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L. Consider a second order linear recurrence sequence x, = Tr(x6"), where

9 is an algebraic integer in a real quadratic field Q(\/H) and aeQ(,/d); we
ssume here that the roots of the characteristic polynomial are real and
!Irational. The main result of this paper, roughly stated, is that if a large
nough square occurs in this sequence, then one may bound explicitly further
Occurrences of squares, not only in the original sequence, but also in related
Sequences Tr(B0"), where af is a square in Q(ﬁ]. This result, however, applies
Only to terms in the sequences whose exponents have the same parity as that
for the term which is a large square. In some cases, for example when « is

2 square in Q(\/E), this “parity problem” can be disposed of on clementary
8rounds; but in general it poses a restriction on the applicability of the method.
A more severe restriction is that the known square must be large enough; we
Quantify this statement in Section 2.-Although a randomly selected sequence
Pfflbably will not have a large enough square in it, many favorable examples
EXist; we list some in Section 3. In fact, infinitely many examples exist, and it is
Possible to construct them at will,

Some work has been done in the past on classifying the squares in specific
equences, beginning with Cohn’s classification [3] of the squares in the
ibonacci and Lucas sequences. Tzanakis [11] adapted and extended Cohn’s
Wethod in the course of solving several diophantine equations. His results may
Vviewed as classifying the squares in certain recurrence sequences. Apparent-

¥, it is not possible to prove a general result by this method, however.
General results on this problem have been obtained by Pethd [7] and
S Orey and Stewart [8], [9] using Baker’s method. An account of these and
“‘j!aled results may be found in Chapter 9 of the recent book of Shorey and
Ydeman [10]. These results have the virtue of great generality, bounding not
°nly occurrences of squares, but also higher powers, or even a fixed constant
limes 4 power. However, these results are difficult to apply, because the sizes of
the constants are not indicated (presumably, they are quite large), nor is the

Manner in which the constants depend on the parameters involved.
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We focus our attention mainly on sequences x, = Tr(xe") with ¢ a unit
(which may as well be assumed to be fundamental). There are two reasons for
this: first, our results are better in this case; and second, we were led to this
problem by considering diophantine equations of the form y2—dx* =m, in
which x? naturally can be represented as a member of one or more such
sequences. As this type of equation represents an elliptic curve, Baker and
Coates [1] have given explicit, but large, upper bounds on the solutions. In
some cases, their bounds have been applied successfully to the practical
solution of a specific equation, as in the work of Ellison et al. [4] on
y?+28 = x*. Ljunggren [6] has shown that the equation Ax*—By* = C, with
A and B positive and C = 1, 2, or 4, has at most two solutions, and these (if
they exist) can be found once the fundamental units in a certain quartic field
are known. Ljunggren’s results are equivalent to classifying, or giving an
algorithm to classify, the squares in certain special reccurrence sequences. The
method of Baker and Coates more generally gives an algorithm, at least in
principle, to classify the squares in sequences x, = Tr(ae"). However, the
general practical value of such an algorithm is not clear.

The method used in this paper is motivated by the analogy between the
present problem,

(1) x? = oe"+ o8"
(bar denotes conjugation), and the generalized Ramanujan-Nagell equation
@ x2=2"+D

" treated so successfully by Beukers in [2]. We adapt his method, based on
hypergeometric polynomials, to prove a diophantine approximation result
(Theorem 1) of the following form: if in (1) x is large enough, then one has
a good lower bound

EﬂlIF

- y
for all integers y and m, with m > n of the same parity. Here C is a constant
depending on the “initial approximation” in (1) but not on m. The crucial thing
is the exponent v, which is detemined by how large the inital square is. To be
successful, one must have v < 2, since (see Lemma 5) if y? = Tr(xe™) gnd y is
large, then
y |od

-1l = —=.
@ N b
Comparison of (3) and (4) immediately leads to an upper bound on ™

assuming v < 2. More generally, instead of (3) one may work with ‘ \/By - 1}
€

provided that «f is a square in Q(\/a_i), the exponent v depends on the initia!
square in (1) only, and not on f.
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. \;Vhether or not a large square exists in the sequence, (3) leads to a good

nd on the n.umber of squares. This follows from a separation result (Lemma

':l:l consecutufe squares, which states roughly that m > 2k if x, and x,, are

: squares, “wnh m > k of the same parity. We show that if || < «, ther: are

o most I_4 large ' squares; otherwise, the number of large squares is

0g log(|a|/a)). In e1t!1er case there are O(log H(x)/loge) “small” squares. (By

polo;; n:':l n-lze)aa? thefhe:iht of o, that is, the largest coefficient in its minimal

1al.) We refer t i

rs et er the reader to Theorem 2 for a precise statement of how
As the referee kindly pointed out to it i i i

_ me, 1t 1s posssible to view an

Occurrence of a square in the sequence x, = Tr(ac") as a solution to a certain

®quation in S-units; then applyi
g pplying Theorem 1 of [5] leads t
On the number of squares. We have = " e Boune

AX+uY=1,
Where

1 -1

P il - e
2\/;, 2 Ja X_'sm'2+ﬁ’ and Y=£—%—\/r;.

Ifx .2 i ;
Xp = x?, then XY= 1a8", so any prime dividing X or Y must divide &. In

th

T;eoworst case, the field K = 0(./e, \/a) is totally real of degree 8, and

e ;‘:m 1 of_ [5] gives 2 boupd of 3:7%** solutions X and Y, where ¢ is the

i, r of primes dividing & in K. As the bound to be derived here depends
ead on the height of «, the two results are not directly comparable. For a of

\re . .
Ty large height, with a small number of prime divisors, Evertse’s theorem

Yields a better bound.
o ;t should be empl'!asized that throughout the paper we work with x_ for
+~; ; on!y. A diophantine equation of the form y? —dx* = m leads naturali’y to
V;lu being in one Or more recurrence sequences x, = Tr(ae”), for various
Dw“ of a. Thus one is interested in the more general problem x,, = +x?
- . " 4
o i\;e;, the :age; of one or both minus signs can always be reformulated as
" = X" lor n = 0, by replacing « by +&. Thus the restriction n > 0 i
“sential loss of generality. no e Re
uIt ;lgh to thank my golleague Tom Cusick for several valuable discussions
Perticg is work. In addﬁ:on, I am deeply grateful for the referee’s comments: in
Cular, the separation lemma is due to the referee. ,
2. Let n, and n, be positive i
4 1 and n, be positive integers, n, > n;, and let n =n :
fine polynomials G and H by o e e

® G- J:EIO (”z :(?)(T) = Hip= EU CL(?)L?)(_ 2y,
J J
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These are hypergeometric polynomials: G(z) = F (—n,—%, —n,, —n, z) and
H(z) = F(—n,+3%, —n,, —n, z), where F is the usual hypergeometric function.

What is relevant for our purposes is that G(z)/H(z) approximates /1 —z very
well for small z (see below). From Lemmas 2, 3, and 4 of [2] we summarize the
following information about G and H:

LeEmMaA 1. 1. (H)G(4z) and (H)H{4z) have integral coefficients.

ny ny

2. |G(2)—/1—zH(2)| < G(1)lzI"** for |z} < 1.

(Joo-7 (-

4. Let G* and H* be defined as in (5) with n, and n, replaced by n, +1 and
ny+1. Then
G*(2)H(2)—G(2)H*(2) = cz"*', with ¢ #0.
It is necessary to establish a few other simple lemmas before proving the
main theorem. Throughout this paper, G and H are defined as in (5).
LEMMA 2. For all z,
IG@) < (142"t and  |H(2)| <(1+]2])".
Proof. This follows directly from (5), since n > n,+% and n > n, —34. So
6@ < ¥ (".‘)lzl" = (1 +]z)",
ji=o\J
and similarly for H.
Lemma 3.

(:) G(1) < ﬁ

Proof. It is simple to prove by induction that the product in (3) of Lemma
1 is at most (2,/n, —1)/2n,, which is a stronger inequality thdn the lemma
asserts.

LemMMA 4. Let n and k be positive integers such that n > 4k—3. Then
n 4 Y
k { W‘ -

Proof. Since

(4m+4) _ (4m+4)(4m+3)(4m+2)(4m+ l](m) & :l:(m)

m+1 ) (m+D)Bm+3)Bm+2)Bm+1)\m/ ~3°
it follows by induction that

(0)<G 0)-=) &

m
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Hence also
4m—1 4m\ 3 4 Yn—igl1as
‘ m | \m)4 < 3_3ﬁ) 64
Similarly,
4m—2 4 4m-2314;4
m ) S\3 64
and

dm—3 4 4m—3315;4
m ) <\3R 6

Sinoe o _ n n n+3 .
r nz4k-3, i < ) where m = < | and this has one of the four
Orms treated above. Hence

n 4 n315f4 4 \»
K < F)Tc«:_“(g_r)

% o . .
e order to simplify the statement of Theorem 1, it is expedient to define

rehand some of the parameters involv i i
: ed. Throughout th
the following notation: ¢ 1 section, we e

Q(\/d) is a real quadratic field.

Bar denotes conjugation in Q(,/d).

€>1is a unit in Q(\/E)

X, =Tr(ae") is a given recurrence sequence with a > 0 in (0]

%/ = +{/ with { >0 an algebraic integer. (\/3)
BeQ(\/d) such that ap is a square in Q(/d).

Vv B/a = y/a where a is a positive integer, and y is an algebraic integer.

n=max(y, hl), ¢ = maX(%, g) and N =|¢{].
, -_'THIEJOREM L. For some k> 1, let x,=x2 a perfect square in Z. Let
0= —g&*/ue* and assume o < 1 /2, where
©) _ 3log4—3log 3 +log(l+|z,l) +log N
2kloge+3log3—4log4—log(l +lzol)—2log 8]

Le; ;
Y>0 and m be integers; assume that m > k with the same parity, and

) m;(2k+‘_°g_@£”)(1+1,m

D IOES 2 o zlnczNz .

eﬁne v by

® b= 14204+ 01201084 —@F+30)log3 +olog(1 +zo|)

2klog e+ log(¢/I8])



132 1. Wolfskill

Then

l>£,

aill\f

y
©) \ \/' emi2 1
where
35
2250.'}”}(0“"' 1){2{4(1 + |zo|)9f26k(5 +v)"

Note. The reader may prefer first to consider the situation a = f =1, in
which case {, N, ¢, a, , and 7 all disappear from (6), (8), and (9), and (7) may be
discarded.

Proof, It follows from (6) and the condition ¢ < 1/2 that

82& 33}2 " L] ;
441+ zgDIT2 " 3%

which implies that £2 > 41373 |72, and thus |z,| = |{l/{e** < 33/4'° < 1. We
will apply (2) of Lemma 1, with z = z, (n, and n, will be selected later, with

14|z0))* N2,

n, = n;). Multiplying by (: , where n = n,+n,, we have

(10) \( )G(zo)—..,fl—zo(:)H(zo) {(:)G(l)lzor'“.

n
"y

Since z, = +{/(e**, with denominator ¢,

n A n B
(nl)G(ZO) = W and (“’)H(ZO) = (TC')‘TZ
for some algebraic integers A and B in Q(ﬂ), by (1) of Lemma 1. Furthef,

S1=20 = x/fae"?
so (10) becomes

o (2)own
@~ ey S @ o
Using Lemma 3 and rearranging, we have
xB | 4] 4m g
foms < ’ 2kn®
Jae P A@Y T \/ny (e 141

where 1 = n,—n,. We denote

y
Hm‘f‘)
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and add to the above to get

(1) Ly __ xB | 1 g
I\/BEWZ \/Et:"‘rzA@Q‘l e /n (e |A[Cm2 g%
The left side of (11) is

(12) |yad(40)* — xByeim—h12
[ 9/ aem> 4407

Let K be the numerator of the fraction in (12); K is an algebraic integer in

f X 1

(13)

oA<n <agl42

A s . . .
( cl:. spec:ﬁed'later, in terrfls of m). This allows 2 consecutive choices for n,, and
rresponding consecutive choices for n,, as 4 is fixed. If K were zero for both

Choices, then in (4) of Lemm
al G/H */H*
and this is impossible, /H and G*/H* would have equal values at z,,

Since K is a nonzero algebraic integer, |K| > |K|™1. We have
IK| < ya|A|(4(Z)* + x B |f(e® 2,

CH e M (e

- (: )(4&“)"-(1 iz,
by Lemma 2, and similarly, ‘

Now,

1Bl < (""’)(4&2*}“(1 +lzo))™.

There : o
%, l:e Is no loss of generality in assuming & < 1 (the constant C is less than
€); hence y < 2./Bem2. Also,

Thy x=\/oce*+a"£§“-€\/c_ce“"2,/l+lzol.
s

14 1k < z\/ﬁs'“”"( )‘458“)-'(1 +lzol)™ (41

n
AR Hz"'(: )(4&"}”’“ Izl 7letk=m2
1

< \/E4nz(n':)(1+Izol)nz+lfzcm(2?£mfz+ztm |a1+|ﬂ£t£2kng—m;2c1)_
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At this point we are ready to specify 4; let A be the nearest integer to

m

2 BT
loge

and let the remainder be yu, with —4 < u < 4. Then
- C )i.-rp

15 g == ;

v (=

Using (15) simplifies (14) to

|Kl “:\/;4"3(n)(1+|z°|)"2+”2§”'8"N""2

(ol one )

The second term in parentheses has the higher power of & and we may
condense this, via n and ¢, to

lKl4\/;4“(")(1+|zo|)"3+”2C"‘8*"N"‘rz3nq0”46""_‘".
ny
Combining this with (12) and (11), we have
-1
(16) [ﬁ?&“’ZIAl(4C]1ﬁ4Hz( )(l+]zo|)“+IHCM&'“N”23P}(‘0”4E”1_"’]

[4] il

) 5+\/"_1 [ AT

Let L be the denominator of the left sid; of (16), so

(1?) L= 31’}'11(;9”48“1 —n][Al( )41:; +.lcu;(l + lzonnz+ 1/2 NA;zsm;z +I‘m_

n

Then (16) implies that

2na( B 2+1/2 N2\ Fln gmi2
(A3amote * (n.)(”'z"w e
Ve - '

By (15), and since |u| < 3, the second term on the right is <

|n3a}'q¢l.*2 a’l_l_lzo'l 42":(:')(1+|20|)NZN1|CF“I
\/H_II:E* g2k *

(18) 1 <dL+

(19)
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We claim that the first factor is < 1/2, and the second < 1. By (6), since ¢ < 1/2
We have ’ ,

211+ [zo)* 2 N|]
&> : 33';2 :

S0 the first factor of (19) is less than

33;2{1?"“01!2 m?n“_a”z
210 N < 6
Vm 200 V1 2°0N

as 3% < 28 By (7), (13), and (15),

S 6l — 2 ?y’n’e
ng20l=o0. p- . S
! 7 ? 2k + l———-—olgé;g'lgl‘:l) 2 = 21 ] cz N2 ]

and this shows that the first factor of (19) is < 1/2. From (13), n, f%l +2 and

1S shows that n > 4n, —3. Hence, by Lemma 4, th i
g i y a 4, the second factor of (19) is

42"1-‘-23 4 2m+a U
T (14 zoly™ * 4 N2 L2

szﬂnl

g2k

42420 4 e 1+1 1 =
s{ A\gm) (el "’N"’lﬂ“]

%Y (13). The bracket equals 1 by (6). Thus, (18) becomes

0) 1

1
1<d6L+=, ie, &>—,
2 2

From (15) and (17),

B2
@1 a7 - (6«;»::«»”“8"('—%) 1 +lzof) (m( “)4*2“(:““(1 +I'zo|')"’£2""’).

ny
The first factor of (21) is < 6ayne!/2, /1 +|zo|¢*. To estimate the second factor,
n
14| = (ni)(‘iﬂ“'lG(Zo)I < (:)(4c)"=(1 +lzol)™

9.
Acta Arithmetica LIV, 2
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by Lemma 2. Hence, using Lemma 4, the second factor of (21) is less than

2 4 M 2n n . 2kn th " nz A2n 4 & n
4\ 35m) ¢ (14 |zq)) e = | & T N"242 23 | (L lzol)"

By (13), this is at most

2k£ i 1+a42+2c 4 2+4‘l 1+2a ’
@) () N (1+12o))

4¢ 2
X[Ezkczd;z?(l_'_lzol)z] .

The first bracket is, by (8) and (15),

(82*%)”. = Emw(slké‘_)_’w < Emvskv‘pvm.

Finally, combining (20), (21), and (22) achieves the lower bound (9), and the
theorem is proved.’

Several remarks are in order concerning this theorem:

1. It should be noted that ¢ and v depend on a, &, and k only, and not on B.
Thus, one successful instance of the theorem leads to good lower bounds (9) for
an entire family of recurrence sequences.

2. In applying the theorem, it is necessary that v < 2; compare (9) with
Lemma 5 in the next section.

3. The condition (7) is not really a loss of generality, in the sense that the
ultimate goal is to bound m anyway.

4. If m and k have opposite parity, or if of is not a square in Q(\/t_i), then
in (12) K becomes an element of a 4th degree field. The lower bound that [K]| is
at least the product of the reciprocals of its conjugates is then so poor that the
method fails altogether.

3. In this section we discuss briefly some examples illustrating Theorem I-
First we show explicitly that a successful instance (i.e. v < 2) of Theorem 1 leads
to an upper bound on m.

LEMMA 5. Let y, = Tr(Pe"), where ¢ is a unit in Q(\/E), and B> 0 is in
0(./d). If y,, = y* with y a positive integer, then
y | JB
JBem?

23)

ﬁBZm *

Proof. We have
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Hence
y_ By A
\/Bgmz pem \/Bgmrz Be?™
If we

are in a situation in which Th i i
23) shoes s eorem 1 applies, comparison of (9) and

(24) m<k-5+v log C,

2—v  (2—v)loge’
Where
(25) c, = Z2alBlmtt o V(1 +|2g)

358

The followi
owing four sequences have a lar :
orem | to apply: ge enough square in them for The-

L {0, 1, 2, 5,...}, with x4, = 2x,,; +x,. Here X, = 169,

2. The Fibonacci sequence, where X, = 144

i- {1, 3, 65, 1427,...}, with‘ Xn+2 = 22Xp4y—X,. Here x, = 31329 = 1772,
- {2, 12, 146, 1764,.. .}, with x,, , = 12,4, +x,. Here x, = 1764 = 422.

In the following table, we list the values of o, v, and the upper bound on

M in
o ceE}’..4}, for these four sequences (¢ and v have been rounded to four decimal

Seq. o v m<
1 3950 1.8717 469
2 4358 19628 2862
3 3661 1.7749 142
4 3017 1.6637 73

erin eaf:h case, the upper bound applies only for m with the same parity as k,
thregy, :1:1 isf the known square. Note also that these bounds are larger than the
imposs'bl or (7) to. ap!)ly. In sequence 3 it is easy to see that odd m’s are

. arcli e, by considering the sequence mod 8. Similarly, in sequence 4 even
. pammpossb:lb]e. _For thf: other two sequences, no such simple resolution of
'y mwy %1;0 em is possible, because both sequences begin with two squares
sty - The bf)unds for sequt?nf:es 3 and 4 are small enough that it is quite
“;’- to ehmn.zate the remaining m’s by simple congruence arguments.
Theorc; nlowf gm]a1 ’a;] construction of an infinite family of examples of
e 1 » for which the exponent v improves steadily, approaching 1 in

. lmit. Let w+u,/2 be a power of 1+.,/2, so w*—2u® = (=1)". Let
fene: W +(—1), with d squarefree, and let ¢ = u+v\/3. Consider the recur-
Sequence x, = Tr(}e"), with xo = 1, x, = u, and X, =2u? (=10 = w2,

Perfect square. For w moderately large, this gives a successful instance of



Theorem 1. For example, taking w+uﬁ =239+ 169\/5, with
¢ = 169+4./1785, one finds that v < 1.4. It is easy to see that ¢ —0 and v— 1
as w increases. Many other infinite families may be constructed in this way. It
should be noted in this connection that it is easy to build recurrence sequences
with a specified large square in them; but unless this is done carefully, one has
x, = Tr(ae") with a bad value of o (or more precisely, of ¢, in the notation of
Section 2).

4. In order to apply Theorem 1 to the problem of bounding the number of
squares in a recurrence sequence, one needs a separation result on the
occurrence of two squares. The author is grateful to the referee for pointing out
the following lemma.

LEMMA 6. Let x, = Tr(ae"), where € > 1 is a unit in Q(\/&) and o > 0 is in’

Q(./d). Suppose that x, = x* and x,, = y*, where m > k > 0 and m = k mod 2,
and assume o < 1/2 in (6). Let 6, = e*o/|@| and 0, = &*"a/|a]. Then

log#8,, > 2log 6, —log 25|ad].
Proof. By Lemma 5, we have

(o™ el <\ ) <

S50
x oy 2|a|
(26) F | S T
Also,
&
?%_E_i%_i < Ixeuz_}_ygm,rz" < 2y£""’2 < 2\/0_55”'\/:&';-

It is simple to check that ./1+ |@l/ae?™ < 5/4 since m >k and ¢ < 1/2. Thus

X y —
27 77— g <3 "
If k and m are even, multiplication of (26) and (27) leads to
1 < 5|@jem 2%,

as the left-hand side is the product of two conjugate integers in Q(\/d). 1t m and
k are odd one obtains the same inequality by first factoring \/; and \/.:? out of
(26) and (27), and then multiplying. In either case, then,

e > e2%/5)al,
which may be rewritten as
0,, > 02/25|adal

as the lemma asserts.
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g, the content Of Letllma 6 15 that m > t ll‘leqlla]lly
2k, he

LEMMA 7. Assume the situation in Theorem 1.

Then v < 1+41¢.
Proof. Let 6 = ¢%*¢/|f]. From (6), we have &

Hence 0 = 43+4a3—|4-‘+-}a](l +Izol)l +0Nl ta

073 > 41 +§a3-(%+%ﬂ](l +|'ng)“””3,

and it is easy to see that in ®) v<1+ie.
The next theorem bounds

th [13 k] A
B e number of “large” squares in a recurrence

T — .
Q(\/_HEOREM 2. Let x, = Tr(ae") where ¢ > 1 is q unit in Q(\/E) and o > 0 is in
v d) Assume there is a series of s squares x. . x h h
Positipe, increasing, and of th j b U o G w B
; e same parity. Let 6; and v, be the o and v for m, in

6
)and (8), and let 0, = &2™ ¢ |7, Assume o, < 1/2and log 0, > 2log 25|x|. Then
Iog(l4+ max (0, 21log(||/x)) )

(28) 40log4 —12log3 + 12log N

log(9/5) '

s<3+

In Particular, s <7 if |a] < o

Sﬁ‘.cti?no t;: l._ Here and sul?squently ¢ and N have the same meaning as in
D @ja=+L{ with {>0 an algebraic integer, N =|{{], and

P max(—c—, g)
1 ¢
2. The dependence on (dl/x in (28), if 4] i
, if |&] > a, is somewhat misleading: in thi
, . i ; g: in this
e f:}t]lje m;y shift the sequence, replacing x,, by x, _,, with ¢ & $log(|d/a)/log e.
s shift, one has |d@ & a. The “small” squares may have been shifted into

the pe i i
that is not the issue here. A careful analysis

shoy, ative half of the sequence, but
S that the shift needed to make &) < o will keep all the m, positive except

‘Pbly m; (see (34) and (35)), thus showing that 5 < 8 in this case.
roof If v < 2 in Theorem 1 we have th i
[y < e upper b
® May rewrite in terms of 0, and 6, as per bound (24) on m, which

@ log,, < ; + ot (3+2v)log(jal/e) +2log C, .

-y 2—vy

We 5 :
Tlakinga=f,s0y=n=1i i
the 1 g C)fi 0 gmn 1in (25). Thus we may write the numerator of

C, = 2vlog(|a)/a) +log|ad| +4logN +(v+1)log o
+9log(1+]z,))+ 50log 2— 1010g 3.

(30)
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We will apply (29) with k =m;and m = m,j > i,and v = v; < 2. If |&| < « then
X )
2vlogm+{v+ Diogp = (v— l)log: <0 asv>1.
o
If a < |@ the same two terms contribute < Tlog(|al/e) in (30). By (6), since
o, <1/2,
41°N3 ) - &
33 al'ld IZO| S El' < m.
Applying the inequalities above and 6, > 625(a&)? from the hypotheses, we
have
C,—&+4)logh, < max(0, 7log(|d|/x)+ % log2
| —6log3—log25+9log(l +1z,l),

0, >

and thus
(31) C, < max(0, 7log(|&|/«))+3log6; .
Now write (29) in the form
+4
(32) logh, < 5_;"_;—‘103 6,

where 4, = C,/log6; Applying Lemma 6 successively,
log 8, > 2logf, —3log 6, = 3logb,,
(33) log0, > $log 6, > 3logh,,
log8, > %log6,.

Formula (6) for o is of the form

A
¢= log6,—B
where B = 4log4 —3log3+log(l+Izol)+1log N > 0 certainly. Thus

A
73 < 3log 6, +(log 6, —B)
using (33). Combining (32) and (33) we have

t 5+V +I13
(25) log8, <logf,., < —2—_~3_T]02 0,,

<%0, <%

which bounds s by

S+vy+4,
2—\’3
log3

log
s<3+

Bounding squares in second order recurrence sequences 141

By Lemma 7
7 2C
v3<ltrg and  4y< Slogzﬁ"l
by (33), so
log( 3C, +93’)
&S 4logf, 8 _

log$
Finally, after using (31) one finds the bound (28) on s.

For Theorem 2 to apply we need o, < 1/2 and 0, > 625(ad). These
Conditions translate to

(34) s Slog4—3log3+log N +log|l]
loge

and

(35) . 2log 5+13log Iaoi|+log|a|'

' loge

Bach of these is of the form m; > ¢, +c,log H(x)/log e. Below these bounds the
Present method gives no information, and to bound the number of squares we
have to assume that all terms in the recurrence sequence could be squares up to
this point. Of course, with a specific value of a one can determine the bounds in
(34) and (35) more explicitly. For example, if @ = +4 then { =1, and since
£ > (14,/3)/2, (34) is satisfied for m, > 11. If further o < 1 then (35) also holds
Or m, > 11. Applying Theorem 2, such a sequence could have at most 25
SqQuares X, with n = 0. One could lower the bound to 15 for sufficiently large &,
4s then (34) and (35) would require only that m, > 1.

S. We now present a generalization of Theorem 1 to the situation
%y = Tr(af"), where 0 is an algebraic integer, not necessarily a unit. Roughly
Speaking, the larger Norm @ is, the larger the initial square must be. For the
Sake of simplicity we take f=a and { =1, in the notation of Section 2.

THEOREM 3. Let x, = Tr(a8"), where a and 0 are positive numbers in Q(\/E)
Such that 6 is an algebraic integer, |0} < 1, and « = +&. For some k > 1, assume

x.;'-_-_ x2, a perfect square in Z. Let N = 08], z, = —&0*/ab*, and assume o < 1/2,
Where

(36) . 3log4—2log3+log(l +|z,))+klog N
—2klog 0] +3log3—4log4 —log(l +|z,))
Let y>0 and m be integers; assume m has the same parity as k, and

(37 (1.1
) m=k (l +a 29).




142 J. Wolfskill

Define v by
(1+20)log4—(3+30)log 3 +alog(l +z,))
(38) v=1+420+ klog(6/10) .
Then
y 9 )—mvﬂ
——1|>C'| = 3
Joom? | (|9|
where

35 Nkv,‘l
" a1+ Izl

Proof We proceed as in the proof of Theorem 1. We have

n A n = B
(":) G(zo) = (4_91;7.: and (nl)H(ZU) = @4y
for algebraic integers A and B in Q(,/d). From (2) of Lemma 1,

o 1 )0 g
l'“ﬁew(wyl‘ & Al

where 4 =n,—n, as before. Add to & = ,y/ﬁﬂ"‘”—l] to get

n o
o) -
39 | y xB (31)6(1” I .4"1 |B|l”
o | Jaomz a0 A0y & Al
We choose A to be the nearest integer to m/2k, so
mi2k=A+p, —12<pu<l1/2.

The second term of the left side of (39) has the higher power of 6, so the fraction
may be written as

C

{<6+

yA4J.9u.+tk—m]!2 —xB
ﬁz‘l‘f’ﬂ”z”‘

Let K be the numerator above; K is an algebraic integer in Q(ﬂ) We select ny
so that

(40)

oA < n <ai+2,
as before, so K # 0 for at least one choice of n,. Thus |K| > |K|™*. Now

1= (")t <)ooz

n, n,
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by Lemma 2, and Sinﬁlarly

|B| < (: )4“9*"2(1 +lzol)™.
Without loss we may assume 4 < 1, so y< 2\/§9'"12, Also,
x = JaP 7T < /a0 JTT T
_8iving an estimate on K as
K| < 2\/&3-»;2(")4“9&»,(1 + 2oy O]+ k= mi2
ny
+\/&0**’2(”)4"=9*"2(1+1z0|)~””2
ny

< 3\/5(: )“"’6“‘”(1 +lzol)'s* 1268,

Is combines with (39) and (40) to give

@y < 5L+((: )G(l )10 3a /1 +ij1) (42"=( )9“|§|*"(1 +|z.,|)"=),

n
ny
Where

L= 3&8"(" )4"2+‘|A|(1 Flzpl2t 12 gkt dy,
ny

Here we see that

5 the condition |6] < 1 is essential; otherwise, the second term

1 the right side of (41) would be exponentially growing rather than decreasing.
€ have n > 4n, —3 as before, so the second parenthesis in (41) is less than

i 4 2+ 2 _
42 1+21(§ﬁ) (1+IZOI)uI+ANu|9|2kn1

4 \2+1/6 o 1
o [ N T
This is | by (36). Since ¢ < 1/2, (36) implies that

0 % > Ej 1 3/2 prk
' ' = 33{2( +;20” N .

31}' Lemma 3 and
a0 1/2, Hence

(4’2) 5> ﬁ 2 [5a9k(u")4uz+z|A|“ +|20|}n;+1;20mz+,1):|_ 1_

(37) it follows that the second term on the right of (41) is less
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Since
141 = (")(49*)"- Gzl < (: )(49*)"*(1 Flzlr™,
ny 1
by Lemma 4 we have the bracket above bounded by

43) (6a8*/1 +Iz°|)(42“’(3:,4) 1+ |zol)"92"“’).

The second factor of (43) is

4 \tm*2 2m+a g+ & o
42m +H(F*’T‘) (1+]zq) N 6]

u K(1+a)2
< | 42+20 AN (1+|z |)l+2’N"“")(£—) ]
= 3374 0 [

4 4 0 k72
x[42(§-m) (1 +|Zol)2Nk(ﬁ)] g

The first bracket is (6/|)** by the definition of v. Finally,

0 kv 0 v(m/2 —kp) 0 )v((m +k)/2)
s =1 = -.'<-., — ’
@ @ <@

ini i he proof.
and combining the above with (42) and (43) completgs the |
Note that the analog of Lemma 5 for x, = Tr(x6") is that if x, = x*, the?
x

I&I(IFI)"

-lj<—1=]>»

S0 a\ 0

50 it is appropriate to give the lower bound for 6 as a power of 6/|0] rather lh%:

of 6. A successful example of Theorem 3 is provided by the sequen :

x, = Tr(46") with 0 =41+3./187 and N =2. Here x, = 3364 =£:[y

a.= 4308, and v = 1.9261. This example is in fact one of an infinite fa

constructed similarly to the one given in Section 3. ' ——
Note also that the method of Theorem 3 does not apply in an 1mag1n:d

quadratic field since then the condition (0] < 1 obviously cannot be fulflllw
The method of Lemma 6 applies in the situation of Theorem 3 to g!

a similar separation result:

LeEMMA 8. Let x, = Tr(a6") where o and 0 are positive numbers in Q(,/Hl)’

- - 8
0 is an algebraic integer, |0) < 1, and o = +d. Let N = |60}, and 1 = log Nﬂ;}i’ﬂ
Suppose that x, = x* and Xx,, = y*, where m >k >0 and m = k mod 2.

log 4\/‘:’&'

m> (2—1)k— o0
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Proof. Proceeding as in Lemma 6, we have

X y 2. /aN*
(44) o — e < _\é;_k_
and
(45) X _ V| 220"
9!‘{2 gufz Nm,rz

Multiplying these, we have

1 4./2a0m 2k N*
Nm_.’z < Nmfz b
Which implies the inequality of the lemma.

As |8 <1, t <1 and the lemma provides an effective separation of m
and k.

References

[1] A. Baker and 1. Coates, Integer points on curves of genus I, Proc. Cambr. Phil. Soc. 67

(1970), 595-602.
2] F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410.

[31 1. H.E Coh n, Lucas and Fibonacci numbers and some diophantine equations, Proc. Glasgow
Math. Assoc. 7 (1965), 24-28.

[41 W. 1. Ellison e al, The diophantine equation y*+k = x*, J. Number Theory 4 (1972),
107-117.

(5131 Evertse, On equations in S-units and the Thue-Mahler equation, Inv. Math. 75 (1984),
561-584,

(6] w. Ljunggren, Uber die unbestimmte Gleichung Ax* — By* = C, Archiv for Math. Natury.
41 (1938), no. 10.

(7] A. Peth, Perfect powers in second order linear recurrences, . Number Theory 15 (1982),
5-13.

BTN Shorey and C. L. Stewart, On the diophantine equation ax¥+bx'y+cy® = d and pure
Powers in recurrence sequences, Math. Scand. 52 (1983), 24-36.

| (. Pure powers in recurrence sequences and some related diophantine equations, J. Number

(103

Theory 27 (1987), 324-352.

T.N. Shorey and R. Tijdeman, Exponential diophantine equations, Cambridge University
Press, 1986,

U1) N. Tzanakis, On the diophantine equation y*—D = 2*, J. Number Theory 17 (1983),
144-164.

STATE UNIVERSITY OF NEW YORK AT BUFFALO
New York 14214
g

:?lmnm ILLINOIS UNIVERSITY
b, Miinois 60115

Received on 27.7.1987
and in revised form on 26.5.1988 (1737



	s068.tif
	s069.tif
	s070.tif
	s071.tif
	s072.tif
	s073.tif
	s074.tif
	s075.tif
	s076.tif
	s077.tif

