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¢ 1. For an integer v > 1, we denote by w(v) the number of distinct prime
aCt0r§ of v and we write w(1) = 0. Let N > 2 be an integer. Let S(N) be the set
?f all integers x with 1 < x <N —1 such that N has all the digits equal to one
;1 1ts x-adic expansion. We write s(N) for the number of distinct elements of
(N). Goormaghtigh in 1917 observed that s(31) = s(8191) = 2; =

h 25_1 53_1 13 _ 3_
31 = =— 3191=2_1=M_
2—-1 5-1 2—-1 90—1

It has been conjectured that
(1) s(NNS'l, N=#31 and N #8191

c?‘ Weaker conjecture states that s(N) < 1 whenever N is a prime number
ifferent from 31 and 8191. See Dickson [3], p. 703 and Guy [4], p. 45. For
X€S(N), we have

x—1
and
3) N-1 =xﬁ
x—1

for some integer p = 3. We write
O u=I(N;x) = 3.
We prove

co THEOREM 1. Let N >2, N # 31 and N # 8191 be an integer satisfying
(N—1) < 5. There is at most one y€S8(N) such that I(N;y) is an odd integer.

6 -
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If N is a prime number, we see from (2) and (4) that [(N; y) is an odd prime
number for every ye S(N). Thus, Theorem 1 confirms (1) for all primes N with
w(N —1) < 5. It is known (see [5]) that the number of primes N < Z such that
w(N—1) <5 is at least constant times Z(logZ) > It is easy to see that
s(N) < w(N —1) whenever N is prime. In general, we prove

THEOREM 2. Let N > 2 be an integer. Then
s(N) <max(2o(N—1)-3,0), wo((N-1)<4
and

s(N) S20(N-1)—4, w(N-1)=5.

The proofs of our results are elementary. For earlier results, we refer to
[7], [2], [1], [10], [11] and [6]. In Section 2, we state notation. The Sections
3 and 4 contain lemmas for the proof of Theorem 1 and the proof of Theorem
1 is completed in Section 5. Finally, Section 6 consists of a proof of Theorem 2.

2. Let v > 1 be an integer. We refer to Section 1 for the definition of @ (v).
For v > 1, we denote by w’(v) the number of distinct prime divisors > 2 of
y and we put o' (1) = 0. Furthermore, for v > 1, we write P(v) and P (v) for the
greatest prime divisor and the greatest prime power divisor, respectively, of
v and we denote by Supp (v) the set of prime divisors of v. For an integer x > 1,
we put

{1, x=0(mod2),
©) __ 6("}‘{1/2, x = 1(mod?2).

For integers x> 1 and v > 1, we write

L (x+1,v)=1,
(6) n{%x) = {v, (x+1,)> 1
and
. vy 3L x+1#y,
(?) . q (v’x) - {v, x+1 =y,
For integers x > | and v > 1, we denote
x'+1 x'—1
‘8) A(",x)=';"{_"]_, B(U,x)= x_1§
9) A(v;x) < B(vx) <(I—=x"1)"%2A(v;x),
(10) A(v;x) < B(v;x) < 34(v; x).

The letter N denotes an integer > 2. For the definitions of S(N) and
[(N;x) with xeS(N), we refer to Section 1. For x,€S(N) and x,€S(N), we
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observe that
(11) I(N;x,) # I(N;x,),  x; # x5,
and, by (3),
(12) ord,(x,) = ord,(x,), pl(x,,x,) and p prime.

The letters y,y, and y, will denote elements of S(N) such that [(N;y),
[(N;y,) and I(N; y,) are odd integers. We write

(13) n=IN;y), n =IN;y,), ny,=IN;y,),

(14) m=n—1)2, m=n—-1)2, m,=(n,—1)2.

Thus m, m, and m, are positive integers. By (3) with x =y and u=n,
(15) N—1=y(y"+1)B(m;y),

(16) N—1=y(y+1)A(my)B(my).

By (2) with x=y,,u=n, and x = Yo, =Ny,
(17) N = B(n;y,) = B(nyy,).
By (16) with y=y,,m=m  and y=y,, m=m,,

(18) N—1 =y, (y, + 1) A(my;y,) B(my; y,) =y (p2+ 1) A(my; y,) B(my; v,).

By (17) and (14),
(19) yim<(A—-yr ) iydm, yim < (1—yrt) -t yim

Which implies that

(20) W™ <R, Em < 2y,

o By‘ the left-hand side of (17) and (18), we shall always understand the
: pressions B(ny;y,) and y,(v,+1)A(m;y,)B(m,;y,), respectively. The
atter is equal to y, (y; + DI+ DI+ DO+1), y, (0, + DO+ DT +1),
Y10 +1)(pi+1) and y,(y,+1) according as n, =17, n, =9, n, =5 and
"y = 3, respectively and, whenever n, € {3, 5, 9, 17}, the left-hand side of (18) is
Teplaced by the corresponding expressions without further reference. A similar
femark applies to the right-hand side of (18).

3. We shall apply several times the following result on Catalan’s equation.

. Lemma 1. Let 0e{—1,1}. Suppose that x> 1, u>1 and v>1 are
Integers satisfying x*—2"=0. Then 0 =1, x=v=3 and p=2.

The proof of Lemma 1 is clear.
As an immediate consequence of Lemma 1, we have
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COROLLARY 1. Let x > 1 be an integer satisfying w(x(x+1))=2. If x is
odd, then x is a prime number and x+1 is a power of 2. If x +# 8 is even, then
x+1 is a prime number and x is a power of 2.

Let m, n, n(m;y), n'(m;y), A and B be given by (13), (14), (6), (7) and (8).
We prove

LEMMA 2. Let N > 2 be an integer. Suppose that yeS(N) such Ihat.
I(N;y) =17 is an odd integer. Then
(a) Either N =127 or

(21) m(N—l]?w(y(y+l))+2.
(b) Suppose that m # 4 and w(N—1) = w(y(y+1))+2. Then m is a prime

number and
(A (m; y)
[0}

n(m;y)) =)=

Proof. We observe thatm > 3. Fpr an integer v, we derive frorh Lemma 1
that
(22) w'(y"+ >0, v
(23) o' (B(v;y) >0, v
By (15), we have
(24) o(N=1)—1=0'(N—=1) = o' ())+ & (y"+ 1)+ ' (B(m; y)).

(a) It is easy to see that
(25) o'("+1)= o (y+1)+1, m odd and N # 127,
(26) o' (B(m; y)) = o' (y+1)+1, m even.
Now, we combine (24), (25), (26), (22) and (23) to obtain (21) whenever N # 127.

22
=3

(b) Suppose that m # 4 and w(N—1) = w(y(y+1))+2 which, together -

with (24), implies that
27 @' (Y "+ 1)+ (B(m; y) = @' (y+1)+2.

Let m be even. Then, we see from (27), (26) and (22) that o’ (y"+1) = 1 which
implies that m >8 is a power of 2. Then ' (B(m; y)) = o' (y+1)+2 which, by
(27), gives ' (y"+ 1) = O contradicting (22). Thus, we conclude that m is an
odd integer. Then, since N # 127, we combine (27), (25) and (23) to derive
that w(B(m; y)) = '(B(m; y)) = 1 which implies that m is a prime number.
Further, we see from (27) that w(y"+1)=w(y+1)+1 and hence,
w(Amy)mmy)=1. =

LEMMA 3. Let N > 2 be an integer satisfying o(N—1)=5. Let yeS(N)
such that I(N;y) > 7 is an odd integer and w(y(y+1))=2. Then
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(a) Suppose that m is different from 4, 6, 8 and 9. Then m is a prime number.
Furthermore

(28 A(m;y}) O ol =
) w(q, ) 1 or w(Bmy)=1.
) If m=6 or m=9, then y =2.

Proof. Observe that m >3 and N # 127.
(a) First, we consider the case that y is odd. By (24) with w(N—1) = 5,

o (" +1)+' (Bm; y) = 3

'Which, together with (22) and (23), implies that either

(29) o' (Y"+1)=1, o' (Bmy)=2
or
(30) o (Y"+1)=2, o (B(my)=1.

Now, we argue, as in Lemma 2 (b), to obtain the assertion of the lemma if either
(29) or (30) is valid.

. Thus, we may suppose that y is even. Then y is a power of 2 and, by (24)
With o (N—1) =5, we have

Gy 0" +1)+o(Bm;y) = 4.

We may assume that o (B(m;y)) > 2. Further, since N 3 127, we see that
@(y™+1) = 1 implies that m is a power of 2 and therefore, since m # 4 and
™ # 8, we see that w(B(m;y)) > 4. Consequently, we derive from (31) that

(32) o("+1)=2,
(33) w(B(m;y)) = 2.

First, we show that m is prime. I y 2 and y # 8, we see from Corollary
I that y =22 for some integer z > 1 and then,

(B(m;y)) = (A (m;2))+ w (B (m; 2)).

Therefore, by (33), w(B(m; z)) = 1 which implies that m is prime. Thus, we may
Suppose that either y =2 or y=8. If m is even, we see from (33) that
@Q2"241)=1ify=2and @(8™2+1)=1if y =8 and this, by Lemma 1 and
™M # 6, is not possible. If m is odd, we argue, as above, to derive from (32) and
™M #9 that m is prime.
Next, we prove (28). In view of (32), we may suppose that (y+1, m) > 1
and y+1 # m. Now, we apply Corollary 1 to conclude that y =8 and m = 3.
Then (28) is valid, since B(3;8) = 73 is prime.
(b) Suppose that m = 6. Notice that '(y5+1) > 2 and o' (B(6;y)) = 2.
en, we see from (24) with w(N—1) = 5 that y is even and (32) and (33) are
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valid. Consequently, since w(8%+1) > 3, we derive that y # 8. If y # 2, we
conclude from an argument of Lemma 3(a) that y = z* with an integer z > 1
and o (B(6;z)) = 1 which is not possible. Thus y = 2. The proof for the case
m =9 is similar, since w(8°+1)>3. =

4. This section contains remaining lemmas for the proof of Theorem 1.
Ramanujan [9] conjectured that

(34) 2"-7, n=3,4,..

is a square only if ne {3, 4, 5, 7, 15}. Thus 12, 3%, 5%, (11)? and (181)* are the
only squares in (34). Nagell [8] confirmed this conjecture. We start with an
application of this result.

LeMMA 4. Let x, > 1 and x, > 1 be integers. Let p, > 11 be an odd integer
and put v, = (u,—1)/2. Then

(35) B(u,;x,) = B(7;x,)
implies that
B(v;;x,) # B(3;x,).
Proof. Suppose that (35) is valid and
(36) B(v,;x,) = B(3;x,).
Then x, > x,. If x, =2, we re-write (36) as
@x, 1247 = 2m*2

to apply the above mentioned result of Nagell to conclude that either v, =5,
X, = 5Sorv, =13, x, = 90 and then, (35) is not satisfied. Thus, we may assume
that x,> 3 and x, >4. Then, we derive from (35) and (36) that

2x§ < 3x1,  3xp ! < dx3.
Therefore, since v, = 5, we see that
x% < zxgvmv:—!] < ngﬂ

which implies that x, <4 and this is a contradiction. m
Let m,, m,, n,, n,, A and B be given by (13), (14) and (8).

LEMMA 5. Let N > 2 be an integer. Suppose that y, and y, are elements of
.S(N) such that |(N;y,) = 3. Then I(N;y,) # 5 whenever N # 31. Furthermore,
1(N;yy) # 9.

Proof. Assume that N # 31 and [(N;y,) = 5. Then, we see from (17) with
n,=5,n,=23 that y, #2 and

Y2=40t+ . 4+l V=241
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Therefore, since y, #2, we obtain
2y +y, < Y<2pi+y,+1

Which is a contradiction. The proof for I(N;y,) # 9 is similar. =
Next, as an immediate consequence of Lemma 3 (b) and simple com-
Putations, we obtain the following result whose proof is clear.

Lemma 6. Let N > 2 be an integer satisfying w (N ~1) = 5. Suppose that y,
and y, are distinct elements of S(N) satisfying o(y,(y,+1)) =2 such that
I(N;y,) and I(N;y,) are odd integers. Then

(@) If N =819, then y, =2,y,=90, I(N;y,) =13 and I(N;y,) = 3.

(b) Suppose that N # 8191. Then I(N;y,) # 13 and I(N; y,) # 19.

LeMMA 7. Let N > 2 be an integer satisfying w(N —1) < 5. Suppose that y,
and y, are distinct elements of S(N) satisfying w(y, (y, +1)) = & (y, (v, + 1)) = 2
Such that I(N;y,) and 1(N;y,) are odd integers. Then I(Niy,)#9 and
l(N;y,) #9.

Proof. There is no loss of generality in assuming that n, = 9. Observe
that o(N—1)>4, m, =4, m, >1and m, #4. Let m, = 2. If y, is even, we
Count the power of 2 on both the sides of (18) with m, = 4, m, = 2 to conclude
that y, = 2(y,+1) and thus y, > y, which is not possible. If y, is odd, then, as
above, we see that either 4(y, +1) = y, or 4(y, +1) = 2(y, +1) which, by (17)
With n, =9, n, = 5, imply that either y,|340 or y, |4 and this, by Corollary 1, is
ot possible. Thus m, # 2. Let m, = 8. Then w(N—1) =5 and each of the
fac}ms on the right-hand side of (18) with m, = 4, m, = 8 is a prime power or
twice of a prime power. Now, we see from (18) and (20) with m, =4, m, = 8
that o' (y$ +1) = ' (y2 +1) = 1 which implies that w(N—1) = 4. Thus m, # 8.

urther, we see from Lemma 6 that m, #6 and m, # 9 whenever w(N—1) = 5.
Now, we apply Lemmas 2 and 3 to conclude that m, is an odd prime.
( If y, is even, we count the power of 2 on both the sides of (18) with m, = 4
0 conclude that y; = y,+1 which, by (17) with n, = 9, implies that y,|8 and
this is a contradiction. Suppose that y, is odd. Then, as above, either
4, +1) = ¥, or 4(y,+1) = y,+1. Thus y, > y, which implies that n, = 7.

Ow, we see from (17) with n, =9, n, = 7 that y, divides B(6: 4) or 3B(6; 3).
Then we apply Corollary 1 to conclude that either y, =3, y, =16 or y, = 7,
Y2 =31 and now, (17) with n, =9, n, =7 is not satisfied. =

Lemma 8. Let N > 2 be an integer satisfying w(N — 1) < 5. Suppose that y,
?"d Yy, are distinct elements of S(N) satisfying w(y,(y,+1)) =2 such that
(N;yl) and I(N; y,) are odd integers. Then |(N;y,) #9 and [(N;y,) # 9.

~ Proof. We may assume that either m; =4 orm, = 4. Then w(N—1) > 4.
First, we consider the case that w(y,(y,+1) #3. By Lemma 7,
@(y, (y,+1))e {4,5). If either o (N—1) =4 or @ (N—1) = 5, w (y, (y, + 1)) = 5,
then m, =4, m, = 1 which contradicts Lemma 5. Therefore & (N —1) = § and
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o (y, (y,+ 1)) = 4 which implies that m; =4, m, =2, ' (y3+1) = 1. Now, we
apply (18) and (20) with m; =4, m, = 2, to derive that

(37 S+ =380 )05+

where 8 (y,) and J(y,) are given by (5). By (18), 6(y,) # 8(y,). If 6(y;) = 4, then
8(y,) = 1 and (37) is not satisfied. Thus, é(y,) = 1, &(y,) = 1 which, together
with (18) and (20) with m, = 4, m, = 2, implies that 2y} < y} < ﬁy‘} and this
is a contradiction. Therefore, w(y,(y,+1))=3. Then y, > 5. f o (N-1) =4
then my, =4, m, =2, o' (y}+1) = 0'(y3+1) = | and consequently, we obtain
(37) which leads to a contradiction. Hence, we conclude that w(N—1) = 5.

First, we suppose that m;, =4. Then y,>5.and y,.#8, since
w(N—1)=35. Observe that m,>1. Let m,=2. Then y,> 12, since
(N —1) = 5. Further, we see from (18) with m, = 4, m, =2 that3 Y y,(y,+1),
otherwise 3|y, (y, +1) which, by Corollary 1, implies that y, =2,'y, =3 or
y, =8 and this is not possible. If «'(y{+1)=1, then o'(y3+1)=1 and
w(N—1)=4. Thus

(38) o B+)=1, o'@i+1)=2

Let y, and y, be even. Then, we count the power of 2 on both the sides of (18)
with m; =4, m, =2 to observe that y, divides y,. We write

(39) V=Y, 2

Then, we see that w(y,+1)=1 and

(40) 1<z<2y,

is a power of an-odd prime. Now, we show that
41) z=y,+1

By (18) and (39), it suffices to show that (z,y}+1)=(z,y{+1)=1. If
(z,y?+1)>1, then z=y}+1 which contradicts (40). Suppose that
(z,y$+1) > 1. Then (y¢+1)/z is a prime power >y, + 1. Therefore (y{+1)/z
divides y3 + 1. Since y2 +1 # y, + 1, we see from (18) with m, = 4, m, = 2, (38),
(39) and (40) that y?+1 divides y2+ 1. Consequently,

4
O+ l)(y':I) <y3i+1

which, by (20) and (40), is not possible. This proves (41) which, together with
(39), implies that y, = y, (y, +1). Then 3|y,(y,+1) which is a contradiction.
The other cases can be dealt with similarly. Hence, we conclude that m, # 2.
Since m, # 4 and N # 127, we derive from Lemma 2 that m, is an odd prime. If
m, > 5, then y, > y, and we count the power of 2 on both the sides of (18) with
m, = 4 to conclude that y, is even and y, = y,+ 1 which, by (17) with n, =9,
implies that y,|8 and this is a contradiction. Consequently, we conclude that
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m, = 3. 1If 3|(y, + 1), then 9|y, (v, + 1) which, by Corollary 1 and y, s 8, is not
possible. Thus #(3;y,) = 1 and we refer to Lemma 2 to derive that 4(3;y,) and
B(3;y,) are distinct prime powers which, since y, > y,, exceed yi+ 1. Hence,
we, conclude from (18) with m, =4, m, =3 that

() i+1) = A43;y,)B(3;y,)
which, since y, > y,, is not possible. )

Now, we turn to the case that m, =4. It is easy to observe that
m;¢{1,2,4,6,8,9} and hence, by Lemma 3, we conclude that m, is an
odd prime. Let y, =2. Then m, > 5 and y, is even. Now, by Lemma 3,
either y3+1= A(m,;y,) or y3+1=B(m,;y,). Consequently, y,|y3 and
4 ord,(y,) = ord,(y,) for every prime p|(y,, y,). This contradicts (12). Thus
Y1 # 2 Similarly y, #3 and so y, >4. Further (v3+1)/2 < B(m,;y,)
<3y?"71/2 and yi™ < 5y8/4, since y, > 5. Consequently, we derive ‘that
Y1 < 3(5/4)"* < 4 which is a contradiction. m

‘LEMMA 9. Let N > 2 be an integer satisfying o (N —1) < 5. Suppose that Y

and y, are distinct elements of S(N) such that |(N;y,) and I(N;y,) are odd
Integers. Then I(N;y,) # 17 and I(N;y,) # 17.

Proof. There is no loss of generality in assuming that. m; = 8. Then
WO(N-1)=5, w(y, (‘y1 + 1)) = 2 and each of the factors on the left-hand side of
(18) with m, = 8 is either a prime power or twice of a prime power. Further, we
derive from our lemmas that m, is an odd prime number and
@(y, (v, +1)e{2,3}.

Let w(y,(y,+ 1)) = 2. We count the power of 2 on both the sides of (18)
Wwith m, =8 to conclude that y, is odd and either 8(y,+1)=y, or
8y, +1)= y2+ 1. Thus y, > y, which implies that m, € {3, 5,7}. In particular,
Y2+1 # m, and then, by Lemma 3,

w(d(mzy,))=1 or (B(myy,)=1
Suppose that w(B(my;y,)) = 1. Then w(A(m,;y,)) = 2. Furthermore,
P(N=1)=(01+1)/2=B(my;y,), A(myy) <(i+1Dyi+1)/4
Which, together with (10), imply that y$+1 < 3(y$+1)(y?+1)/2 and this is
a contradiction. If (A (myy,)) = 1, we secure similarly a contradiction.

Thus, we may suppose that w(y,(y,+ 1)) = 3. Then y, > 5. By (18) with
m, =8 and Lemma 2,

P(N—1)=46(y,) (¥} +1) = B(my; y,)

Y+ DEI+HDOT+HD) =0 ya (2 + 1) A(my; ).
Therefore, since y, > 5, we derive that

Sy <Sy32TlA,  S(y)yrrtt < Syi2
Which imply that 2y% <25 and this is not possible. m

and
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LEmMMA 10. Let N > 2 and N # 31 be an integer. Suppose that y, and y,
are distinct elements of S(N) such that (I(N;y,)—1)/2 is a prime number and
I(N;y,) =3. Then o(N—1)>6.

Proof. We suppose that o(N—1) < 5. Since N # 31, we see from Lemma
5 that m; > 2. Then, since N # 127 may be assumed, we derive from Lemma 2
that w(N—1) > 4 and

(42) w()’l(}'1+]))=2 or m(yl(}’1+l))=3'

As in the proof of Lemma 4, we apply a theorem of Nagell to conclude that
¥y > 2. We shall apply (18) with m, = 1 and (19) with m, = 1, y, > 2 without
reference in the proof of Lemma 10. Let n° = '(m,; y,) be given by (7). We put

'f’={l’ “3(}’1(.1’1"'1)):3,
n, oy, +1)=2.

By Lemmas 2 and 3, there exist ve{0, 1} and a prime power

Q,€{A(my; y)¥, B(my; y)} :=U

such that

(43) y2+v=4,0,

where ¢, is a positive integer satisfying (q,, Q.v) =1 and
(44 l<gq,<@y,—Dy.

Let v,€{0, 1}, v, #¥v and Q, €U, Q, #0,.
First, we consider the case that ¥ = 1, If g, = y,, then we see from (43)
that y,+v, =(y,+1)Q,, and

W1 (Qv_Qvl)_Qvl =V—V

thus Q, = +1(mod y}) which is not possible since y, > 2. Thus g, # y;-
Similarly g, # y, + |. Let w(y,) = 1. Then, by (44) and g, # y,, we observe that
(4,» y,) = 1. Thus y,+v, = 0(mod y,). Also, by (43), y,+v = g,(mod y,). Con-
sequently g, = v—v, (mod y,). Now, by (44) and g, # y, +1, we see that v =0
and go = y,—1. Thus y,+1 = (y, = 1) Qo+ 1. If @(B(m,; y,)) = 1, we can take
Q, = B(m,; y,) and then, y,+1 = y7* which implies that m, = 1. Therefore,
w(B(my; y,) > 1. Then Q, = A(my; y,) and w(y, (y, +1)) = 2. Now, we see
that (y, —1)|B(m,; y,) which implies y, —1 = m,. Now, we verify that y, # 4
and y, # 8, since w(A4(7; 8)) > 1. Consequently, y, = 2 for some prime p > 5
and y, +1 = 274 1 is prime. This is a contradiction. Thus, we may assume that
w(y,) > 1. Then, we derive from (42) that w(y, (y, +1)) =3 and o (y, +1) = 1.
Now, we apply Lemma 2 to observe that w(Q,)=1 and

(45) ! yZ + II'll o qw Ql‘]
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Where g, is an integer satisfying
(46) [qW‘v Q\-,] = l') 1< 4., < 2}'1 -1.

We argue, as above, to show that q,, # ¥y +1. By (43) and (45), we see that
4.4q,, = y,(y, +1) which, since w(y, +1) = 1, implies that either (y, +1)|g, or
W+ 1)lg,,. Now, we refer to (44) and (46) to conclude that either g, = y, +1 or
4., = y,+1. This is again a contradiction.

Now, we turn to the case that ¥ # 1. Then w(y,(y;+1))=2 and
Y =n"=m, =y, +1. Then y, = z} for some integer z, > 4, since y, # 4 and
Y, #8. Thus m, > 17 and

(47) B(m,; y,) = A(my; z,) B(m,; z,).

'_rhen w(N—1)=5 and each of the factors on the right-hand side of (47)
5 a prime power > (2y,—1)y. Then, we see from (44) and (47) that
Q,, = B(m,; y,) and (Q,,> y2+v) = 1. Then, (45) and (46) are valid and, as
carlier, q,, # y, and g,, # y,+1. Consequently, since w(y,(y,+1)) =2, we
derive from (46) that 4y,» y1)=1=1(q,,, y;+1)=1. Thus g, =1 which
Contradicts (46). m

Lemma 11. Let N> 2, N #31 and N # 8191 be an integer satisfying
@(N—1) < 5. Suppose that y, and y, are distinct elements of S(N) satisfying
“’(ylly,+l))=2 such that I(N;y,) and I(N;y,) are odd integers. Then
(I(N; y1)—1)/2 and (I(N; y,)—1)/2 are odd prime numbers.

. Proof. We may assume that N # 127. Either m, > 1 or m, > 1 which
Implies that o(N—1)=>3 and m; > 1. If o(N—1)=3, then m; =2, m, = 1
Which is excluded by Lemma 5. Thus, either w(N—1) =4 or w(N —1) = 5. By
Lemmas 8 and 9, m,, m,¢{4, 8). Further, by Lemma 6, m, ¢{6, 9} and
M, ¢{6, 9} whenever w(y,(y,+ 1)) = 2. Now, we apply Lemmas 2, 3 and 10 to
Conclude that m, and m, are prime numbers. If m, = 2, we count the power of
2 on both the sides of (18) with m,; = 2 to arrive at a contradiction. Similarly,
We derive that m, # 2 whenever w(y,(y,+1)) = 2. Further, we argue, as
Carlier, to conclude that @'(y3+1) > 1 whenever m, = 2.
Thus, we may suppose that m, =2, w(y,(y,+1)) > 2 and &' (y3+1) > 2.
Then o(N=1)=5, o(y,(y,+1) =3, o’ (y3+1) =2 and y, > 12. Let y, = 2.
en m, > 5, since N # 127. Further, since the left-hand side of (18) with
M, =2 is not divisible by 4 as well as 9 and 3} (y3+1), we see that
o(y, (y;+1)) > 4. Thus y, # 2. Similarly y, = 3 implies that y, = 12 which is
€asy to exclude. Similarly, we verify to exclude the possibilities y, € {4, 7, 8}
Whenever m, =3 or m, = 5. Thus y, >4 and, since w(y,(y,+1)) =2, we
Observe that y, > 16 whenever m, =3 or m, = 5. We shall utilise these
Observations and (18) with m, =2, (19) with my; =2, y, > y,, y, 24 and
Y1 > 16 whenever m; = 3 or m, = 5 in the subsequent argument of this lemma
Without reference. First, we consider the case that #' = 1 where #' = y'(m; y,)
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is given by (7). Put V.= {A(m,; y,), B(m,; y,)}. There exists a prime power
R, eV such that

(48) d(y)(y3+1)=riR,;
where r, is a positive integer such that w(r,) =1, (r;, R;) =1 and
(49) ry <26(y2) ;.

Observe that r, = 1 (mod 4). Now, since @(y,(y,+1)) =2, we derive that
r, # yy. Ifr, = y, +1, we see from (49) that 6 (y,) = 1 and then, as in Lemma 8,
(48) and (12) lead to a contradiction. Then r, divides R, where R, € V'such that
R, # R, and w(R,r;") = 1. Further

(50) 5D+ DR T3 = 20 +1)
and
(51) PO HDS205+D  or  y R <20,+1)

By (50) and w(R, r;!) = 1, we derive that R, r; ' < y,+1 which implies that
m, =3 and in this case, (51) is not satisfied.

Next, we turn to the case that ' # 1. Then n' = m, = y, + 1. Therefore
y, =22, z, >4, m; > 17 and the factors on the right-hand side of (47) are
distinct prime powers. Then, by Lemma 3, A(m,; y,)/n’ is a prime power
> y,+1 and hence, it divides y}+1. Now, neither of the factors on the
right-hand side of (47) can divide y3+1, otherwise

A(my; z))A(my; y,) < '7’(}'%‘1' 1)

which is not possible. Further, we notice that each of the factors on the
right-hand side of (47) is less than y,. Finally, one of these factors occurs in the
factorisation of y, and the other in the factorisation of y,+1. Consequently,
w(y,(y,+1)) = 4 which is a-contradiction. m

LemMa 12. Let N > 2 be an integer satisfying w(N—1)<35. There is at
most one yeS(N) such that w(y(y+1))=2 and I(N;y) is an odd integer.

Proof. By Lemma 11, we may assume that y, and y, are distinct elements
of S(N) satisfying w(y;(y;+1)=2, i=1,2 and m,, m, are odd prime
numbers. We count the power of 2 on both the sides of (18) to conclude that
y; #¥,(mod 2). Now, there is no loss of generality in assuming that y, is even
and y, is odd. Then

(32) Y=y +1

which, together with (17) and Lemma 1, implies that y, > 6. If y, =8, then
m, = 3 and the lemma can be verified. Thus y, = z} where z, = 22" for some
integer v > 2. Then (47) is valid, the factors on the right-hand side of (47) are
distinct prime powers and w(N—1)=S5. Further, they are less than
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A(m}; yo)/n’ where n' = n'(m,; y,) is given by (7). Each of these factors is
Coprime to y,+1. If either of these factors is equal to y,, we see that
Y2+1 # 0 (mod 4) which implies that y,+1 =2 and this is a contradiction.
Now, we apply Lemma 3 to conclude that
P(N—1)= A(my; y,)/n’
and
P(N—-1)= A(my; y;,) or

Suppose that P(N—1) = A(m,; y,). Then

P(N—1) = B(my; y,).

A(mg; y)in' = A(my; y,).
Further, since @(N—1) =5, we see that w(B(m,; y,)) =2 and therefore
(53)  B(my; y)) = B(my; y,).
B}’ (17), (53) and (52), we see that y,|2m, and y,|(m, —1) which, since y, is odd,
Imply that y, = 1. Thus, we may assume that P(N—1) = B(m,; y,). Then

A(my; y)/n' = B(my; y,),  B(my; y,) = A(my; y,).
Therefore :
B(my; y) < Almy; y)/n' < A(my; yy)

Which is a contradiction. =

LemMMA 13. Let N> 2, N #31 and N # 8191 be an integer satisfying

;"(N —1) < 5. Suppose that y, and y, are distinct elements of S(N) such that
(N; y,) and I(N; y,) are oc.id integers. Then

o,y +1)=3 and  o(y,(y,+1) = 3.

Proof. By Lemma 12, we may assume that w(y,(y,+1))=2 and
@(y,(y,+1)) > 3. Further, we apply Lemmas 11 and 2 to derive that m,, m,
are odd primes and w(N—1) =5, w(y,(y,+1))=3, y, > 5. If m; =3, we
derive, ag earlier, that y, iseven, y, = y,+1 and y,|6 which imply that y, =3
and this is a contradiction.

Thus, we may assume that m, > 5. Then y, # 8, otherwise w(N—1) > 5.
:—ﬂ n' =n'(my; y,) and n = n(m,; y,) be given by (7) and (6). Then, we observe
fom (18) and Corollary 1 that

(54)
Then, by (19), (54) and y, > 5,

(85) A(my; yo)in > 3y + D2
By Lemmas 2 and 3,

(56) P(N—1)=B(m,; y,)

n3;y)=1.
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and
(57) P(N—-1)=A(my;y)m or P(N=1)=B(my;y,).
First, suppose that
(58) P(N—1) = B(my; y,).
Then, by (56) and (57),
(39) B(m,; y;) = B(my; y,)
which, together with (18), implies that
,A(my; A(my; y,)
(60) Y1y +1)n ( ';:_yl)=}’2(.}’z+1)’?—‘—; .

By Lemma 2 and (55), the last factor on the right-hand side of (60) is a prime
power dividing the last factor on the left-hand side of (60). If # = m,, then we
see from (54), (60) and Corollary 1 that m, >5 and (y,(y,+1), m,) = 1.
Consequently,

61) A(my; y,) divides A(m;;'yl)_
n n°n
Therefore
A(m,;
(62) Afmy; yy) < 2i vy = 2

We combine (62), (59), (9) and y, > 5 to obtain
A(my; y;) < 24(my; yo)/mn’
which implies that

(63) n=n=1
Then
(64) A(my; y,) = A(my; y,);

otherwise, by (61), (63), (59), (9) and y, 25,
A(my; y,) < A(my; y,)/3 < 24(my; y,)/3

which is not possible. Now, we combine (60), (63) and (64) to conclude that
vy, (¥;+1) = y,(y,+1) and this is not possible, since y, # y,.
Thus, by (57), we may assume that

(65) P(N—1) = A(my; J’.x)/’?!-
Further, by (65) and (56),
(66) , A(my; y)n' = B(my; y,)
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Which, together with (18) and Lemma 2, implies that

A(my; y,) m(A(mz; J’z]) —1
no n '

(67)  y, vy + 1)1 B(my; y,) =y, (y,+ V)1

We argue, as before, to derive from (67) that

(68) A(my; y)fn divides B(m,; y,)/n
Which implies that
(69) n<sn.

'N(_IW, we show that #' = 1. Suppose that n" # 1. Then ' =m, = y, +1. Then,
1Lis easy to see that y, = z} for some integer z, > 4 and (47) is valid. Observe
that the factors on the right-hand side of (47) are prime powers and, by (20),
€ach of these factors exceeds (y,+ 1) whenever m, > 7. Then, by counting the
Power of m, on both the sides of (67), we see from Corollary 1 that
N(my; y,) = 1form, > 7.1fm, = 5, then m, = 7 and the left-hand side of (67) is
Rot divisible by 25; thus #n(5; y,) = 1. Hence, by (54),

(70) n(my; y)=1," my=3.
Now, we see’ from (68), (70) and '(47) that
() A(my; y,) < B(m,; z,).
Then, we combine (66) and (71) to derive that
(V7 + 1)/m? < 5y527Y/4 < 254 (m,; y,)/16 < 2527 1/12,
Since Y225 and z, > 4. Thus
Y2 < 25m2 /12

Which is not possible, since Y1 = 4 and m; > 5. This proves that 5’ = 1 which,
t{7'g_ethf.=r with (54) and (69), implies that n = 1. Now, we argue, as earlier, to
del:lve from (68) that B(m,; y,) = A (m,; y,). Then, (67) implies that y, =y,
Which is a contradiction. m

5. Proof of Theorem 1. We verify that s( 127) = 1 and thus, we may assume
that N % 127. Suppose that y, and y, are distinct elements of S(N) such that
l(N; y,) and I(N; y,) are odd integers. Let m,, m,, n,, n,, A and B be given by
(13), (14) and (8). By Lemma 13, we conclude that o(y,(y;+1)) >3 and
G“(J’z(y2+l)) 23. Thus y,>5 and y,2>5. If m;, =4, then o' (y}+1)
=a'(y}+1)=1 and we argue, as in Section 4, to conclude that (18) with
m, =4 is not possible. Similarly m, s 4. For i = 1, 2, we apply Lemma 2 to
derive that m; is a prime number whenever m; > 1 and the possibility m; = 1 is
®Xcluded by Lemma 10. Thus m, and m, are prime numbers.

First, we consider the case that m, >3 and m, > 3. By Lemma 2, we
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derive that w(N—1) =.5, o(y; (v +1) = o(y,(y,+1) =3 and
(72) P(N—1) = B(m,; y,) = B(m,; y,).

Now, we apply Lemma 4 to derive from (17) and (72) that m, > 5 and m, > 5.
Then, by (19) with y, =5, y, 235,

(M) A(mgy)ing > 417, Almy; yo)/n, > (0 +1)

where n, = n(m,; y,) and n, = n(m,; y,) are given by (6). Now, we see from
Lemma 2, (18), (72) and (73) that

(74) Almy; y)ing = Almy; y)/n,.

We combine (18), (72) and (74) to derive that

(75) : N ys (V1 +1) =13 p2 (2 +1).
By (17), (72) and y, = 5, y, = 5, we see that

(76) Y1 <5/ y5,  y; <(5/4**y,.
Since y, # y,, we observe from (75) that either n, # 1 or 5, # 1. Furthermore,
(75) and (76) imply that 5, = m, and 1, = m,. Now, we combine (74) and (75)
to obtain

it —yptl =y, -y,

which, since m, and m, are odd, implies that

yi+y3 <ly,—yil <max(y,, y,)
and this is not possible. ‘

Thus, we may assume that either m, = 2 or m, = 2. There is no loss of
generality in assuming that m,=2. Then m, >3, w(N—1)=5 and
o(yy (yy+1)) = 3. By (18) with m, =2, Lemma 2 and (19) with m, = 2,
¥ =5, y, 25, we see that

A(my; yi)/ny <y, +1
which implies that m; = 3, n, = 3 and y, <20. If y, =5, then B(3; y,) = 31
divides y, (y,-+1) which implies that y, > 30 and this is not possible. Similarly,
v, {11, 17, 20}. Furthermore, y, # 8 and y, # 14, since w(y, (y;+1)) =3. =
" 6. Proof of Theorem 2. If x € S(N), we see from (3) that @ (N — 1) > 2. Thus,
we may suppose that @ (N —1) > 2. Further, we may also suppose that N # 31.
We assume that _ ‘

, . 20(N—1)-3, o(N-1)<4,

7 3> {Zw(N— )—4, o(N—1)>5
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and we shall arrive at a contradiction. We denote by T(N) the set of all xe S (N)
Such that

(78) I(N; ) > @(N—1)+1
and let T, (N) be the complement of T'(N) in S (N). We write ¢(N) and t, (N) for

¢ number of distinct elements of T(N) and T, (N), respectively. By (4) and
Mma 5, we derive that

(19 {m(N—l)—Z, o(N-1)<4,
4L (N) < o(N=-1)-3, w(N-1)=5.

By (77) and (79),

(80) t(N) = w(N-1).

Let

@1) X;>%> .. > X,

t =t(N),

be elements of T(N). By (3), we see that

) Supp(x, ... x,) < Supp(N—-1)
Which, together with (80), implies that

®3) t2o(N=1)> o, ... x,).

Suppose that
84) t=w(x,...x)
Then, we observe from (83) and (84) that w(x, ... x) = w(N—1) which,

t - . ;
lzgether with (82), implies that Supp(x, ... x,) = Supp(N —1). Now, we refer
(3) to observe that

8
®3) N=1 =%}, .0es %]
W ; .

here the right-hand side denotes the least common multiple of x,, ..., x,. We

(sllt Hy =I(N; x,). Then, by (78), u, > (N —1) and we see from (3). (85) and
1) that

TP < By —1;x) < x5 ... x, < Xy
C y
O0sequently, we derive that t > w(N—1) which. by (83) and (84). is not
Possible,

Thus, we have shown that

(86) £ 00X o X

= Acta Arithmetica LI 2
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For every prime divisor p of x, ... x, we choose f(p)e T(N) such that
I{N; f (p)) is maximal among all the elements x € T (N) such that p|x. In view of
(86), there exists x, € T(N) which is not in the range of f. We put p, = I(N; x,).
For a prime p dividing x,, we see from (12) that

ord, (xo) = ord, (xp),  xo =f(p) # Xo.
By (78),
87) I(N; Xo) > o = @(N—1)+1.
Now, we derive from (17) that
(88) Pt < (x,, Xb) < Ni/Hotio=1)

for every prime p. By (3), we see that w(x,) < w(N—1) and consequently, we
derive from (88) that

(89) g N(w{N— 1) = 1)nolpo = l]’

On the other hand, we see from (2) that

N 1f{po—1)
(90) 5 5, (E) _

Finally, we combine (90), (89) and (87) to obtain
N3 < 2MN~I}+1 < 2N

which is not possible. m
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