On the greatest prime factor of an arithmetical progression (II)

by

T. N. Shorey (Bombay) and R. Tijdeman (Leiden)

To the memory of Professor V. G. Sprindžuk

1. For an integer $v > 1$, we denote by $P(v)$ the greatest prime factor of v and we write $\omega(v)$ for the number of distinct prime factors of v. We put $P(1) = 1$ and $\omega(1) = 0$. Let a, d and k be positive integers satisfying $\gcd(a, d) = 1$ and $k \geq 3$. We put

$$\chi = a + (k-1)d, \quad x_1 = \chi/k, \quad x_2 = \max(x_1, 3),$$

$$\Delta(a; d) = a(a+d)\ldots(a+(k-1)d)$$

and

$$P = P(\Delta(a; d)), \quad \omega = \omega(\Delta(a; d)).$$

A classical theorem of Sylvester [5] states that

(1) \hspace{1cm} P > k \quad \text{if} \quad a \geq d + k.

Langevin [2] improved (1) to

(2) \hspace{1cm} P > k \quad \text{if} \quad a > k.

Further, Shorey and Tijdeman [4] showed that

(3) \hspace{1cm} P > k \quad \text{if} \quad d \geq 2 \quad \text{and} \quad (a, d, k) \neq (2, 3, 7).

Also, Langevin [3] obtained results which imply that, under suitable conditions, there exists some number $r > 1$ such that

$$P > C_1 k \log \log \log a \quad \text{if} \quad a > k^r$$

where $C_1 > 0$ is an effectively computable number depending only on r. This is an immediate consequence of the following result.

Theorem 1. Let $\varepsilon > 0$ and

$$\chi > k^{1+\varepsilon}. \quad \square$$
There exists an effectively computable number \(C_2 > 0 \) depending only on \(\varepsilon \) such that
\[
P > C_2 k \log \log \chi.
\]

By taking \(a = 1 \) and \(d = (\log \log \chi)^{1/2} \), we observe that the restriction (3) cannot be relaxed to \(\chi > k \). On the other hand, the assumption (3) is no more necessary if we are contented with \(\log \log \chi_2 \) instead of \(\log \log \chi \) in estimate (4).

See Corollary 1.

More precisely, we prove:

Theorem 2. Let \(\varepsilon > 0 \). There exist effectively computable numbers \(C_3 \) and \(C_4 > 0 \) depending only on \(\varepsilon \) such that for \(\chi_1 \geq C_3 \), either
\[
\omega \geq (1 - \varepsilon) k \log \log \chi_1 \log k
\]
or
\[
P \geq C_4 k \log \log \chi.
\]

The following result follows immediately from Theorem 2 and (2).

Corollary 1. There exists an effectively computable absolute constant \(C_6 > 0 \) such that
\[
P \geq C_6 k \log \log \chi_2.
\]

For deriving Corollary 1, we observe that (7) is a consequence of (2) if \(\chi_1 \) is bounded. In fact, in this case, it follows immediately from the Prime Number Theorem for arithmetical progressions that for \(\varepsilon > 0 \) and \(\psi > 0 \) with \(\chi_1 \leq \psi \), there exists an effectively computable number \(C_6 \) depending only on \(\varepsilon \) and \(\psi \) such that for \(k \geq C_6 \), we have
\[
\omega \geq (1 - \varepsilon) k / \log k \quad \text{and} \quad P \geq (1 - \varepsilon) \chi.
\]

2. In this section, we state results that we shall use from other sources for the proof of our theorems. Let \(F(X, Y) \in \mathbb{Z}[X, Y] \) be a binary form with at least three distinct linear factors in its factorisation over \(\mathbb{C} \). Denote by \(L \) the splitting field of \(F \) and we write \(I, R \) and \(h \), respectively, for the degree, regulator and class number of \(L \). Let \(H(F) \) be the maximum of the absolute values of the coefficients of \(F \). Let \(p_1, \ldots, p_n \) be distinct prime numbers and \(A \) some non-zero rational integer. We start with the following theorem of Győry [1] on an estimate for integer solutions of Thue-Mahler equations.

Lemma 1. All solutions of the Thue-Mahler equation
\[
F(x, y) = A p_1^{s_1} \cdots p_n^{s_n}
\]
in \(x, y, z_1, \ldots, z_n \), with \(\gcd(x, y) = 1, z_1 \geq 0, \ldots, z_n \geq 0 \) satisfy
\[
\log(\max(\{|x|, |y|\})) \leq C_7(s + 1)^{C_8 s + 1} k^{2(1 + \log(|A| H(F)))}
\]

where \(C_7 \) and \(C_8 \) are effectively computable numbers such that \(C_7 \), depends only on \(I, R, \), \(h \), and \(C_8 \) only on \(I \).

The next lemma contains an elementary fundamental argument of Erdős.

Lemma 2. Let
\[
S \subseteq \{a, a + d, \ldots, a + (k - 1)d\}, \quad s_0 = \min S
\]

Denote by \(T \) the set of all elements \(s \in S \) such that \(P(s) \leq k \). Then
\[
\|T\| \leq \frac{k \log k}{\log s_0 + \pi(k)}.
\]

Proof. For every \(p \leq k \), we choose an \(f(p) \in T \) such that \(p \) does not appear to a higher power in the factorisation of any other element of \(T \). Denote by \(T_1 \) the set obtained from \(T \) by deleting all \(f(p) \) with \(p \leq k \). Then
\[
|T_1| \geq |T| - \pi(k)
\]
and
\[
s_0^{\pi(k)} \leq \prod_{p \leq k} \left(1 + \left(\frac{p}{k} \right)^{\frac{1}{p}} \right) \cdots = k!
\]

which implies (8).

3. We apply Lemma 2 to obtain the following result.

Lemma 3. Let \(\varepsilon > 0, V \geq 2 \) and \(\chi > e^\varepsilon \). If
\[
\log k \leq (\log \log \chi)^V, \quad P \leq (\log \chi)^{1/2 - \varepsilon}
\]

then
\[
\omega \geq C_9 k \log \log \chi
\]
and
\[
P \geq C_{10} k \frac{\log \log \chi}{\log \log \chi}
\]

where \(C_9 > 0 \) and \(C_{10} > 0 \) are effectively computable numbers depending only on \(\varepsilon \) and \(V \).

Proof. We denote by \(C_{11}, \ldots, C_{16} \) effectively computable positive numbers depending only on \(\varepsilon \) and \(V \). If \(k \leq C_{11} \), we apply Lemma 1 with
\[
F(X, Y) = X(X + Y)(X + 2Y)
\]
to conclude (10). Thus, we may assume that \(k \geq C_{12} \) with \(C_{12} \) sufficiently large.
Now, we apply Lemma 1 to the binary form (12) to derive from (9) that
\[\omega((a+\mu d)(a+\mu d+d)(a+\mu d+2d)) \geq C_{13} \frac{\log \log \chi}{\log \log \log \chi} \]
for \(k/2 \leq \mu < k \). Consequently, we obtain
\[\omega \geq C_{14} k \frac{\log \log \chi}{\log \log \log \chi} - \sum_{p \leq k} \left(\frac{k}{p} + 1 \right) \]
\[\geq C_{15} k \left(\frac{\log \log \chi}{\log \log \log \chi} - \log \log k \right) \geq C_{16} k \frac{\log \log \chi}{\log \log \log \chi} \]
the last inequality follows from (9). Then, the assertion (11) follows immediately from Prime Number Theory.

Lemma 3 admits the following consequence.

Corollary 2. Let \(\varepsilon > 0 \) and \(\chi > \varepsilon^2 \). If
\[k < (\log \chi)^{1/2 - \varepsilon} \]
then
\[P \geq C_{17} k \frac{\log \log \chi}{\log \log \log \chi} \]
\[\text{where } C_{17} \text{ is an effectively computable number depending only on } \varepsilon. \]

Proof. In view of Lemma 3 with \(V = 2 \) and \(\varepsilon \) replaced by \(\varepsilon/2 \), we may assume that
\[P \geq (\log \chi)^{1 - \varepsilon/2} \]
which, together with (13), proves Corollary 2.

Lemma 4. Let \(\varepsilon > 0 \). There exist effectively computable numbers \(C_{18} \) and \(C_{19} > 0 \) depending only on \(\varepsilon \) such that for \(k \geq C_{18} \) and \(\chi = C_{18} \) we have
\[\omega \geq k \min \left((1 - \varepsilon) \frac{\log \log \chi}{\log \log k}, C_{19} \right). \]

Proof. We may assume that \(0 < \varepsilon < 1 \) and that \(C_{18} \) is sufficiently large. We put \(\varepsilon = \varepsilon/4 \). Suppose \(a < \varepsilon \chi \). Then, we write \(\mu \) for the least positive integer such that \(A := a + \mu d \geq \varepsilon \chi \). Thus \(A - d < \varepsilon \chi \) and
\[(k - 1 - \mu)d = \chi - A > (1 - \varepsilon)\chi - d \]
which implies that
\[k - \mu > (1 - \varepsilon_1)(k - 1) \geq (1 - 2\varepsilon_1)k. \]
Therefore, we conclude that there exists some \(\mu \) with \(0 \leq \mu < 2\varepsilon_1 k \) such that \(a + \mu d \geq \varepsilon_1 \chi \).

We put \(K = k - \mu \) and we denote by \(S \) the set of all integers \(A, A + d, \ldots, A + (K - 1) d \). Let \(T \) be the set of all elements \(s \in S \) with \(P(s) \leq K \).
Then
\[\omega \geq |S| - |T| = K - |T|. \]

Further, we apply Lemma 2 with \(s_0 \geq \varepsilon_1 \chi \) to derive that
\[|T| \leq \frac{K \log K}{\log s_0} + \pi(K) = \left(\frac{\log K}{\log k} \right)^{1 + \varepsilon} \pi(K) \ll \frac{K}{1 + \varepsilon} \pi(K) \]
where
\[\nu = \frac{\log(\varepsilon_1 \chi)}{\log k} \leq (1 - \varepsilon) \frac{\log \chi}{\log k} \]
if \(C_{18} \) is sufficiently large.

First, we suppose that
\[\chi < k^{1/(1 - \varepsilon)}. \]
Then \(\nu < \varepsilon/(1 - \varepsilon) \) and \(|T| \leq K(1 - (1 - \varepsilon)\nu) + \pi(K) \). Therefore
\[\omega \geq K(1 - \varepsilon_1)\nu - \pi(K) \geq (1 - 2\varepsilon_1)K \frac{\log \chi}{\log k} \geq (1 - \varepsilon)k \frac{\log \chi}{\log k}, \]
since \(K \geq (1 - 2\varepsilon_1)k \). Thus, we may assume that (15) is not valid. Then \(\nu \geq \varepsilon_1 \)
and
\[|T| \leq C_{20} K \]
where \(0 < C_{20} < 1 \) is an effectively computable number depending only on \(\varepsilon \).
Thus
\[\omega \geq (1 - C_{20})(1 - 2\varepsilon_1)k. \]

This completes the proof of Lemma 4.

Proof of Theorem 1. We may assume that \(0 < \varepsilon < 1 \). By Corollary 2 and (3), we may suppose that \(k \geq C_{18}^{1/2} > C_{18} \) and \(\chi \geq k^1 \geq C_{18} \). Now, we apply Lemma 4 and Prime Number Theory to derive that
\[P > C_{21} \log k \]
where \(C_{21} > 0 \) is an effectively computable number depending only on \(\varepsilon \).
Furthermore, in view of Corollary 2, we may suppose that
\[k \geq (\log \chi)^{1/2 - \varepsilon}. \]
Finally, we combine (16) and (17) to obtain (4).

Proof of Theorem 2. We refer to Corollary 2 to assume that \(k \geq C_{18} \) and (17). Let \(C_3 > C_{18} \). Then, if (5) is not valid, we refer to Lemma 4 to derive that
\[\omega \geq C_{19} k \]
which implies (16). Hence, the assertion (6) follows from (16) and (17).
References

SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Homi Bhabha Road
Bombay 400005
India

MATHEMATICAL INSTITUTE
R.U. LEIDEN
P.O. Box 9512
2300 RA LEIDEN
The Netherlands

Received on 22.11.1988 (1984)
The development of the theory of numbers centres around certain old problems and this book is devoted to some of them. The author's aim was to give a survey of the history of selected problems, presenting proofs of the major results concerning them and indicating the current state of research. Necessarily a choice of problems had to be made, and it was influenced by the wish to demonstrate various techniques. Two major omissions are to be noted: Fermat's Last Theorem and problems of distribution of primes.

Contents: Elementary problems (perfect numbers, Mersenne numbers, Euler's function, Egyptian fractions); Primitive roots (character sums, least primitive roots, Artin's conjecture); Problems on consecutive integers (Catalan's conjecture, Erdős-Selberg's theorem, Grimm's conjecture); Waring's theorem; Binary quadratic forms.

Waclaw Sierpiński

OEUVRÉS CHOISIES

Tome I: BIBLIOGRAPHIE, THÉORIE DES NOMBRES, ANALYSE MATHEMATIQUE

Tome II: THÉORIE DES ENSEMBLES ET SES APPLICATIONS TRAVAUX DES ANNÉES 1908-1929

Tome III: THÉORIE DES ENSEMBLES ET SES APPLICATIONS TRAVAUX DES ANNÉES 1930-1966

Les œuvres choisies de Waclaw Sierpiński sont réunies en trois volumes dont le premier contient les travaux sur la Théorie des Nombres et l'Analyse Mathématique et les deux autres - ceux de la Théorie des Ensembles et ses applications.

La liste complète des travaux scientifiques de Waclaw Sierpiński en comporte 724. Les travaux choisis pour être publiés se distinguent soit par leur actualité, soit par leur importance pour le développement des mathématiques, soit encore par la beauté intrinsèque des résultats obtenus et des méthodes employées.

Stefan Banach

OEUVRES

Volume II

TRAVAUX SUR L'ANALYSE FONCTIONNELLE

470 p., relié

Ce volume contient tous les travaux d'analyse fonctionnelle de Stefan Banach, ainsi que son fondamental traité "Théorie des opérations linéaires" et une bibliographie de ses écrits. Une ample étude de Aleksander Pelczynski présente une revue des recherches relatives aux parties de l'analyse fonctionnelle qui ont eu pour point de départ le traité de Banach et les résultats qui y sont exposés.

To be ordered at your bookseller or directly at Institute of Mathematics, Polish Academy of Sciences
P.O. Box 137, 00-950 Warszawa, Poland, telex PL 816112

Sprzedaż numerów bieżących i archiwalnych w księgarni Ośrodka Rozpraw wońkowych PAN, ORPAN, Palac Kultury i Nauki, 00-901 Warszawa

ISBN 83-01-09787-6 ISSN 0065-1036