(e) = a,. For geGU (@) (k), m(g) = A if and only if the following
System of equations holds:

®(ge;, ge)=An;, for1<igm,
®(ge;, ge) = 0, for Igi<jgm

Since every «, is a skew-quaternion, each equation ®(ge;, ge) = A, gives us
& system of 3 quadratic forms and each equation @ (ge;, ge ) = 0 gives a system
°f 4 quadratic forms, all of which are defined over k. Taking the homo-
&enization of the system obtained we will have a system of m (2m+ 1) quadratic
forms in 4m?+1 variables. .

V. Counter-examples to the Hasse principle over a global field. In this
Section we will prove the following theorem, which gives various systems of
Quadratic forms not satisfying the Hasse principle over any global field k of
Characteristic # 2. We end the section by considering some examples.

THEOREM. Let k be any global field of characteristic # 2 and let m be
@ naturdl number. Then there is a k-variety X, defined by a system of m(2m+1)
Quadratic forms in 4m? + 1 variables, Jfor which the Hasse principle does not hold.
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First proof. First we state some results concerning the classification of
skew-hermitian forms of type D, over global fields of characteristic # 2. Let
@ be a skew-hermitian form of type D, with values in a quaternion division
algebra with centre a global field k of characteristic # 2. Let SU(®) and U (%)
be the special unitary and unitary k-groups respectively of @. We have the
following exact sequence of k-groups:

1-SU((@)=»U(P) > pu,— 1.
We know that if D is not trivial over k then SU(®)(k) = U (®)(k) and the
following exact sequence holds:
(1)  1-p, 5 H (k, SU(®) S H (k, U®) S H! (k, p;) = k*/k*2.

This remains true if we replace k by any extension K of k provided D is not
trivial over K. The following lemma is known, but for completeness we als0
give a proof here. _

LeMMA 15. With the assumptions as above, if D is non-trivial over a v-adic
completion k, of k and if we replace k by k, in (1), then the map d has trivial
kernel. Thus forms of type D, over a quaternion division algebra over a local field
are classified by their dimension and discriminant.

Proof. In our case, we have the following exact sequence:
(2) 0 - H*(k,, SU@®) % H? (k,, 1),
deduced from the exact sequence 1 — u, — Spin (@) — SU (&) — 1, and from the

triviality of H! (k,, Spin (®)) by Kneser-Bruhat-Tits" theorem (cf. [2], [16]). Wwe-

have to show that Im(x) = 0. First we claim that Card (H" (k,, SU(®))) < 2
Note that since H?(k,, #,) = u,, it is sufficient to show that f§ is injective:
Indeed, if B(a) = f(b), then by twisting with the cocycle b, we see that a = b
since Ker § = 0. Further, since v is injective and Card (H" (k,, SU (®))) < 2, ¢
conclude that v is onto, ie. Kera = H'(k,, SU(®)). w

Now consider the exact sequence

1-U(®)-»GU(@)>G, -1,

where m is the map as in Lemma 14, and the commutative diagram with exact
rows

GU@ (K ™ G,k - H'(kU@®) - H(k ?U{d)))

! !
[1GU @) (k,) = [1Gulk,) = ] H' (k,, U(®)—][]H" (k,, GU(P)).

It is well known that the map w need not be injective over any fle‘g
(Kneser-Springer, cf. [1], [15]). In fact, it is shown that if k is a numbc_r fiel

and D is a non-trivial quaternion division algebra over its centre k, @ is anY
non-degenerate skew-hermitian form of type D, with values in D, § is the fimit€
set of all valuations of k at which D is not ramified and Card(S) > 4, thep
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Ker(w) consists of exactly 2°72 elements, where s = Card(S) (see [1], [15]).
Notice that if chark # 2, the counter-example of Kneser—Springer still holds,
since all the facts that are needed in the functional case have been proved above
(Lemma 15); for details we refer to [1], [15]. Now, if D is non-ramified at s > 4
Valuations of k and if we choose the form @ as in Lemma 10, then the results of
Sections III and 1V show that there is A€ G, (k) such that the k-variety
X, = m™" (1), which is defined by a system of m(2m+ 1) quadratic forms in
4m? 41 variables over k, does not satisfy the Hasse principle over k. m

Second proof. The idea is the same as before, but the proof differs
slightly from the above one.

Let U(®) be the unitary k-group associated with a non-degenerate
skew-hermitian form & of type D, over a global field k of characteristic # 2
With values in a non-trivial quaternion division algebra D as above. Now take
any k-group G such that there is a k-isomorphism from U (®) into G and the
group G satisfies the Hasse principle over k. We have the exact sequence of sets

1-U(@)—-G5G/U(DP) -1,
and the associated commutative diagram

1- U@k - G{k) e (G/Ui@))(k) - H'(k, U(®))

! !
1-[JU@) k)~ ]]1Gk)-TT(G/U(®)(k,)— []H! (k,, U(®))

With exact rows. The same argument as in the proof of Proposition 1 shows that
there is an element Ae(G/U (®))(k) such that the Hasse principle does not hold
for x 1a=n"1(A). If we take G to be the general linear group containing U, i.e.
U (&) (k) = U,(®, D), G(k) = GL,(D), we see that X, = g- U\®), geG. Since
*eX, if and only if g™'-xe U (&) and the defining equations of U (®) can be
8iven by quadratic forms, X is then defined by a system of quadratic forms,
Which is obtained by “twisting” the defining system of U (®) by means of g. The
Number of quadratic forms and the number of variables are the same as before. m

Remark. The counter-examples constructed differ from the known
Counter-examples by that they give various systems with many quadratic forms
and variables and they are non-trivial in the sense that they cannot be obtained
Tom the known counter-examples to the Hasse principle just by adding
2 number of quadratic forms. It is worth noticing that since all the k-varieties
Constructed have the form g-U (@), hence they become the union of two
'.-l‘ational subvarieties for any quadratic extension k’ o k splitting the quater-
Mon division algebra D associated with ®. For, over k', the group U (@)

omes O(f), where f is a k'-quadratic form, and since the cohomological
asse principle holds for O(f) over k', the k™-variety g- O(f) has a k'-point.
ince O(f) = SO(f) U SO(f)-go, where g, is a k'-rational point of O(f)
& matrix with determinant —1), we have g-0(f) = g-SO(f) L g-SO(f)-g,.
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Thus g-SO(f) also has a k'-point, hence is k’-rational, since so is SO(f)
by virtue of the Cayley transformation. By the way, these varieties also
serve as counter-examples to the smooth Hasse principle.

Now we will consider some examples basing on the first proof of the
theorem. As we have seen, that proof is more constructive than the second one-

ExaMPLE 1. A minimal example. It is obtained from the Kneser—Springef
counter-example to the Hasse principle for a skew-hermitian form of dimension
1 (see [1], [15]). Let D = (9}"’
field k of characteristic s 2 and let S be the finite set of all valuations of k at
which D is non-ramified. Assume that s= Card(S) >4. For any skew
quaternion «€ D such that d = —Nrd (x)¢ k2 for ve S (e.g. we can take & = b
i? = 0) we define 2°~-tuples ¢; = (g;,), 1 <j <272 where ¢;, = +1 for allj, ¥
&, = 1forv¢S and []¢;, = 1 such that for any j, there is at least one ve S with

be a quaternion division algebra over a global

&5, = 1. Choose for every j an element 4;€k™ such that
(4;, d), =¢;, for any v,

where (-,-), denotes the quadratic Hilbert symbol in k,; this is possible (cf.
A. Weil, Basic number theory, Springer-Verlag, 1967, ch. XIII, § 6, Theorem 4,
or J.-P. Serre, Cours darithmétique, Paris, 1970, ch. I11, § 2, Théoréme 4, where
the results are also valid in the global case).

Then, for every j, 1 <j <2°"2 the solution of the equation

x'ourx=A;a

is in k, for all v, but not in k. We can rewrite this equation in the form of
a system of quadratic forms; for example if « =i, then the system looks 25
follows:

x3—0x3+nxi—Onxt =4,
xoxa_xl xz =t 0,

onz—exl x; - 0.

This is of course a minimal example among the ones obtained above. I*
corresponds to the case dim @ = 1. Let us consider this system more closely-
Assume that x, x5 # 0. Then x, x, # 0 and we see that the right-hand side of
the first equation is equal to zero, which is impossible. Hence we must have
xox; = 0. Then if x, =x, =0, the system becomes

{xo =x, =0,
nx3—6onx3 = 2;.
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If xo=0, x; #0, then x, = x, =0 and the system becomes:
Xo =X, =X53 =0,

If x, #0, x; =0, then x, =0 and the system becomes
Xy =x3=0,
x3—0x2 = Ay

Now it is clear that the k-variety X defined by our system is the union of two
Plane conics X,, X,, where X, is defined by the system

Xo=%x; =0
X2 {70 ’
' {nxi—ﬂnx§=l,,
and X, is defined by the system
X, =Xx3=0
X, {"3 3 ’
2 {xﬁ—ﬂxf =4

It is not hard to see that, using Serre’s theorem cited above, one can choose
A 'such that any subsystem of the system constructed satisfies the Hasse
Principle over k.

EXAMPLE 2. Let dim(®)=2. Take & =diag(i,i). Then for A
l§ j <272 as above, we also obtain 2°~2 system of quadratic forms for
Which the Hasse principle does not hold:

xix+yliy = A;i,
x"iz-i-y"it = 0,
iz+tlit = Ayi,

Or equivalently, one can write these systems explicitly as follows:
(X8 —0x3 +nx3—Onx3 +y3—Oy3 +ny2—Onyd = 4,
XoX3—Xy Xa+YoV3—y1 Y2 =0,
Xo Xy —0x; X3+ Yoy, — 0y, y3=0,
XoZy =Xy Zo—NX;23+NX3Z,+ Yoty — Y  to—NYyt3+ny;t, =0,
XoZo= 0%, Zy +1x, 2, ~0nX3 23+ Yo to— 0y t; +1y,t,—Onysty =0,
X023 =Xy 23— X321 T X329+ Yola— Yl —Yab V3l =0,
XoZy=0%) 23+ Xy 29=0%3 2, + Yoty =0y ta+ ), to—0y,t, =0,
23— 0z} +nz3 — Onz3 + 13— 0t} +nt3 — it = A
Z023=Z12y 1ty —1t 1y =0,

Z02—0z 23+ 158, — 08,1y =0,
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ExampLE 3. Now we consider the system

x3—0x3+nx3—0nx3 = 4,

XogX;—X; X3 =0
which can be regarded as a modification of the system in Example 1. We shoW
that with a suitable choice of 0, n, 4, this system does not satisfy the Hassé
principle. If xek, we set S(x):= (valuations v of k such that (0, x), = — 1),
where k is any global field and (-,-), denotes the quadratic Hilbert symbol:

First we choose 0, n such that Card (S(n)) > 4. Now we consider the following
cases:

(a) S(1+n) =3. Then we choose A such that S(n) 2 S(4) # 9.
(b) S(n) < S(1+7) (resp. S(n) 2 S(1+n) # O). Then we choose 4 such that
D # S(A) & S(n) (resp. @ # S(4) =SM\S(+n)).
(¢) In any other case, we choose A such that
S(A) = (SM\SA+m)(S(L+m\Sm).

Then, for A chosen as above, the system considered does not satisfy the Hasse
principle over k. Indeed a standard calculation shows that the above system
has solutions in k, if and only if one of the following relations holds:

(A) 0, An), =1,
(B) 0, 4), =1,
(©) (0, A1 +n), =1,

and it has a solution in k if and only if one of these relations holds for all v. But
by the choice of A each relation (A), (B), (C) fails for some v, and for every v, oné
of them holds.

Geometrically, as a standard calculation shows, the k-variety X defined by
this system is the union of the following plane conics X,, X, ..., X¢'

— — = = 0
. xo - Xl = 0, X : {xz x3 b4
¥ {r}xi—-{?nxi =4, 2 x5 —0xt = 4,
xo—x, =0, Xo—Xx, =0,
X, < x;—x3=0, X {x,+x3;=0,
x}+nx3 = A/(1-0), xi+nx3 = A/(1-0),

xo+x, =0, Xo+x, =0,
X S x,-x;=0, Xg: { X, +x;3=0,
xt+nx3 = 2(1-0), xi+nx3 = A/(1-0).
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ACTA ARITHMETICA
LIV (1990)

Sur les extensions totalement décomposées
de certains corps de fonctions

par

JEAN CLAUDE Doual (Paris)

Soient X une courbe projective, lisse, géométriquement irréductible,
tfinie sur un corps k complet pour une valuation discréte 4 corps résiduel fini
o K son corps des fonctions.

S. Saito et K. Kato ont défini dans [9] et [4] a partir du K, un groupe Cy
rfsp. Cp ) (noté C% (resp. C2 ) dans [4]) jouant le réle de groupe de classes

Pidaes (resp. de classes d'idéles pour la relation d’équivalence associée a un
Module m). Iis ont établi les suites exactes

y 0-(Q/Zy » H'(K,Q/Z) » (C* =0,
@) 0= (Q/ZY — H' (U, Q/Z) — (Lim C,n g)* — 0

0y désigne un entier lié 4 la réduction de X modulo I'idéal maximal de k, nul
Bs [e cas de bonne réduction, U un ouvert non vide de X, m dans la limite
Projective parcourant les modules de X tels que U n m = ensemble vide. Que
Viennent ces résultats dans le cas ol k = ko ((¢)) avec k, algébriquement clos
Don plus fini? L’objectif de ce papier est de montrer qu’il existe alors des
Wites exactes

(ty 0-(Q/2)~ > H'(K, Q/Z) » (C* =0,
Qy 0 (Q/2)~* = H' (Uy, ©/Z) ~ (Lim Cp)* — 0

Yy type précédent ou cette fois Cy (resp. C,, x) désigne le vrai groupe d’idéles de
K (resp. des classes d’idéles pour la relation d’équivalence associé¢ & un module
+ de X) mais qu'elles sont anti-analogues a (1) et (2) en ce sens -que le rdle de
Chtier r est joué par 2g—¢ ou g est le genre de X, & I'invariant de Ogg associé
t_la réduction de X modulo t et est maximum précisément dans le cas de bonne
“uction, Si U = X , lexactitude de (2)' (resp. (2)) traduit exactement le fait que
l:,s revétements abéliens complétement décomposés de X correspondent
"Univoquement aux revétements de méme nature de la courbe réduite X, ou
: désigne un modéle régulier de X sur Spec ko[[¢1] (resp. SpecO,). Les
®Sultats obtenus ici précisent et complétent ceux de [3].
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