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1. Introduction. The main aim of this paper is to study the reducibility over
the rational field Q of polynomials F(x™, x™,..., x"™), where k>3 and
FeZ[x,, ..., x,] is a non-reciprocal polynomial. For k = 3 we shall establish
a special case of the conjecture formulated in [8] and give a necessary and
sufficient condition for reducibility over Q, apart from cyclotomic factors, of
every non-reciprocal F(x™, x", x"*). For k > 3 we estimate the number of

integer vectors n = [n,, n,, ..., n,] satisfying h(n) = max |n| < N, for which
: = : . 1 1=isk
the said conjecture fails. This estimate leads to an analogue of Hilbert’s

irreducibility theorem. The starting point is the following theorem, which seems
of independent interest.

THEOREM 1. Let K be any field, P, QeK[x,, ..., x,], (P, Q) = 1 and either
charK > 0 or charK =0, k < 3. There exists a number c,(P, Q) with the

Jollowing property. If n = [ny, n,, ..., n, e Z*, & # 0 is in the algebraic closure
of K and

(1 PE™, 8™, .. EM)=Q@E™, 8™, ..., ™) =0
then either &% = 1 for a suitable integer q > 0 or there is a vector y€ Z* such that
0 <h(y)<c, (P, Q)
and
yn = 0. <

For K = Q, k arbitrary, the special case (P, Q) =1 of Lemma 9 in [9]
asserts under the same assumption (1) that either ¢ is conjugate over Q to &~ *
or Bn =0 with geZk,

() 0 < h(p) < ct(P, Q),

Where c}(P, Q) is explicitly given in terms of the degree and of the coefficients
of P, Q supposed integral.
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From the proof of Theorem 1 given below an explicit expression for
¢,(P, Q), in the case k =3, P, Qe Z[x,, x,, x5], can also be derived and
preliminary calculations show that it is smaller than c}(P, Q). However the
calculations are cumbersome and therefore not included.

For k > 3 the method of proof of Theorem 1 gives the following

THEOREM 2. Let P, QeC[x,, ..., x;], (P, Q) = 1. The number of integer
vectors n=[n,, ny, ..., m] such that

max |n| < N,
1<i<k

and for some & (1) holds, but & # 0, 1 for every integer q > 0, is less than

o min{k.6} (l(}g N)] 0

P N 2k—2 _
Q) (loglog N)*’
where for k < 6 the logarithmic factors can be omitted.

Formulating precisely the consequences of Theorem 1 and 2 concerning
reducibility of polynomials over Q we shall use the notation introduced in the
former papers of this series, which we recall for the convenience of the reader.

For a field K and a non-zero polynomial FeK[x,, ..., x,] the notation

5
F = const I] F&

a=1]

means, in addition to the equality, that polynomials F, are irreducible over
K and relatively prime in pairs. If K = Q the letter K is omitted from the

symbol c—%—“. Reducibility without qualification means reducibility over Q.
k
If ¢ = [[xFF(x,, ..., x,) where «; are integers, not necessarily positive,
i=1

FeK[x,,...,x] and (F,[] x) =1 we set
i=1
Jé=F.

k
i=

A polynomial FeK[x,, ..., x,] is called reciprocal if

JFGT, oo i )= 2 F Xy, oens %)

If
J¢ = const aI=]1 Fee
we set
LF =const [[*F¢ (only for K=Q), KF =const [[**Fz,
a=1 a=1

Reducibility of lacunary polynomials, X . 49

where [* is extended over all factors F, that are not reciprocal, [T** is
k
¢xtended over all factors F, not dividing J([] x¥—1), for any vector

[0,,...,83#[0,...,0].

In particular, if FeQ[x], KF is JF deprived of all its cyclotomic factors.
The leading coefficient of KF is by definition equal to that of F.
JO=KO0=L0=0.Fora polynomial FeQ[x,, ..., x,]||F]| is the sum of the
Squares of the coefficients of F,

|F| = maxdeg,, F.
i
For a vector aeR* its coordinates are denoted by yyvees By

h(a) = max |a|. The scalar product of vectors a, b is denoted by ab, the vector
1€i<k

Product by a x b, otherwise vectors are treated as matrices with one row. For
a matrix 4 = [a;;], h(A4) = max|a;j|, for an algebraic number 0 h(6) is the usual
height. Small bold face letters denote vectors, capital bold face letters sets, fields
Or matrices, ¢, (P, Q), ..., cgs(k, S) denote real numbers depending only on the
Specified arguments.

We have

THEOREM 3. Let Fe Z[x,, x,, x5] be irreducible and non-reciprocal. There
exists a number c¢4(F) with the following property. For every vector ne Z* there
exists an integral square matrix M = [ui;] of order three and a vector
v={v,,v,, v;]€Z3 such that

@) 0 < iy < py < exp27-2W1-5 (i), p; =0 (i <)),
(33) n=oM )
and either :
3 3 k1 i s
“,) JF(H i, T v 11 yfﬂ) =const [[ F,(y;, ¥3» ¥3)™
i=1 i=1 i=1 a=1
implies e, =1 (1< 0 <),
@, KF(x™, x", x") = const [] KF,(x", x"2, x*%)
a=1

Or there exists a vector ye Z® such that
0 < h(y) < c5(F)
and
‘yn = 0.

THeoREM 4. For every polynomial FeZ[x,, x,, x,] there exist numbers
Calr, F) (1 < r < 3) with the following property.
If n=[n,n,,ny]eZ® and JF(x™,x", x") is not reciprocal
* ~ Acta Arithmetica LUIL. 1
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KF(x™, x", x™) is reducible if and only if there exist an integral matrix
N = [vy] i<t of rank r and a vector ve Z" such that
J

0 < h(N) < ¢4(r, F),
n =N,

KF(HIJ’."”, I1 y!",‘ﬂy.’") =G,G,, G;eZly;,....y] (=12)
i= i=1 =i

and
KG,(x*,....,x"¢Z (i=1,2).

A result similar to Theorem 3, but concerning polynomials in two
variables has been given as Theorem 2 of [8]. The comparison shows two
differences. First that theorem asserted for every vector ne(Z™)?* the existence
of an integral non-singular matrix M with properties similar to (3) and (4) (M
not necessarily triangular) and with nonnegative entries, while in Theorem
3 above the components of v may be negative. Secondly, on the right-hand side
of the equality corresponding to (4,) the factors occurred with exponents e,,
while in (4,) they occur with exponent 1. In fact the exponents must be 1 for
every non-singular matrix M, as it has been shown in [9], p. 148. As to the first
difference, in virtue of the results of Schmidt [15] and Low [7] the
nonnegativity of the components of v can be achieved for ne(Z*)? at the cost
of loosing the triangular form of M, but the additional complicacy in the proof
would obscure the idea of the argument.

A result similar to Theorem 4, but concerning polynomials in two
variables has been given as Theorem 3 in [9]. The comparison shows again two
differences. First, the assumption of the present theorem is, at least for an
irreducible F, stronger: it is assumed that JF(x", x", x™) is not reciprocal,
while in [9] it was assumed only that KF(x,, x,) = LF(x, x,). Secondly, the
assertion of the present theorem is weaker: it gives only a necessary and
sufficient condition for reducibility of KF(x™, x", x™), while in [9] the
factorization of KF(x™, x™) into irreducible factors was completely described.
These deficiences are inherent in the present approach.

Theorem 2 has the following application to reducibility of polynomials
over Q.

THEOREM 5. Let k> 1, FeZ[x,, ..., x,] be a non-reciprocal irreducible
polynomial. There exists a subset S(F) of Z* with the following properties:

| (SR (jog N)I©
(i) card {neS(F): hin) < N} =0 N m , where for k < 6

the logarithmic factors can be omitted.

(ii) For every ne Z*\S(F) there exists an integral square matrix M = [1;;]
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of order k and a vector ve Z* such that

0 <y <py;<exp9k-20FI=5 (i £j), ;=0 (i<j),

(5) n=oM
and
k k s
6,) JF[ TT vt ..o T1 yﬁ“")c;“const T F s )™
i=1 i=1 =1

implies e, =1 (1 <0 <s) and

(6,) KF(x™, ..., x™) = const [] KF,(x", ..., x").
oc=1

This theorem implies easily

THEOREM 6. Let S be a set of positive integers with the counting function
S(x) = Q(x*™%) for every e>0. If F,eQlx,,...,x] (1<g<h) are
non-reciprocal polynomials such that F,(xi, ..., x{) is irreducible for all g < h,
and all integers d >0, then there exist infinitely many vectors
n=[n,...,nleS such that KF,(x™, ..., x™) is irreducible for all g <h.

This theorem shows some similarity both to Theorem 3 of [12] (which can
be deduced from it, if in the notation of that paper [K,:Q] < oo for all g < h)
and to Hilbert’s irreducibility theorem. The condition that F,(x{, ..., x§) is
trreducible for all d > 0 cannot be replaced even for h = 1 by the condition that
F, is itself irreducible. We shall give a relevant counterexample at the end of the
Paper. Also there we shall explain the difficulty of extending Theorem 6 to the
Case where the coefficients of F, are irrational and the irreducibility is
Considered over the field generated by the ratios of these coefficients.

2. Twelve lemmata.

~ LemMA 1. For every non-zero vector neZ* there exists two linearly
independent vectors p, q €Z* and integers u, v such that

n =up+uvq,
h(p)h(q) < cq(k) h(m)~ 22k~ 1)

Where ¢(3) = \/3 and cy(k) <2 for k> 3.

Proof, see [3] and [14].

LEMMA 2. Let S be a finite subset of C[y,, y,], gcd.F = 1. There exists
Q constant cg(S) with the following property. e

If [n,,n,]eZ? and

g ged KF(x™, x") # 1

FeS§
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then
max {|n,|, |"z|} < cg(S)ny, ny),
where (0, 0) = 0.

Proof. We begin with an observation already used in [13] that an
equation af? = o', where «,, o, are complex numbers different from 0 and
roots of unity and n,, n, are non-zero integers, determines uniquely the
fraction n,/n,. The height of this number will be denoted by C(x,, @,). If the
equation af = o' implies n, =n, =0 we set C(a,, a,) =0.

By the choice of S there exist only finitely many zeros (a;;, ®;2) (1 <Jj <Jo)
"common to all FeS and if (7) holds then for some ¢ different from 0 and rooéts
of unity and a suitable j < j, we have

M=ay, M=aj.
If nyn, # 0 it follows that a;;, a;; are not roots of unity,
off = ofh
and

max {|n,|, |n,l}
(ny, ny)

If n,n, =0 we have max {|n,|, |n,|} = (n;, n,). Therefore it suffices to take

= C(%‘n ajz)-

¢¢(S) = max {max C(a;;, @;2),1}.
i<jo

Levma 3. Let P, QeClx,, ..., x], (P, Q)= 1. If p, qeZ,
D(y, 2) = (JP(P'2, ..., yz%),JQ(" 2%, ..., y*z™)eCly, 2\C[2],
then there exist two linearly independent vectors 1y, l,€Z* such that
h(ty) < min {|P, |0},
hl,) < 2|PjiQl,
(I, pKl.q) = (1,q)I;p)

and :
lLa=0 if Lp=0.
Proof. Without loos of generality we may assume that
|P| < 1@}
Let

k

P=Ymn 3 x¥,

wcd i=1
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where A = Z* and n, # 0 for e 4. We have

(8) JP(ymz%, ..., yPrza) — Z n’y[u—anpz{g—g]}q,
xed

for some a,, 2, 4. Let

D(y,z2)= Y du,y°z®, where d,, #0 for <a, b)>eD.
{a.b>eD

By the assumption

D(y, 2)eCly, z]\C[z],
hence D is not contained in a line a = const and we can find for it a supporting

line L, i.e. such a line al+b = y on the plane ab containing two or more points
of D that all the remaining points of D lie above it. Let

DD(.V! Z) = Z daby“zb-

{a,byeDnlL

Define the weight of a term ¢y z* (¢ # 0) as aA+b. Clearly D, divides the part
Py of JP(yPrz%, ..., yP z%) consisting of all terms with the minimal weight.

Since D, contains at least two terms, also P, contains at least two terms.
However, by (8)

po(y‘ 7) = Z ﬂuyts-cnpz{a—az}q,, .
acdo :

Where 4, c A. Taking two distinct elements a,, @, of 4, we get

Alay—a,)p+(@;—a,)g = May—a,)p+(a,—a,)q,
thus

Alay—az)p+(xs—as)g = 0.
Putting I, = a,—a, we get
0 < h(ly) < |P| = min{|P|,|Ql}
and
©) Al p+l,q=0.

.Since I, # 0 we may assume without loss of generality that I,, # 0. Let us
Consider the resultant of P and Q with respect to x,. Since (P, Q) =1 this
Tesultant ReC[x,, ..., X;-,] is different from 0. By Lemma 5 of [9] we have

(10) IR < 2|P||QI.
From the fundamental property of resultants
R=UP+VQ, where U, VeC[x,, x,, ..., X;]-
Hence by the definition of D
D(y, 2)]JR(yP' 2%, ..., yPe-12%-1),
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By the same argument about D, as before it follows that for some vectors
Y, 72€ 2571 x {0} we have
(11 0 < h(y,—7,) <RI,
(12) Ay, —y)p+(2—7v)9 =0.
Putting I, = y,—y, we get by (10) and (11) _

0 < h(l,) < 2|PlIQ|
and by (12) '

Al,p+1l,9 =0.

Thus by (9)

(1, pXI2q) = (1,9)I2p)
and l,p =0 implies I, = 0.

Moreover the vectors [,, [, are linearly independent since Iy, # 0, while
I!k — 0 and lz #0.

LemMa 4. Let P, QeC[x,, X5, ..., %1, (P, Q)= 1. If p, qe Z*,
(JP(™ 2, ..., y2%), JQ(P 2%, ..., y™ %)) = D(2)e C[z]

and KD(z)#1 then there exist d>2 linearly independent vectors
my, ..., myeZ* such that for i<d

h(m) < imax{|P|, 1Ql}, m;p=0
and either d =3 or
max{|m,ql, Imql} < c;(P, QXm,q, m,q).
Proof. Let

k k
(13 P=Yn[lx @@=l
xed  j=1 acB  j=1

where A, B< Z*, a = [a,,..., ] and m, # 0 for ac A4, g, # 0 for z€B.
Let A’ be a subset of A4 saturated with respect to property that all numbers
«'p for a'€ A’ are distinct and let B’ be defined similarly. We have

k
P=% [lx¥ Y =
a'ed’ j=1 axed i
(x—a")p=0

Xy~
ij 1,

::r

il
-

(14) )
k
0= [Ixf Y ellx ™™
a'eB’ j=1 ta—:f}:=0 j=1
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POFL2M ., Ya) = ) PR N g e,

el (@-arp=0
(15) =
QP 2, ..., y2™) = ) P2 Y g AN
x'eB {I_:?]:=D

Since D(z) has at least two terms or D(z) = 0, for each &’ € A’ there exists at
least one ae A, & # ' such that (x—a')p = 0.

Let ‘A be the sublattice of Z* generated by all the vectors a—a', where
(x~a')p=0 and a,a’c 4 or a, ¢’ €B; let d =dimA.

Since h(z—a’) < max {|P|,|Q|} for «, @’ €A UB by virtue of Lemma 6 of
(9] 4 has a basis m,, ..., m, satisfying

h(m) < imax {|P, |Q]} (1 <i<d).
Let M = [m,;); j<s. Without loss of generality we may assume that
(16) M| > 0.

For every vector a—a’', where a, @’ €4 or a, '€ B we have

d

(17) a—a =) chem;, cipeeZ (1<i<d).
i=1

It follows that

d
(18) lchul < d*2 hla—a) [] h(m) < (@*max{|P,|QI})".
J=1.j#i

Let us put

d
S=U{ ¥ mllv=joU{ T o]y},
a'ed’ xed i=1 a'eB’ xeB i=1
(a—a’)p=0 {(z—a’)p=0
A=gcd. F.
FeS
Substituting

N
5

k
vp=[lxm Q<i
Jji=1
we get by (17)

k k
JA(T] x4, ...,
i=1

k
I xf)Nged.s ) m J]xp™%,
i=1 a'ed’ acd j=1
k
ged.J ) e [] x¥%)
. N

(x—a)p=0

hence by (14)
k k
JA(TT xp, ..., T1 xF)(P, Q)
i=1

~
I
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and by the assumption
k k
JA([T x7, ..., [] xf*)eC.
j=1 j=1
Let |[M|M ™! = [mj;]. Substituting

d
;=[] (1gigd), x,=1 (d<i<k),
j=1
we get
JaEM, ..., Z2MeC,
hence by (16)
JA(z,, .., zz)eC.

Since by the definition of 4 its leading coefficient is 1 and

d
(4(zy, ..., 2), [] z) =1, we have

i=1
(19) A0y, - ¥ =1.
On the other hand, by (15) and (17)

D(z)lgcd.JF(z™9, ..., z™),
Fi

eS

If d = 1 the right-hand side of the above divisibility equals JA4(z™'?) contradic-
ting (19). Therefore either d > 3 or d = 2 and the set S satisfies the assumption
of Lemma 2.

Applying that lemma to the vector [m,q, m,q] we get

max {|m,q|, |[m,q|} < cs(S)(m,q, m,q).
By (18) the number of possibilities for the set S for fixed P and Q is finite. Hence
c6(8) does not exceed a bound depending only on P and Q. Denoting this
bound by c¢,(P, Q) we obtain
max{|m,g|, |m,q|} < c,(P, Q)m,q, m,q)
and the proof of Lemma 4 is complete.

LEMMA 5. Let P,QeK[x,, x,,x;],K<C,(P,Q) =1. If [ny,n,,
nyJeZ3, (ny,n,,ny)=1 and & is a common zero of KP(x", x™, x™) and
KQ(x™, x", x"*) then either

[K():K] < 12|PIIQ] \/3h(m)
or there is a vector yeZ* such that
(20) yn =0
and
0 < h(y) < cg(P, Q).
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Proof Let us choose a decomposition

(21) n=up+vq, u,veZ,p,qeZ? dim(p,q) =2
with the least possible value of h(p)h(q). By Lemma 1 we have
(22) h(p)h(q) < \/%h(n).

Without loss of generality we may assume that

(23) h(p) < h(q).

It follows from (n,, n,, n,) = 1 that (4, v) = 1. If we had v = 0 it would follow
U= +1, h(n) = h(p) and thus
hn)? <\/3hn); k@ <$,  h(m)=1.

Since for h(m) = 1 we can choose a decomposition (21) with h(p) = h(q) = 1,
b= +1, we may assume that

(24) (u,)=1, v#0.

Let us consider polynomials

@5,) G=JUP(py" 2o, yrz0, yp329),  H =JQ(y" 2%, yP 29, yP* 29)
(25,) D = (G, H).

For further reference we note that

@ deg, G < 3|P|h(p), deg,G < 3|P|h(q),
6)
If Dek [v,z]\K[z] then by Lemma 3 there are two linearly independent
Vectors I,, I,eZ? such that
27) h(l,) < min{|P}, |Ql},  h(l,) < 2|P||Q|
and
(,p)X129) = (1,pX1,9).

Hence

(1, pXUyn)— (L, p)1ym) = (I, p)lup+1vg)—(Lp)NlLup+1,v9) = 0
and we get (20) with

(285) I y=WUpL—Lp), =, xL)xp#0
unless

In the latter case l,g=1,9q=0 and we get

(28,) Ln=lup+vg) =0 (i=1,2),
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thus we take y =1, # 0. In the first case
(29,) h(y) < 2h(l; x L) h(p) < 4h(1,) h(I;) h(p).
In the second case the same inequality clearly holds. By (20) and (28)
n=u(l,xl)+v,p, where u,,v,eQ
and by the argument leading to Theorem 2 of [14]
n =y Po+vsqo,. Where uy, v,€Z, po, o€ Z>, dim(p,, go) =2
and
h(po) h(qo) < h(ly x ) h(p).
By the choice of p, q )
h(p) h(g) < h(po) h(go) < h(l, x 1) h(p) < 2h(l,) h(1,) h(p).
It follows by (23) that
h(p) < h(q) < 2h(l,) h(l,)
and hence by (27) and (29,)
(29,) 0 < h(y) < 32[P?|Q[* (min {|P], |QI})*.
Assume now that
DeK[z]\K, KD #1.

Since p # 0 we cannot have three linearly independent vectors m;e Z>
such that m; p =0 (1 <i < 3). Therefore, by Lemma 4 we have two vectors
m,, m,eZ* linearly independent and such that

mp=m,p=0, and max{|mgq|,|myq|} <c,(P,Q)m, q,m,q).

Since p, q are linearly independent and m,, m, are linearly independent,
we cannot have m,q = m,q =0.

Since m;n = m(up+vq) =vmgq (i=1,2) and by (24) v # 0, it follows
that

max {|m,n|, |m,n|}

< c,(P, Q).

(myn, myn)

We take in (20)
_(myxmy)xn
(myn, myn)

and obtain by (30,)
(30,) h(y) < ¢5(P, Q)(h(m,)+h(m,)) < 4max{|P|, |Ql}c,(P, Q).
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Finally, consider the case where
(31) DeQ(z) and KD=1.

Let G, = GD™', H, = HD™!, R be the resultant of G, H, with respect to z.
By (25,) (G,, H,) = 1. By virtue of Lemma 4 of [9] and of (26) we have

card{(n, {)€C?: G,(n, )= H,(n,{) =0} <|R|
< deg, G -deg, H, +deg, G, deg, H,
< 3|P|h(p)- 31Qlh(q)+ 3101 h(p) - 3101 h(p) = 18|PIIQIh(p)h(q).

On the other hand if ¢ is a common zero of KP(x™, x", x") and
KQ(x™, x™, x™) in virtue of (21) and (25,) <&, &) is a common zero of G and
H, while in virtue of (24) and (31) it is not a zero of D. Therefore,

Gy(§", €)= H (& &) = 0.

Since by (24) (&, &) determines ¢ uniquely, it follows that the number of

Ccommon zeros of KP(x", x™, x®) and KQ(x", x", x") does not exceed

18|P||Q|h(p)h(g). However together with ¢ every number conjugate to ¢ over
is a common zero in question, hence by (22)

[K(&): K] < 18|P||Q| /$h(n) = 12|P|Q| /3 h(m).
In view of (29) and (30,) the lemma holds with

cg(P, Q) = max {32|P|?|Q*|(min{|P|, |QI})?, 4max {|PlIQl}c,(P, Q)}.
LeMMA 6. Let a = [a, ..., a,]eC"*'\{0},

A(2) = i: a;z =a, ﬁ (z—z).
i=0 i=1

There exist two positive real numbers co(a) < 1 and c,q(a) with the following
broperty. If

(32) cola) = e>0,
b=[by,...,b]eC!,
(33) © h(b—a) < c,o(a)e,

then for some n=m, b, #0

B(z) = z’: b‘zi =b, ﬁ (z—1C),
Where i -
(34) l>e ' for m<i<n,
(3s) l,i—z|l<e for i<m.
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Remark. Under the additional assumption that b, #0, b, =
..=b, =0 the lemma is well known, see e.g. [6], p. 92.

Proof. Let us put
(36) co(a) = min({}|z;—z|: z; # z;} L{lzi: z; # 0} v {3z z; #0} L {3})
and

@l
(r+ 1)Ymax {1, cg(a)+ max |z}|})”

1sism

. (37) ¢ola) =

where the maximum over an empty set equals —oco.
We may assume without loss of generality that

m
U B L W

where z; (1 <j < p) are distinct and z; occurs in the sequence {z;} (1 <i<m)
v; times (=0 if m = 0).
For |zl =&~ we find

Iai_...

|4(2)| = |ay| ]—[IE“—IZ;II

> |ayl.

On the other hand, we have

cio(@) < a,/(r+1),
hence by (33)

|B(z)—A(2)| < (r+ Dh(b—a)e™ < (r+1)cyo(a) < la,| < |A(2)].

In follows from Rouché’s theorem that B(z) has as many zeros, counting
multiplicity, in the disc |z| < ¢~ ! as A(z), hence m (note that by (32) and (36)
|zl < col@)™* < &7 ! for alli < m). In particular B(z) is not identically 0 and has
degree n > m. All the zeros of B(z) outside |z < &~ which can be denoted,
counting multiplicity, {41, .-., {, satisfy (34).

The discs |z—z| < &(l <j < p) are disjoint and contained in the disc
|zl < e '. Indeed, by (32) and (36)

lz—z| =2 (I<i<j<p
and

|z +¢ < max{g, 2|z}} <
For |z—z| =¢, 2; # z; we have in view of (32) and (36)

lz—z] 2 lz;—z|—|z—z)| 2 2e—e =,
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hence

m
4@ = lagle” [] lz—z] = la,le™.

i=1
ity

On the other hand, by (33) and (37) for |z—z] =¢
|B(z)— A(z)] < (r+ 1)h(b—a)max{l, |zj]+a})'
< (r+1)cyo(a@)e (max{l, |z +co(@)}) < la,le™.

It follows from Rouché’s theorem that B(z) has as many zeros, counting
Multiplicity, in the disc |z—z| <& as A(z), hence v,. This accounts for
"

JiZ‘V_,=m zeros of B(z) in |z} <&~ . They can be denoted by {,,...,{
=1

Counting multiplicity so that (34) is satisfied.
LemMa 7. Let ReK([yq, ¥y, ---» y,J\{0}, where [K:Q] < co. There exist
honnegative real numbers c,(R) (11 <i < 16) satisfying

12¢,(R)>0, ¢, sR)=1, ¢ s(R)=4, c,4(R)>0

and with the following property. For every e€(0, ¢,,(R)], every n with |n| > 1,

every integer v, and every vector v = [v,,...,v]€Z® if

(38) R(™, 1", ..., n") =0

then either there exists a vector 8= Z° such that

(39) » 0 < h(8) < |R|

and

(40) 60| < Clz(RNIOSﬂ‘*‘CIJ(R)’

log|nl

or

41 lvgllogln| > |logel,

Or there exists a real algebraic number 0 > 0 such that

“2) [Q(0):Q] < c14(R),

43) h(0) < c15(R),

(44) |vo loglnl—log 0] < cy6(R)e.
Proof. Let

43) Rl v ovor 3) = 3 ¥ Ze(ﬁ)nyf.

i=0 PeB;



62 A. Schinzel

where B, # @ and g; : Z*— K is such that ¢,(f) # 0 for all fe B; and ¢,(f) =0
for all ¢B; (0 <i<r). Put

(46) A(R) = U U {Leo(B), - 0, (B},
i=0 PeB;

@7) zZ®) =) Uiz 3 olp)e =0}
i=0 peB; i=0

Clearly 0¢ A(R). Hence Z(R) is finite (empty if r=0) and the following
definitions make sense:

(48) ¢11(R) = min{ min cy(a), min %|z|},
acA(R) zeZ{R)\{0)
(49) c2(R)=r,
(50) ¢13(R) = max {0, max|logc;o(a)| +maxlog )’ le;(B)},
acd .n‘iré BeBy
(51) ¢14(R) = max {0, max [Q(z)): @1},
zeZ(R)
(52) ¢, s(R) = max {4, max h(|z])},
zeZ(R)
(53) c16(R) = max{0, max 2|z|7'},
zeZ(R)\(0}

where minimum or maximum over an empty set equals co or —co, respect-
ively.

Let
(54) 0<e<ey(R)

and let us define vectors B, and B, by the equalities

B,v = max {fv}, B,p=max {fv}.
e U pe(Jmay)

i=1
Suppose first that
|nlﬂzv—ﬂw > e-m{mgcutm_

Then
¢y2(R)loge—c;3(R)
logln|

and putting é = f,—p, we obtain (39) and (40).
Suppose now that

0> po—po=>

hﬂﬂzc'lw < e—cu(mﬁnz(ﬂ_
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Then for all pe O B\{B,}
o [n|Be =B < g e13R) gerz(R)
thus we obtain using (49) and (50)
(35) Igies(ﬂ)n"’"‘"— Y olB) < Y leiBle 1R ga® < ¢ min ¢, (),

k ’E:l BeB; acA(R)
r=pv

Where the first inequality is sharp if B, # @ and the second inequality is sharp
Otherwise.

If for some e | ) B\{B,} we have pv = B,v then (39) and (40) hold with
i=0

= B—p, and the left-hand side of (40) equal to 0. If for all fe O B\{B,} we
have gy s B,v then =3
(56) 3 elf) =)

BeBy
Pv=pHv

O<i<n.

We set in Lemma 6

a,=g(p,)., b= Z Qi(p)"ﬂﬂ—ﬂw

BeB;

0<i<r)
and Jet
Az) = i az=a, ﬁ (z—2z).
i=0 i=1

By (46) ae A(R), hence by (47)
(57 zeZ(R) (1<i<m).
Moreover, by (48) and (54)

12co(a) 2 cyy(R) > ¢
and by (55) and (56)

h(b—a) < co(a)e.

The assumptions of Lemma 6 being satisfied we have in virtue of that lemma
for an n =m,

B()=Y b7 =b,]] L),
Where b, £ 0, - -
(58) Kl > e
(59) —z) <&

for m<i<n,

for i< m.
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However by (38) and (45)

r

B(r™)= Y 0 Y edBin™ "t =n PR, 0", n™) =0,
BeB,;

i=0
hence n** = {; for an i <n. If i >m we have by (58)

gl >e™!, wvologly] > —loge = [logé|

hence (41) holds. If i < m we set 0 = |z| and obtain by (59)
(60) o —0] <.
If 6 =0 then

Inl* <e<1, v,loglyl <loge= —|logel,
hence (41) holds again. If 0 # 0 the inequalities (42) and (43) follow from (51),
(52) and (57). Moreover by (48)

Il > %0,

by (60) and (53)

llni—0] _ &

e < ¢16(R)e,
min{ine, 0) ~ 30 < €16

|vo logln| —log 0] <

which gives (44) and completes the proof.

Lemma 8. et P, QeK[x,,...,x,], where [K:Q] <o and k>3. If
{P' Q}=Iv

(61) P@¢™, ..., & =0(", ..., 8" =D

and |€| > 1 then there exist two linearly independent vectors v, r,€ Z* such that
(62) h(r,) < min{|P, |Ql},

(63) h(r,) < 2|P||Ql,

(64) Irynl < ciosu(P, Qlogle)™  (v=1,2)

and either

(65) max {|r,n|, |ryn|} < ci9(P, Q)ryn, ryn),

or |€| < e and there exists a vector ry€ Z* linearly independent of v, r, such that
(66) h(rs) < 128P* |QF (min{|Pl, |QI})?
and

(67)  |rynl < c20(P, Q)(—loglog|¢)(log|€))~" +c21(P, Q) (loglé) ™"
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Proof Let

k k
P=Ym[lx, Q=Y ]lx
x=ed i=1 acB i=1
Where A, B are subsets of Z* and n, # 0 for ac A4, Q. # 0 for e B. Let us put

2 Iml

¢22(P) = log :::1:1 S

acd

3F}d define c,,(T) similarly for any non-zero polynomial T over C. Assume
Without loss of generality that |P| < Q.
Let a;e A, age A\{as} be chosen so that

asn = max{an}, a,n= max {an}.
acd L AE Y
The equation (61) gives
e 8| = | Y mé™<lE Y Inl.

xcd\{axs) aed\{as),
It follows that
0 < asn—agn < c,,(PYlog|é) ™!,

thus taking ry=as—a; we obtain (62) and (64) with v=1 and
€17(P, Q) = ¢,,(P) (under the assumption |P| < |Q)).
Let g be the least index such that r,, # 0. Let R, be the resultant of P and
Q with respect to x; (1 <j< k). By Lemma 5 of [9]
IR, < 2|P|Q|

and by (61)

) R i £, 899, 10y £ =10,

Applying to the above equation the argument previously applied to
P(gm, .-+, &™) = 0 we infer the existence of two vectors y,, y,€ Z* such that
V3¢ =V4g =0,

0 <h(y3—ys) < IR,

I(r3—74)ml < c22(R Nlog|E) ™",

Taking
Fa =73 %
We obtain (63) and (64) with v =2 and

c1s(P, Q) = max c22(R)).

S 1£jsk
~ Acta Arithmetica LIH. |
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Moreover, the vectors r, and r, are linearly independent since r,, # 0, while
r,, = 0 and r, # 0. Let us choose the least h # g such that r,, # 0 and replace
if necessary r, by —r, so that ry,r,; > 0. Assume first that |¢| < e and consider
two auxiliary polynomials

(68) P(x,,...,x)=JP(X,, ..., %),

where

0% o002 =TOR s s B

o —Fih 1hWF2j = FLiF2h
X, = X, %, I] = X
i#g.h

f;, - x;" 1‘[ xj_"lw"u‘
j#gh

X;=xpe if j#g, h

For further reference we note that

(69) \P| < 41Plh(r,)h(r), 101 < 41Q1h(r )h(r,)
and the operation J is performed after the substitution. Let

(P, 0)=DeK[x,, ..., x].

Substituting
k
(70) x, =1y x=I1v" x=y (#49h
j=1 i*a
we obtain
(M) z = ypos,
hence

k
ID(ygs-ees TT 95 s TV - YJPGRe™, ..., i),
i=1 J*g

JQ(yJ'llgrn, ey yilprza))'

Since (P, Q) = 1, by Lemma 9 of [10] the greatest common divisor on the
right-hand side of the divisibility equals 1, hence
k

ID(yys ooos TV oo TV -0 M) EK.
i=1 i*a
Two distinct terms of D cannot become similar after the substitution (70) since
the matrix of exponents is nonsingular. Hence D is a monomial and since
(B, x," ... x) = 1 we have D = 1. Therefore, for all j < k the resultant R; of
P and Q with respect to x; is non-zero. Let us take for n any value of il
and put

(72) ny =0, gy=q  my=n" (j#4g,h).
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Clearly

(73) Inl = [§|}memn > 1.

By virtue of (61), (68) and of the implication (70) — (71) we have
Py, oeosm) = Qs .. m) =0,

hence also

(74) Rny,....,m)=0, R,(n,...,m)=0.

Let ¢ be a unique one-to-one increasing function mapping {1, 2, ..., k}
\{g, h} onto {1, 2, ..., k—2} and i =g or h. We set in Lemma 7 s = k—2,

R =R (¥g» Yys --+» ¥): =R(%4, ..., b AN
where .
X;=yoy forj+#g,h,
Xg+h—i = Yo
(note that R, is independent of x,);

@5) & = ¢3(R}, Ry)min {max{lrznl, Py m|rasl, 4} “‘“"‘;'“:J,l—oﬂq},

Tiglan
Where

(76)  cy3(R}, RY) = min{c,;(R}), c11(RY), (c16(R}) +c16(RM) 1} < 1,
(77)  cu(R], RY) = 1+[32(.‘M(R:)014(R:))4°°logc|5(R:)logc”(R:) '
- xlogmin{logc,s(Ry), logeys(Ry)} > 1

(78) o {rzn i'f i=g,
(rym)ry, if i=h,
(79) vi=np- (1<j<k-2).
We have by (75), (76) and (77) 0 < & < ¢, (RY), by (73) In| > 1, by (72) and (74)
RE@™, ™, ..., n") = Rifny, ..., m) =0,

hence by Lemma 7 either there exists a vector 8,€Z* such that

(®0) 0 < h(3) < IR}|

and :

(81) |§ ul < CIZ(R:)'IOgEI'i'Cls(R?)
' log|n] :

or

#2) Ivgllogll > flogel,
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or finally there exists a real algebraic number 0, >0 such that

(83) [Q(0): Q] < c14(RY),
(84) h{ﬂ.-} < 015(R?),
(85) vy loglnl —log 8] < c,6(RY)e.

We shall consider successively the following cases.
A. (80) and (81) hold for i =g or for i = h,

B. (82) holds for i =g or for i =h,

C. (83)(85) hold for i =g or for i=h with 0,=1,
D. (83)+85) hold for i =g and for i = h with 0, # L.

Case A. We define the components rs; or r; by the formulae

. _{5w, for je{1,2,..., k)\{g, h},
< § A 0

for je{g, h}.
Clearly ryeZ*. The vector r, is linearly independent of ry, r, since r, #0,
rig=ra =0, while r,, #0,r;, =0, 7 # 0. Further, by (80), Lemma 5 of [9],
(69), (62) and (63)
h(r;) < IRT] = IR}l < 2|P|IQ|
< 32|P|IQI h(r,)? h(r,)* < 128|PP|QI* (min{|P|,|01})*,
which proves (66). Moreover by (79)

k=2

k k
ram= 3 ryn;= 3, Sippn;= Y Siynp-1 = 8o,
j=1 i=1 i=1
j#g:h

hence by (81), (73) and (75)
e12(RH)llogel +¢43(RY)
log|n|

< 11,72 (10g|E) ™ (e12(R)log c23(RY, Ry +c13(RY)

[ryn| <

+¢12(RF)max {c,4(R;, Ry)logmax{|r, n|,|r, nlirsl, 4},
logry,ran—loglogél}),
while by (64)
log max{|r,n|, |r,nllr2:l, 4}
< logmax {c,s(P, Q), ¢;7(P, Q)lr24l, 4} —loglog|c].
It follows that
Iryn| < ¢35(P, Q, ry, roX—loglog|¢|Xlog|é) ™" +c26(P, @, 1y, r2Ml0BICH™ 3
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where
¢25(P, Q, ry, 1) = rigraymax{c,5(Ry), c12(Ry)} c24(R}, RY),
c26(P, Q, 1y, r;) = rygras(max{c»(R}), cy2(R1))
x (llogc;3(Ry, R)|+c24(R}, Ry)+logmax{c,s(P, Q),
c17(P, Qllrasl, 4, rigran})+max{e,3(R), c13(R)}).

(:lotc that g,.h, R}, Ry are uniquely determined by P, Q, r,, r,.) Since by
(62), (63) for given P, Q there are only finitely many possibilities for r,, r,, the
Dumbers c,s(P, Q, ry, r,) and c,4(P, @, r,, r,) do not exceed bounds depend-

Ing only on P and Q. Denoting these bounds b P, 0)
obtain (67). g s by ¢20(P, Q) and c¢,, (P, Q) we

Case B. Here we have by (73) and (75)«77)
log|¢|

FigTan
However, by (78) and (64)

[vol = |vo|log|n| > |loge| > log max{|r, nl,|r, n|}.

I
19022 < max{e,(P, @), cua(P. O},
1g72h

hence we obtain

86) max {|r,n|, |r,n|} < expmax{c,,(P, Q),c;5(P, Q)}.
Case C. Here we have by (85), (75), (76) and (73)

1
ool loglnl < c16(R?)e < 2BLL _ 1ogyyi,
19 72h
hence v =0, by (78) min{|rn|, |r,n|} =0 and
®7) - max {|r,n|,|r,n|} = (r,n|,|r,n|).

Case D. Here we have by (78)

|(r, m)loglnl —log8,| < c,6(R})e,
|('1“)r2h log|n|—log By.l {_CIG(R;)S;
hence by (75) and (76)

®8) iy mranlog0,— (rom)log 0] < (c16(RD)ry nlirasl + s 6(Rlr, nl)e

< max {|r, n|, ¢, nllry,|, 4}1 2 RoRA)
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Now, by Theorem 2 of [1] (the case of two logarithms) we have either

(89) (rym)raplog0,—(r,m)log0, =0

or

(90) \(rym)724l0g 6,— (r,m)l0g 0| > B~ e
where

B = max{|r,n|ra, |r,nl,4},
Q = logmax {h(0,), 4} log max {h(6,), 4},
@ = min {log max {h(0,),4},log max {h(6,),4}}
C =(32d)*°°, d=[Q(0,, 0,):0].
Since by (83)
d< f—'u(R:)Cu(R:),
while by (84) and the inequality ¢,s(R;) >4 included in Lemma 7
max{h(0), 4} < c,s(R) (i=gorh),
we have by (77)
CQlog @ < c24(R}, Ry)—1.

Therefore (90) is incompatible with (88) and we are left with the equality (89).
This implies
gg'ul]r:n - 05,”'“.

Since 6, and 6, are not roots of unity (they are positive and different from 1) we
have either (rym)ry, =r,n=0 or
max {l(rl “}"‘nl, ll’:ll‘} = C(Bg., oh)
((rym)72s, 7o)

In both cases we have
91) max {|r,n|, [r,n|} < C(0,, O))lr2sl(ryn, ram).
In virtue of (83) and (84) for given R;', R; there are only finitely many
possibilities for 6,, 6, in turn for given P, Q there are only finitely many
possibilities for r,,, R}, Ry. Hence C(0,, 0,)lr2s does not exceed a bound
depending only on P, @, which we denote by ¢47(P, Q). The inequality (91)
implies
(92) max {|r,n|, |r;n|} < cz-,'(P, QXr;n, ryn)
and (65) follows from (86), (87) and (92) with

CIQ(P! Q} = max {exp CIT(P9 Q)' expclB(P9 Q)! CZ?{P9 Q)}

If |£] > e (65) with the above value of ¢;(P, Q) follows from (64).
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i LemMA 9. Let P, QeK[x,,..., x;], where [K:Q] <oco and k>3. If
m', Q) = l' and KP(x™, ..., x™), KQ(x™, ..., x"™) have as a common zero an
Algebraic integer £ of degree at most d > c,4(P, Q) then there exist two linearly
independent vectors r,, ryeZ* such that

93) h(r,) < min{|P|,|Ql},
(94) h(r,) < 2|P||Q],
o5 < P oyd( 184 Y =
|rvnl c23+v( ] Q} logl{)gd (V — l'l 2)
and either
6) max{|r,n|, [r,nl} < c3((P, Q)rym, rym),  c3y(P, Q) 2 1,
Or there exists a vector ryeZ* linearly independent of r,, r, such that
97) h(r3) < 128|P]*|QF (min{|P|, |Q]})*
and
(98] r.nl < P —-———(logd)4
< , Q)d ;
l 3 ‘ 632( Q) (loglogd)j

- Ifrloof. Without I'oss of generality we may assume that K is the least field
in_ﬂtr:l_mmg the c:_:uefﬁcnents .Of P and Q. Let T be the set of all isomorphic
chctlons 0[ K into C. Since ¢ is not a root of unity, by the result of

Obrowolski ([4], Corollary to Theorem 1) for every ¢ > 0 and d > d,(¢) we

dave
- 3
[F]> I+Q loglogd ,
h d logd
nce for a suitable &' conjugate to ¢ over Q and d > dy(3)
99) loate o 3 (loglogd\? (1Y)
08I¢I>2d “Toad +o| & 1= E(d).
Let us choose ca5(P, Q) > dy(3) so that for d 3> cy5(P, Q)
(100) , logd > 1,
(101) E(d) 5 1(loglogd i
d\ logd /)’
(102) —log E(d) < 2logd
and let us set
(103) Cas+4(P, Q) = maxcyuy (P, Q) (v=1,2),
el
1
(104) c31(P, Q) = maxcyo(P", Q),
el
(10s)

¢32(P, Q) = max (2 c3o(P*, Q%) +c¢21 (P, QY).
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Clearly there exists an isomorphic injection 7 of K into C such that &' is
a common zero of

KP'(x™,...,x™) and KQ'(x",...,x™.

Applying Lemma 8 with K*, P, Q°, ¢ in place of K, P, Q, &, respectively we
obtain (93), (94) as a consequence of (62), (63); (95) as a consequence of (64) and
(99), (101); finally the alternative (96) or (97), (98) as a consequence of the
alternative (65) or (66), (67) and of (99)-102), (105).

LemMma 10. Let P, QeK[x,, ..., X1, (P, Q) = 1, K, be the field generated
by the coefficients of P, Q over the prime field of K, 2 a subfield of K, Q its
algebraic closure. If & is a common zero of KP(x", ..., x") and KQ(x", ..., x™)
and ‘either =0, [K,:Q]l<w, is not an algebraic unit or
trdegK,/R = 1, E¢Q then there exists a vector yeZ* such that

(106) 0 < h(y) < ca3(P, Q, £2),
(107) yn=0.

Proof. In both cases considered in the lemma there is a divisor theory for
the extension K,/€2. For every non-zero polynomial FeKo[x,, ..., x,] we set
(108) c34(F, Ko, 2) = max{max|ordsf, —ordef5|, 1};

where the inner maximum is taken over all prime divisors p of K,/$2 and all
pairs {f;, f,> of non-zero coefficients of F (note that for every f # 0 there exist
only finitely many prime divisors p of K/ such that ordef # 0). We shall
prove the assertion of the lemma with
[109) c33(Pr Q: ﬂ) = max (("34(st KO, Q)'IP1+C3¢(P? KO! Q)IRJD,

_ 1<k
where R; is the resultant of P and Q with respect to x;. Since both R; and K,
are determined uniquely by P and Q the above definition of ¢33(P, Q, Q) is
correct. We assume EeK,, otherwise P(x™,...,x™) =0 and (106){107) is
trivial. '

Let K, = K,(£). In both cases considered in the lemma there exists a prime
divisor p, of K,/f2 such that

e, = Dfdplé 7= 0.
Let p, be the divisor of K, divisible by p, and put
ordp, Py = €o-

Let P be again given by the formula
k
P=Yn[]xy¥ (ng#0 for acA)
med j=1

and let
ordp, M, = P,.
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It follows from
0= P(EY, ..o £ = ) muf™
xeAd
that the minimal value of the function ¢, p,+e¢, an on the set 4 is taken by this

function at least twice. Thus there exist two distinct vectors ., ag € A such that

€oPa, T € 0N =¢€,Py,+€ 0N,
le.

(110) e sn+ey0, =0,
Where s, = ag—a,, 0, = ps,—Pa,- Hence

(111) 0 < h(s,) < |P|,
(112) o, < c34(P, Ko, £2).

Without loss of generality we may assume that s,; # 0. Let us consider as in
the proof of Lemma 3 the resultant R, of P and Q with respect to x,. We have

R(™, ..., 8™ ) =0

and by the argument applied previously to P there exist a vector s, € Z* ™! x {0}
and an integer ¢, such that

(113) e,s,n+ey,0, =0,
(114) 0 < h(s,) <Ry,
(115) o3| < c34(Ry, Ko, 2).
We put
;= {slaz—szal ifo, #0,
% if g, = 0.

) The inequality (106) follows from (108), (109), (111), (112), (114), and (115),
While (107) follows from (110) and (113) on eliminating e, and e,.

LEMMA 11. Theorem 1 holds for k=3, [K:Q] < co.
Proof. We may assume without loss of generality that K is the field
Benerated over Q by the coefficients of P, Q. Suppose first that (n,, n,, n;) = 1.

B{Y Lemma 5 if KP(x™, x", x™), KQ(x", x™, x") have a common zero ¢ then
Cither there exists a vector yeZ> such that

yn=0
and

0 < h(y) < cg(P, Q)
or

[K(S): K] < 12|P|IQ| /3 h(n).
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In the former case we have the assertion of the theorem provided
¢,(P, Q) = cg(P, Q). In the latter case
(116) [(Q(%): Q] < 12[K: Q]IPIQl /3 h(n) =

We shall consider separately two cases:

A. ¢ is an algebraic integer,
B. ¢ is not an algebraic integer.

A. In virtue of Lemma 9 we have either

(117) d < cy5(P, Q),

or there exist two vectors r,, r,e Z* linearly independent and such that
(118) . h(r,) < min{|P|, |Ql},

(119)- : h(r,) < 2|P|iQ|,

(120) max{|r,n|, |r,n|} < c31(P, Q)ryn, ryn),

or there exist three vectors r,, r,, ry€ Z* linearly independent and such that in
addition to (116), (117)

(121) h(r;) < 128|PP|Q* (min{|P], [Q1})*,
logd \?
(122) r,nl < c284.,(P, Q)d(loghDg d) (v=12),
(logd)*
(123) ramt < c32(P, Q)d(log logd)®
(118), (119), (120) imply the assertion of the theorem with
(ryxr))xn
i _—(rlu, r,n) if ryn#0,
ry if rin=0,

provided ¢, (P, Q) > c3,(P,Q)2|P||Q|+min{|P|,|Q[}). On the other hand (118),
(119), (121), (122) and (123) imply via the Cramer formulae

4
(12 hw) < 2hlrhlrhiry) 3 10 < cas(PL Q) B
where
ess(P, Q) = SI2IPIIQ (min{IPl, 1} c26(P, )
+2561PPIQF (min {1P1, 101} so(P. O
+4IPIQImin{IP, 101} c52(P, ©)
Now, by (116) and (124)

(log d)*

d < 12[K:Q]IP|IQ]_[3cas(P, Q)d(]oglogd)""
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hence for a suitable c34(P, Q)

(125) d < c36(P, Q).

Let ¢3,(P, Q) = max{cys(P, Q),c6(P, Q)}. The alternative (117) or (125) gives
d < c3,(P, Q)

and by (116), for a suitable c35(P, Q)

h(m) < ca5(P, Q).
By the Bombieri-Vaaler theorem (see [2]), the assertion of Theorem 1 holds

Provided
¢, (P, Q) = v/ /3c35(P,0).

B. In virtue of Lemma 10 the assertion of the theorem holds provided

¢, (P, Q) 2c33(P, 0, Q).

Summing up the considered cases we conclude that if (n,, n,, n;) =1
Theorem 1 holds with

¢ (P, Q)
= max{cs; (P, @Q}2|P||Q| +min{|P|, |QI}),v V3P, Qess(P, 0, Q).
Suppose now that (n,, n,,n;)=d,n,=dm; (1<i<3). If
(TR, 2™, ™), JO™ o™, 51 = G(X)
then by Lemma 9 of [10]
(JP(x™, X", x™),JQ(x", X", X™)) = G(x?).

The assumption implies that KG(x%) # 1, hence KG(x)# 1. Since
(m,, m,, my) = 1 the already proved case of Theorem I applies and gives the
eXistence of a vector ye Z* such that

3
Y ym=0 and O0<h(y)<c (P, Q).
Now = I

and the proof is complete.

LeMMA 12, If Theorem 1 is true for given K and k then for every finite subset
S of K[x,, ..., x,] and every vector ne Z* if

(126) ged. F=1,
but | FeS
(127) ged KF(x™, x™, ..., x™) # 1

FeS
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there exists a vector ye Z* such that
0 < h(y) <c39(S) and
Proof. Let us choose F eS8, F, # 0 and let

5
Fo = const [ P.

o=1

yn =0.

By (126) for every index o < s there exists a polynomial F,eS such that
(P,,F,)=1. The condition (127) implies that for at least one ¢ <s

(KP,(x™, ..., x™), gcd. KF(x™, ..., x™) # 1

FeS\(Fo)

hence a fortiori
(BP (5™ 00 %) KF w0 ) F 1
By the assumption there exists a vector ye Z* such that
0 < h(y) < ¢(P,, F)),

Therefore, it suffices to take
¢,0(8) = max¢,(P,, F,).
ass

3. Proofs of Theorems 1 and 2.

yn=0.

Proof of Theorem 1. We shall proceed by induction on the transcen-
dence degree r of K, the field generated by the coefficients of P and Q over the
prime field IT of K.

If r = 0 and char K = 0 the theorem is contained in Lemma 11. If r=0
and char K > 0 the theorem is trivial since then for every PeK, [x]\{0} we
have KP(x)eK,.

Let us consider the case, where tr. deg. K/IT = r > 1 assuming that the
theorem holds, whenever tr. deg. K,/IT < r. The assumption implies the truth of
the theorem for all K with tr. deg. K/IT < r and k = 3 if char K = 0, k arbitrary
if char K > 0. Let t,,...,t, be a transcendence basis of K, over IT so that
[Ko:M(ty, ..., t,)] < oo. Let us put 2 =1(t,,..., t,—,) and let b,, ..., b, be
a basis of K,2(t,) over €3(t,), §2 being the algebraic closure of 2. We have for
suitable polynomials De2(t,), P.;, Qo€ @[xy, ..., %] (1 <6<5,0<i<p,
0<j<9q)

3. B
P=D—l Z'Z-Pru'[:"baa

a=1i=0

5 q
Q=D"" Z Z Qﬂ.itgbﬂ'

a=1j=

Let S = O O {Pni}u O O{Qd}. Since (P, Q) =1 we have gcd. F=1.

e=1i=0 a=1j=0 FeS
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. If KP(x™, ..., x™) and KQ(x™, ..., x™) have a common zero ¢ we have
Cither £ 2 or ¢ 6. In the former case since b, (1 <o <s,i=0,1,..)are
linearly independent over 8 we obtain

Pu(E™, ..., &™) =0, Q,(E™,...,E" =0
and since ¢ is neither 0 nor a root of unity

ged. KF(x™, ..., x"™) # 1.
FeS

(1<06<s5,0<i<p,0<j<g)

Since tr.deg. /I = r—1 the inductive assumption implies by virtue of
Lemma 12 the existence of a vector yeZ* such that

0< h('}'} = (’39(5) and n= 0.

_ On the other hand, 2 c K, and tr. deg. K,/2 = 1, thus if ¢ ¢ & Lemma 10
Implies the existence of a vector ye Z* such that

O<h(y)<c3:(P,Q,82) and yn=0.

The numbers c39(S) and c¢33(P, Q, £2) depend upon the choice of the
transcendence basis ¢, ..., t, and the choice of the linear basis b, ..., b,. Since
this choice is arbitrary and h(y) takes only integer values we put

¢, (P, Q) = infmax{c35(S), c33(P, Q, )},

Where the infimum is taken over all possible bases ty,....t,and b,, ..., b,. The
Inductive proof is complete.

Lemma 13. Let P,QeC[x,,...,x], (P, Q) = 1. If p, qe Z*,
(PP 2%, ..., y» 2, JO(yP 2%, ..., P 2%)) = D(z)eC[z],

KD(z) # 1 then there exist d > 2 linearly independent vectors my,.., meZ
Such that

h(m) < imax{|PLIQ]} (1<i<d),
and either d > 4 or there exists a vector peZ® such that
0< h(ﬂ)""{-- C4O(P! Q)! ﬂ[mlq9 seey mdq] =0.

Proof. We follow step by step the proof of Lemma 4 retaining the
Notation introduced there. If d =2 we take

mp=0

[1, 0] if mq=0,
ﬂ = [ m,q —m;q :l &
(m,q,m,q)’ (m,q,m,q) i el
and obtain
0 < h(B) < max{1,c,(P,Q)}.
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If d = 3 in virtue of Theorem 1 we can apply Lemma 12 taking in that lemma
K = C, k = 3, § defined in the proof of Lemma 4 and n, = m;q (1 <i < 3). We
obtain the existence of a vector peZ> such that

0 < h(ﬂ) é J"":59(5)’ ﬁ[mlqiMZQ‘mSQJ - 0-

By (18) the number of possibilities for the set S for fixed P, Q and d is finite.
Hence c3(S) does not exceed a bound depending only on P and Q. Denoting
this bound by c4,(P,Q) we put

cao(P, Q) = max{l, c;(P, Q). cui(P. Q).

LemMMa 14. Let P, QeK[x,, ..., x],[K: Q] < o0, (P,Q) = 1. If (ny, ..., m)
=1 and
(KP(x™, ..., x™), KQ(x™, ..., x™)) # 1

then either there exists a vector ye Z* such that

(128) 0 < h(y) < ca2(P,Q),

(129) yn =0,

or there exist two vectors 1,,1,€Z* linearly independent and such that
(130) h(l,) < min{|P|, |01},

(131) h(l,) < 2|P||QI,

(132 max{}l;nl, lpnl} < 2/2k|PIQIA(m)* P42 (1 n, I,m),

or there exist three vectors ry, r,, ry€Z* linearly independent and such thal

(133) h(r,) < min{|P|, |01},
(134) h(r,) < 2|P||QI,
(135) h(r;) < 128|P*|Q* (min{|P], |QI})?,

logh 3
(136)  Ir;ml < carsilP, Q)h{n)**—““*"“(ﬁag‘—ﬂ;]) (i=1,2),

(137) Ir3n| < cas(P, Qh(m)*~ 2% 1) (log h(m))* (loglog h(m)) >,

or there exist four vectors m,, m,, my, m,€Z"* linearly independent and such
that

(138) h(m,) < imax{|P|,|Ql}
(139) max{|m,n|,|m,n|,|myn|,|m,nl}

< 8kmax {|P|,|Q} h(m)*~ 2%~V (m,n, m,n,myn, m,n).

(1<i<49),

Proof. Let us choose a decomposition
(140) n=up+vq; wu,veZ,p,qeZ* dim(p,q)=2,

(141) h(p)h(g) < 2h(m)*~ /&=
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the existence of which is guaranteed by Lemma 1. In view of symmetry between
P and ¢ we may assume that h(p) < h(q), hence

(142) h(p) < \/Eh(u)tk—zmu—n.

It follows from (n,, ..., n,) = 1 that (u,v) = 1. If we had v = 0 it would
follow u = +1,h(n) = h(p) and thus

h(n) < /2h(mf*~ D=2 pm) < 26Dk <2 p(m) = 1.

Since for h(m)=1 we can choose a decomposition (140) with h(p)
=h(q)=1,v = +1, we may assume that

(143) c(wv)=1, v+#0.

Let us consider polynomials

(144)  G=JP(" 2%, ...,y 2%, H=JO(y" 2%, ..., yPxz™),
(145) D = (G, H).

If DeC[y,z]\C[z] then by Lemma 3 there are two linearly independent
vectors I,,1,€Z* such that (131), (132) hold,

(I, pXlq) = (1, pX1, q)
and

l,g=0 if Lp=0.

Hence
(I, X m)— (1 pXIym) = (I, pXLup+1,09)— (1, p)I up+1,v9) =0
and either I,n # 0, thus I,p#0 and by (130), (131), (142)

max{|l,n|,|l,n]} _max{|l, p|,|l,pl}
(ym,Lm) — (,p.1,p) < max {|l, pl, Il pl}

< kmax {h(l,), h(I,)} h(p) < 2,/2k|P||Q| h(n)* ~2/2k=2)
or I,n =0 and then

max{|l,n|,|l;n]} = (I,n,1,n).

In both cases the inequality (132) holds.

If DeC[z] and KD # 1 then by Lemma 13 there exist d > 2 vectors
MmeZ* (1 <i<d) linearly independent such that (138) holds, m,p
=0(1 <i<d) and either d >4 or there exists a vector feZ? satisfying
(146) 0 < h(B) < c4(P,Q),

(147) Blm,q, ..., m,q] =0.
Since by (140)

mn=omyq (1<i<d),
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in the former case we find either m;n = 0 (1 < i < 4) which implies (139), or by
(138), (141)

max{]ml ult lmzﬂl‘lmx\ﬂ‘, tmd-"l} = max{‘ml qlu |m2ql§im3q‘9lm4q‘}
(m,q,m,q,myq,m,q)

(m,n,m,n,myn,m,n)

< max |m;q| < k max h(m)h(q)
1<is4 1<i<4

< 8kmax {|P], QI} h(m)*~2/*~D.

In the latter case we set

and (129) follows from (147). On the other hand assuming, as we may, d < 3 we
obtain from (138) and (145)

h(y) < h(B) ‘Z! h(m,) < 6 cqo(P,Q)max{|P|,1Ql}.

Since m; are linearly independent and g # 0 we have also h(y) > 0 and (128)
holds provided

caz(P,Q) = 6¢40(P, Q) max{|P|,|Ql}.
It remains to consider the case
(148) DeC[z] and KD(z)=1.

Let G, = GD™!, H, = HD ™', R be the resultant of G,, H, with respect to
z. By (145) (G,, H,) = 1. By virtue of Lemma 4 of [9] and of (144) we have

card{(n,{>eC?: G,(n,0) = H,(n,{) =0} < degR
< deg, G, deg, H, +deg,. G, deg, H, < k|P|h(p)k|Qlh(q)+k|P|h(q)k|Qlh(p)
= 2k*|P||Q|h(p)h(aq).

On the other hand, if ¢ is a common zero of KP(x™,..., x™) and
KOQ(x™, ..., x™), by virtue of (140) and (144) (&“, £") is a common zero of
G and H, while by virtue of (143) and (148) it is not a zero of D. Therefore

G, (¢, &) = H,(&", &) =0.

Since by (143) (&“, &) determines ¢ uniquely, it follows that the number of
common zeros of KP(x™,...,x™), KQ(x™,...,x™) does not exceed
2k2|P||0| h(p) h(q). However together with ¢ every number conjugate to £ over
the field K, generated by the coefficients of P and Q is a common zero in
question, hence by (141)

[Ko(8): Ky) < 4k*|P||Q|h(n)*~2/E—D,
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Since [K,:Q] depends only of P, Q we get
(149) [Q(&): Q] < cas(P, Q)h(m)*~ V=1,

Wl}ere we may assume without loss of generality that c46(P, Q) = c28(P, Q). If
C_ 1s an algebraic integer, we obtain from Lemma 9 the existence of three
linearly independent vectors r,, r,, r, € Z* satisfying (93)~(98) and either (96) or
(97) and (98). Now (93), (94), (97) imply (133), (134), (135), respectively; (95) and
(98) together with (149) imply (136) and (137), respectively, with suitable
Ca3, C4q, C45. On the other hand, (96) imply (128) and (129) with

(ryxry))xn
P= (rym,rym)

ry if ryn=0,

if rn#0,

Provided
ca2(P,Q) = ¢31 (P, QX2|PliQ| +min{|P|,|Q}}).

In the remaining case, where £ is not an algebraic integer we apply Lemma
10 with 2 = @ and obtain (128) and (129) provided

c42(P,Q) = ¢33(P,Q,Q).

; LEmMMA 15. Theorem 2 holds if the coefficients of P, Q lie in a finite extension
of Q.

’ Proof. Let S(P, Q, N) be the set of all integer vectors n such that h(n) < N
an

(KP(X™, ..., x™), KQ(x™, ..., x™)) # 1,

and let S,(N) be the subset of S(P,Q,N) consisting of all vectors satisfying
(’11,...,n,‘)= 1. If for a vector neS(P,Q,N) we have (n,,...,n)=d,
j=dm,, then by Lemma 9 of [10]

(KP(x™, ..., x™), KQ(x™, ..., x™)) # |

“hence meS,(N/d). Thus we have

S(P.Q.N) < ) dSo(N/d),

(150) card S(P,Q,N) < i card §o(N/d)

and it will be sufficient to estimate the cardinality of §,(N). In virtue of Lemma
14 we have

(151 So(N) = O Si(N),
i=1

8 —~ Acta Arithmetica LHL. 1
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where S,(N) (1 <i<4) is the set of all vectors neSy(N) such that for i = 1
there exists a vector ye Z* satisfying (128) and (129), for i = 2 there exist two
vectors I, I, € Z* linearly independent and satisfying (130)-(132), for i = 3 there
exist three vectors ry,r,,r, € Z* linearly independent and satisfying (133)(137),
for i = 4 there exist four vectors m,,m,, m;,m, € Z* linearly independent and
satisfying (138), (139). We shall estimate card S,(N) fori = 1,2,3,4 successively.
The number of integer vectors m satisfying h(m) < N and (128), (129) with
7, #0, Vi+1 =Yi+2 = ... =¥, = 0 does not exceed ’

2¢4,(P, Qf2¢42(P,Q)+1) ' (2N + % S

since the coordinates n; for j # i can be chosen in at most 2N + 1 ways each and
then n; in at most 2c4,(P,Q)2¢42(P,Q)+ 1)~ " ways. Hence

(152  cardS,(N)< ¥ 2e42(P,Q2caa(P, Q)+ 1) 1 @N + 11
< CarlPL N,
The number of integer vectors n satisfying h(n) < N and (132) for fixed I,,1,
does not exceed (2N +1)¥~%card T(l,,1,), where
T(1,,l,) = {[ll,lz]ezzz Y |4] < kh(I)N;

i=1,2
max || < 22K|PJIQIN*~ 242 (4, 2,)}.
1=is2
Indeed, since I,, I, are linearly independent there exists a set H 1,2, 000, K}
such that card H = k—2 and I, n, 1, n,n,(he H) determine uniquely n. Now, for
each heH, n, can be chosen in 2N+ 1 ways.
Thus we obtain
card $,(N) < @N+1)*"2 ¥* card T(l,,1,),
{1027
where the sum z‘ is taken over all pairs <I,,[,) satisfying (130) and (131). On
the other hand, by Lemma 6 of [11] applied with r=2, 4 = 2k|P||QIN,
B = 2,/2k|P||Q|N*~2/2k=2) we have
card T(l,,1,) < 1+ 2kh(l)N +2kh(I,)N +4-2AB B
< 14 2kmin{|P|,|Q|} N +4k|P|QIN + 32,/2k?|PI2|QPP N3k~ 42k =2,
The sum 14 2kh(l,)N + 2kh(I,)N is the number of vectors [4,, 4,] with at

least one coordinate 0 and the factor 4 in front of 24B reflects the fact that
1,4, may be either positive or negative. It follows that

(153)  card S,(N) < 2N+ 1)72(1+2kmin{|P|, |Ql} +4kIPIIC|
+32/2K2|P2|Q) NGE-4N2k=2) ¥

ya2°
S CaslP, QN M3,
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The number of integer vectors ne Z* satisfying h(n) < N and (136), (137)
for fixed r,, r,, ry does not exceed (2N +1)*~3card U, where

3
U= {[91,92,93]623: Y joil s,_cuﬁ(p,Q}Nu—zmx—n( log N ) ’
i<

loglog N

2

—avi—yy (l0gN)*

< cos(P, Q)N®~ DIk y_(ogN)" [

lesl 4s(P, Q) {loglog N)®
Indeed, since r,, r,, r; are linearly independent there exists a set

Ic {l,_2, ..., k} such that cardI =k—3 and rm, r,n,rsn and n; (icl)

determine uniquely n. Now, for each iel, n; can be chosen in 2N +1 ways.

Thus we obtain

card S;(N) < @N+1)¢72 Y** cardU,
{rirarad

Where the sum Z" is taken over all triples {r,, r,, ry) satisfying (133)}H(135).
On the other hand, clearly

2 3
cardU < [] (1 +2¢45+:(P,Q)N*~2/=1) log N
i=1 loglog N

; oy (log N)*
142¢c. (P k= 2)k— 1)
X( +2¢4s(P, QN (loglog N)* )’
It follows that

3 (logN)*®
(154) card $5(N) < cas (P, QN*FT g s,

The number of int.eger vectors n satisfyiﬁg h(m) < N and (138), (139) for fixed
m.,m,, m,, m, does not exceed

{2N+ l}l_4card V(mh m,, my, M4),
Where
Vlﬂll, m,, my, m,) = {D"-p Has U3 !14]524: V lud < kh(m)N;
is4

max |#i| < 8k max“Pl-'Ql}N{k-zmk_—u{ﬂp Has K3 #4)}
1€i<4
.I,ﬂdeed, since m,, m,, my, m, are linearly independent there exists a set
< {1,_ ..., k} such that cardJ = k—4 and mn, m,n, myn, mn and n; (jeJ)
determine uniquely n. Now, for each jeJ, n; can be chosen in 2N +1 ways.
Thus we obtain

card S,(N) S @N+1)4¢  Y***

oy 3,0

card V(im,, m,, my, m,),
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where the sum Y *** is taken over all quadruples (m,, m,, m;, m,) satisfying
(138). On the other hand, by Lemma 6 of [12] applied with r=4,

A = 4kmax{|P|,|Q|}N, B = 8kmax{|Pl,{Q|}N"‘_z’“*_” we have
4 4

card Vim,, m,, my, m,) < [] (2kh(m)N +1)— [] (2kh(m)N)+ 16-24B3
i=1 i=1

< 929k* (max {[P|,|Q})° N*
+65536k* (max {IPMQ”)“N‘“‘?HU:— 1

4

4

The expression [[ (2kh(m)N +1)— [ (2kh(m)N) estimates the number of
i=1 i=1

vectors [, , Uy, M3, Me] With at least one coordinate 0 and the factor 16 in front

of 24B? reflects the fact that u,, u,, 43, i, may be either positive or negative.
It follows that

(155)  cardS,(N) <N +1)*~*(929k>(max {|P|, |Q|})* + 65536 k*(max {P, 0})*)

3
x N{ak=7)itk=1) Z*** 1< CSD(PsQ)Nk_FT'

{mg mamama)
The inequalities (151)155) imply
: s pi ey (log N)'©
card SU(N) < 043N zl‘_z+{C41+C4g+Cso)N k ma

hence

< coy(P,QINEH=T L
card S4(N) < ¢5,(P, Q) m’

where the logarithmic factors can be omitted for k < 6, and by (150)
mink.6} (log N)'°
<c k== —= =
card S$(P,Q,N) < ¢,(P,Q)N {oglog N)°

with the similar proviso, provided

2k—2

LeEMMA 16. Let an integer k > 4 and a field K < C be given. If Theorem
2 holds for all P,QeK[x,, ..., x.], (P,Q) = 1 then for every finite subset S of
K[x,, ..., x;] such that

(156) ged F=1,

Fe§

the number of vectors me Z* such that h(m) < N and

(157) ged. KF(x™, x", ..., x") # 1

FeS

c(P,Q) = "351(P'Q)':(k—m—inm)-
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does not exceed
min(k,6} 10
Cso(S)N*—2k=2 M,
(loglog N)®
Where for k < 6 the logarithmic factors can be omitted.

Proof is similar to that of Lemma 12. We choose an F,e8§, F, # 0 and
Write

5
Foc% const [] Pé.
o=1

For every index & < s there exists a polynomial F,eS such that (P,,F,)=1.1t
Suffices to take

¢52(S) = maxce,(P,, F,).
g5

Proof of Theorem 2. We shall proceed by induction on the transcen-
dence degree r of K, the field generated by the coefficients of P and Q over Q.

If r = 0 the theorem is contained in Lemma 15. Let us consider the case,
Where tr.deg.K,/Q =r>1 assuming that the theorem holds, whenever
tr. deg. Ko/Q <r. Lett,, ..., t, be a transcendence basis of K, over Q so that
[Ko:Q(t), ..., 1)]-< 0. Let us put Q = Q(t,, ..., t,_;) and let by, ..., b, be
a basis of K,3(t,) over £3(t,), £ being the algebraic closure of £2. We have as in
the proof of Theorem 1, for suitable polynomials De$2[t,], P,
QoseRx,,...., 5] 1<06<5,0<i<p,0<j<q)

5 P 5 q :
P=D"! Z Z'Poi[:bm Q=D-1 Z ZQajt':bc'

- a=1i=0 o=1j=0
s p s g
§=U U{Patv U U {0}
o=1i=0 a=1j=0
Since (P,Q) =1 we have
gcd.F=1.

FeS

Let 85(N), S¢(N) be the set of vectors meZ* such that h(m)< N and
KP(x"', coes X™) , KQ(x™, ..., x™) have a common zero ¢ satisfying £e 2 or
C¢9, respectively.

For neS;(N), since tib, (1 <o <s,i=0,1,...) are linearly independent
Over 2 we obtain
Pyem, ..., &) =0, Qo™ .., ™ =0(1<0<s5,0<i<p,0<j<q)
and since ¢ is neither 0 nor a root of unity

ged. KF(x™, ..., x™) # 1,
Fes$
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Since tr.deg. £2/Q = r—1 the inductive assumption implies by virtue of Lemma
16 that
min{k,6} (log N)IO
N) < N2 ————,
card SS( } CSZ(S) (log log N]g

where for k < 6 the logarithmic factors can be onlitted.
On the other hand 2 = K, and tr.deg. K,/ = 1, thus if ne S¢(N) Lemma
10 implies the existence of a vector ye€ Z* such that

0< h(?] < CSS(P’Qrﬂ) and

By the argument used in the proof of Lemma 15 to estimate card §,(N) it
follows that :

card S4(N) < cs3(P,Q, )N,

yn =0,

min(k,6}

card(S5(N) U S¢(N)) < (c52(8) +¢53(P, Q, QYN* " F=7,

where for k < 6 the logarithmic factors can be omitted.

The constants cs,(S) and c33(P,Q,f2) depend upon the choice of the
transcendence basis t,, ..., t, and the choice of the linear basis b, ..., b,. Since
this choice is arbitrary we put

c,(P,Q) = inf(csz(s)‘*‘faa(P, Q,ﬂ)),

where the infimum is taken over all possible bases ¢, ..., t,and by, ..., b,. The
inductive proof is complete.

4. Proofs of Theorems 3 and 4.
Lemma 17. If FeQ[x,, ..., X;] is irreducible and non-reciprocal and an
integral matrix M = [w;;] of order k is non-singular then

k

(158) LF([] y, ..., T v = JF([T y#, ... TT 9%
i=1 i=1 i=1

i=1
and the above polynomial is squarefree.

Proof. The fact that the polynomial on the left-hand side is squarefree is
proved in the remark after Lemma 12 of [9]. If the equality (158) were false
there would be an irreducible reciprocal polynomial Ge Q[y,, .., ¥l such
that

k k
GIJF([] e, ..on T1 99,
i=1 i=1
hence

k k k k
[JF(]__I . nyf"‘],JF(l_l P y"ﬂrk))aél.
i=1 i=1 i =1
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Let |[M|M ™! = [1;]. By the substitution
k

vi= [l xft‘;“.
j=1

Wwe obtain
(TG, 541, ..., xMy, IR (cp !, oMl
and by Lemma 9 of [10]
(VF(xy5 X35 o0y X, JF(xT Y, X34, oy X ) # 1
Contrary to the assumption about F.

Prqof of Theorem 3. By Lemma 12 of [9] either F(x™, x", x™) = 0 or
there exist an integral square matrix M = [4;] of order 3 and a vector
v=[v,, v,, v;]€Z* satisfying (3) and such that

3 3 3 5
{159) L‘F(_l_l; yi, I—ll i, nﬂu)c:conﬂ H F, (yy, y2, ¥a)e
i= i= i=1 =1

ilTlplie;s

- xe M) # 1

5
LF(x™, x™, x™)= const [] LF(x™, x"2, x*¥)¢s

g=1

Or there exists a vector yeZ* such that yn =0 and

0 < h(y) < cs3(F),

Where c5(F) is an explicitly given constant.
In the first case the relation yn = 0 holds for a suitable ye Z* such that

O<hy) < |F|, thus in the first and third case the assertion of Theorem 3 holds
Provided

¢(F) > max{[F}, css(F)}.

In the second case, by virtue of Lemma 17, the left-hand side of (4,) coincides

"T“'ilh the left-hand side of (159) and e, = 1 for all ¢ < 5. Hence the assertion of
heorem 3 holds provided

KF(x™, x™, x™) = LF(x™, x", x™).

If the above equality does not-hold, KF(x™, x", x") has a reciprocal factor -
and thus

(KF(x™, 2%, ™), KF(e™, x™%, x" ") #£ 1.
Let us put in Theorem 1

P=F(%e X5, %)s O=JF(xy*, %32, %%,
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By the assumptions about F we have (P,Q) = 1, hence the assumptions of
Theorem 1 are satisfied and by virtue of that theorem there exists a vector
yeZ? such that yn =0 and

0 < h(y) < ¢,(P,Q).
Therefore, Theorem 3 holds with
¢3(F) = max {|F|, cs3(F), ¢,(P,Q)}.

Lemma 18. Let FeQ[x,,...,x], KF¢Q. If neZ* and KF(x",...
..., X"™)€Q then there exists a vector y€ Z* such that yn =0,

0 < h(y) < esalF).

Proof. Since KF¢Q, F has at least one irreducible factor
F,eZ[x,, ..., x,] which is not an extended cyclotomic polynomial in the
sense of [5]. .

By virtue of Lemma 3 of [5] applied with r=n either

deg KF,(x™, x™, ..., x™) > ddeg JF,(x™, x™, ..., x™)
or there exists a vector yeZ* such that yn =0 and
0 < h(y) < 2|F° [] ps
psj

where j is the number of non-zero coefficients of F,. In the former case either
KF,(x™,...,x™)¢Q, hence KF(x",...,x™eQ, or JF,(x",..., x"™)eqQ,
hence a vector y with the above properties exists again. Since |F,| < [F|, j is
bounded in terms of F, the lemma follows.

LEmMMA 19. For every polynomial Fe Z[x,, X5, X4] there exists a number
css(F) with the following property. For every vector neZ? there exists an
integral square matrix M = [;;] of order 3 and a vector ve Z 3 such that (3) holds
and either JF(x™, x", x™) is reciprocal or KF(x™, x", x™) is irreducible or

3 3 3 2
(160) KF(H i, v, n.\’?u]= HG.'{J’ls.Vz’ya)’
i=1 i=1 i=1 i=1
GeZy,, s, Vsl
and
(161) KG{x", x*, x")¢Z (i=1,2),

or there exists a vector yeZ> such that yn =0 and
0 < h(y) < ¢ss(F).

Proof. If JF is reciprocal then JF(x™, x", x™) is reciprocal and the
lemma holds with M equal to the identity matrix, v = n. If JF is not reciprocal
and KF is irreducible Theorem 3 applies to the polynomial F, = KF. By virtue
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of tha_t theorem there exist a matrix M and a vector v satisfying (3), and such
that either (4,) with F replaced by F, implies (4,), or there exists a y, € Z* such
that y.n =0 and

(162) 0 < h(y,) < ¢5(KF).

In the former case if on the right-hand side of (4,) we have just one factor
(s = 1) then by (4,) KF(x™, x™, x™) is irreducible, hence the lemma holds. If on
the right-hand side of (4,) we have s > 2 factors then for a suitable choice of
G,, G, we have (160) and (161) unless for a o <s

(163) KF,(x™, x2, x")eZ,

However by Lemma 18 (163) implies the existence of a vector y,€ Z* such
that y,v = 0 and 0 < h(y,) < cs4(F,). Since, by (3,) M is taken from a finite set
depel:lding only on F and to each M there correspond only finitely many
Primitive F,eZ[x,, x,, x5] (it suffices to consider only these), we obtain

0 < h(y,) < cs6(F).

Taking y, = y, M®, where M® is the matrix adjoint to M, we obtain from (3,)
Yan =0 and from (3,)

(164) 0 < h(y) < 3h(yo)h(M?) < 6h(yo)h(M)? < 6¢56(F)exp27-2IF1I-% = ¢ . (F).
If JP: is not reciprocal and KF is reducible we take M equal to the identity
matrix, v = n. We have
KF =G,G,,
Where
GieZlyy, y2, y:1\Z (i=1,2).
If KG(x", x", x™)¢Z (i =1, 2) (160) and (161) hold. Otherwise, for an i < 2
KG,(x", x™, x"™)eZ.
By Lemma 18 there exists a vector y;€Z3 such that y,n =0 and
(165) 0 < h(y;) < maxcsq(G),

G|KF
Where the maximum is taken over all primitive polynomials GeZ[y,,
yZ., ¥31\Z dividing KF. Therefore, by (162), (164) and (165) the lemma holds
With ¢55(F) = 0 if JF is reciprocal, ¢ss(F) = max{c;(KF),cs;(F), max cs4(G)},
Siherd GIKF
erwise,

. LEMMA 20. An analogue of Theorem 4 holds for polynomials FeZ[x,, x,]

With c,(r,F) replaced by a suitable csg(r,F) =1 (r =1, 2).

. Proof. The analogue of the condition for reducibility given in Theorem
4 is clearly sufficient. We proceed to prove that it is necessary assuming that
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KF(x™, x") is reducible; the value of csg(r, F) will be given later. If KF = LF
then by virtue of Theorem 3 of [9] there exist an integral matrix N = [v;j];<» of
rank r <2 and a vector » = [v,, v,]€Z" such that ol

h(N) < cso(r,F), n=mnv
and
KF([] yi, T] %)= const [ F,(yy, y)
i=1 i=1 e=1

implies
KF(xnl', xHZ)c;nconst n KF‘,(X"I, xp,)gg-
o=1 -

The matrix N and the vector v have the required properties, provided

csg(r, F) = cso(r, F).

If KF # LF, and KF is irreducible, then KF is reciprocal, JF is reciprocal
and JF(x™, x™) is reciprocal, contrary to the assumption. If KF # LF and KF
is reducible we have

KF=G,G,, GieZly,y,\Z (i=12).

If KG(x",x")¢Z for i=1,2 the lemma holds with N equal to the
identity matrix, » = n. Otherwise, for an i <2

KG(x™, x") = 1.
By Lemma 18 there exists a vector yeZ? such that yn =0 and
(166) 0 < h(y) < max cs4(G) = ceo(F),
G|KF

where the maximum is taken over all primitive polynomials Ge Z[y,,y,]\Z
dividing KF.

Let y=[y,,7,], where we assume without loss of generality that
(71, 72) = 1. We have then

ng=7y;n, ny=—yn, neZ
and taking
(167) Fo(x) = JF(x™, x™ ")
we find ‘

KF(x™, x™) = KF(x").

Now, by Theorem. 1 of [9] if KF,(x") is reducible there exists a positive integer
v < cg1(F,) such that vjn and KFo(x") is reducible. In this case we take r = 1,

N = ['}'21',—?1 “']' v= [H/i']
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and find
h(N) < h(y)v < ceo(F)ce1(Fy).

However F o is uniquely determined by F and y via (167) and by virtue of (166)
Y runs through a finite set of vectors depending only on F. Hence

ce1(Fo) < c62(F)
and the matrix N has the required properties, provided

csg(l, F) = coo(F)ce2(F).
Therefore, it suffices to take cs4(2, F) = cs9(2, F), if KF = LF, 1 otherwise;

cso(1,F) if KF=LF,
ceo(F)ce2(F)  otherwise.

) Proof of Theorem 4. The condition for reducibility given in Theorem
4is clearly sufficient. We proceed to prove that it is necessary assuming that
KF(xm, x", x") is reducible; the value of c,(r, F) will be given later.

If the matrix M and the vector v appearing in Lemma 19 have the
Properties (160) and (161), we take N =M, r =3, ¢,(3, F) = exp 27-2/FII =5,

Otherwise by the lemma in question there exists a vector ye Z* such that
"M =0 and 0 < h(y) < cs55(F).

Let A be the lattice consisting of all vectors xe Z* such that xy = 0. We
have (2,74, 01, [¥5, 0, —y,1, [0, y5,—#,]€ 4 and two among these vectors

are linearly independent, hence by Lemma 6 of [9] there exists a basis b,, b, of
4 such that ,

(168) h(b) < ih(y) < 2css(F) (=1, 2).
Let us put

¢sg(l,F) = {

(169) Fy = JFQS i, xpaods, xisxd), B = B]
2

Since neA we have n = mB for an meZ?, Clearly
JF(JC"', x"”, lea} S JFi(xMI’ xﬂu),

!h“S, by the assumption, KF,(x™, x™) is reducible. Applying Lemma 20 we
Infer the existence of an integral matrix N’ = [} iJi<, of rank r <2 and of
=

2 vector v = [v,, v,]€Z" such that ise
(170) h(N') < css(r, Fy),
(171) _ m = vN’,
KF (] yi, [Ty =G,G,,  GyeZly,y] (i=1,2)
i=1 i=1
and

KG(x", x")¢Z (i=1,2).
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Let us take N = N’'B. It follows from (169) that

JF\(I i, T o) = JECIT oo T1oi TTo2®)

i=1
and from (171) that
n =N,

moreover, since B is of rank 2, N is of rank r. Thus N and v have all properties
required in the theorem apart from the inequality for A(NV) and it remains to
establish that by an appropriate choice of c,(r, F).

We have by (168) and (170)

h(N) < 2h(N')h(B) < 4css(F)ess(r, Fy)-

However, F, is determined by F and B via (169) and by virtue of (168) B runs
through a finite set of matrices depending only on F. Hence

csalr, Fy) <cea(r, F)  (r=1,2)
and the theorem holds with
(3, F) = exp27-2FI~3,
cylr, F) = 4c;5(F)ces(r, F) r=1,2).

5. Proofs of Theorems 5 and 6.

Proof of Theorem 5. Let S(F) be the set of all vectors ne Z* such that

either
(KFG, coiy X, KEQT™y veen X)) #1

or there exists a vector ye Z* satisfying yn =0 and
0 < h(y) < expai—a(Tk|F*IF1 = log|IFl]),

where |F|* = /max(2,|F|)? +2.

Let T(F) be the set of all vectors ne Z* for which the second part of the
above alternative holds and put

P=F(xg, ..., %), Q=JFxi*, ..., x ")
In the notation used in the proof of Lemma 15

sF) = |) S, @; N)UT(F),
N=1

hence, denoting by [—N, N] the closed interval
card(S(F)n[—N, NT*) < card S(P, Q; N)+-card(T(F)n[—N, N1H).

By Lemma 15 we have

l k_minli.bi_(lﬂ—gl\l“')_
card S(P, Q; N) < ¢, (P, QJN"" -0 (loglog N)*’

where for k < 6 the logarithmic factors can be omitted.
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Counting the elements of T(F) in the same way as elements of §,(N) in the
proof of Lemma 15 we obtain

card (T(F) Nn[—=N, N]*] < cs6(F)N*1,
thus (i) follows.

o If ne Z*\S(F) then by Lemma 12 of [9] there exist an integral square
atrix M = [y;;] of order k and a vector ve Z* satisfying (5) and such that

k k s

(172) LF([T o0 T yi%) = const [T Fo(yys .o )%
. i= i=1 o=
Implies l

LF(x™; ..., x™)= const F] Pty cu. s 299,

g=1
:i{:;wevcr, by Lemma 17 the left-hand side of (6,) coincides with the left-hand
K;: of (172) and e, =1 for all ¢ <s, hence (6,) implies (6,) provided
(x™, ..., x™) = LF(x™, ..., x™). Otherwise we have

(KF(x™, ..., x™), KF(x™, ..., x"™™)) £ I;

thug neS(F). The obtained contradiction proves (ii).
Proof of Theorem 6. Without loss of generality we may assume that

min{k, 6}

s _ 3k(k—1)
exists a number cgq(k, S) > 0 and infinitely many integers N such that

S(N) > cealk, S)N' =
Thm‘&fore, the number of vectors neS* with h(n) < N exceeds
(054(kr S)Nl-z)& > ceqlk, SENU! Ok,

The number of v k
ectors ne Z* n[—N, N]* such that S(F) i
5 less than NT* such that neS(F)) is by Theorem

F_ g
i€Z[x,, ..., x] (1 <i<h). By the assumption about § for ¢ =

minik, 10
CS(FE)N" 5 ml— :‘)1 M——’
(loglog N)°

h
hence the number of vectors ne Z* n[—N, NJ* such that ne (J S(F,) is

i=1

min(k, 10

O(N*-“zl.'f St
oglo

HOwever 8108 N)

min {k, 6}

, 2(k—1) °

®nce for infinitely many integers N there exist more than ces(k, S~ > 0
h

Vi
ectors meZ*N[—N, NJ*\ | S(F,). By virtue of Theorem § for all these
=1

ek <
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vectors and all g < h the number ©Q, of irreducible factors of KF,(x™, ..., x™)

equals the number of irreducible factors of
k

X
1) JE,(TT v, -y TT 94
i=1 i=1
for a suitable non-singular matrix M, = [1;;]; j<x depending upon g.
If for some g < h the polynomial (173) were reducible we would obtain by
the substitution

[uij] = |det i\rlfguv.'..’,‘l

the reducibility of
F (oMl ., xjdeMyl),

contrary to the assumption. Hence Q, =1 for all g <h and the theorem
follows.

6. Examples and comments. We shall give an example, announced in the
introduction, of a polynomial FeZ[x,, x,] which is non-reciprocal and
irreducible, but KF(x™, x™) is reducible for all positive integers n,, n,. Take

F(x,, X,;) = x}+x3—2x,x,—2a*x, —2a’x, +a°,

where a is an integer > 3. F is not reciprocal and the only conceivable
factorization of F over Q into two factors of positive degree would be

F(xy, x;) = (b(xl-xz)'!'c)(b_l(xl —x2]+a4c_’), b,ceQ,

whence it would follow F(x, x) = a*, while F(x, x) = —4a’x+a*. Thus F is
irreducible. On the other hand, if n; =2m; (i=1 or 2) we have

F(x™, x") = (x™—x""" 4+ a? 4 2ax™)(x" — x" '+ a* — 2ax™),
if m=2m+1(=1,2)
F(Xm, lez) :(xﬂ1+xnz_a2+2xlm+mz+lxxm +xnz_a3_2xm|+m2+l)'

The factors on the right-hand side have no root of unity as a zero, since
a? > 2a+2, thus KF(x™, x") is reducible for all positive integers n,, n,.
k .

In the special case of Theorem 6, where F, = a,0+ 3. a,;x; (k > 1) it has
j=1
been possible in [12] to extend the result to Jthe situation, where
g0 € Q(eg1/%g0, - - -5 Ugi/%g0) = K, and the irreducibility of KF,(x™, ..., x™) is
asserted over K. '

In general such extension is possible with a suitable modification of the
notion of a reciprocal polynomial (cf. [13]) if, for all d, F,(x{, ..., x§) is
irreducible over the normal closure over Q of the field K, generated by the
ratios of the coefficients of F,. In particular, if K, is normal over Q and the
notion of a reciprocal polynomial is suitably redefined the theorem as it stands
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Xtends to the reducibility over K. Indeed, then the norm Ny o FAxY o5
IS for all d irreducible over Q and to obtain the ;rreducibility of
K F o(x™, ..., x™) over K o it suffices to apply Theorem 6 to N, oF,, provided
this polynomial is not reciprocal in the usual sense (1 < g < h).

However if K, is not a normal extension of Q, the polynomial Ny, F, is
Not necessarily irreducible, it is up to a constant factor a power of an
Irreducible polynomial F . It could seem that, if Fo(x, ..., x{) is irreducible for
all positive integers d and non-reciprocal, then by choosing n,, ..., n, so that
KFo(x™, .., x™) is irreducible over Q we may achieve the irreducibility of
KF 1(x™, ..., x™) over K,. This is, however, not the case, even for k = 1. Take

F,= x2—3\3/?x+9\3/_“,
We have K, = Q(J/p),

where p is a prime.

N‘:IJQFI. = (x3—~27p2)2 = F%.
The polynomial F(x?) = KFy(x?) is irreducible for every positive integer d, but

Fi(x?) = x*=3Yp?x2 +9p* = (x* - 3Ypx+3YpNx? + 3 px +3/pY)
and, since the factors on the right-hand side have no root of unity as a zero,
KF,(x?) is reducible over K .

) It is possible to extend Theorem 6 in a different manner, replacing the
Tational field by any totally real field or any totally complex quadratic
Xtension of a totally real field, or by a purely transcendental extension of one
of such fields. However, these generalizations are not automatical and we
Postpone them to a later work.

Note concerning the paper [11]. The following two corrections are needed

L. p. 316. The argument given to show that D(¢*) = 0 is impossible works only if v # 0. 1If
Y% =0 we have

up==11, hip)=him=n2k>1.

Heﬂce, by (9) k=3 and (5) holds with {g, h, i,j} = {0, 1, 2, 3}.
2. p. 329. The formula (47) should read

Nz 1 N
Tc U U dsv(——),
d=1v=1 d

Where for a set §: dS = {dx: xeS}.

Note added in proof. Theorem 1 admits the following extension.

THeoRrEM 7. Let K be any field and V an algebraic variety of dimension < 1 in the affine space
AK). For k>3 there exists a number c(V) with the following property. If meZ*,
Ceke (@, ..., {™) e Vihen either {% = 1 for a suitable integer q > O or there exist an integral matrix
M of size 2xk, rank 2 and a vector ve Z* such that

hiM)ysc(W and n=oM.

i Pr?ol' by induction on k. For k = 3 the theorem follows from Theorem 1 and Lemma 12.
Odeed if £ is not a root of unity we take in the latter for § the set of polynomials defining
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V and infer the existence of a vector ye Z® such that
O0<h(y)<c,,(S) and yn=0.
The lattice 4 of vectors perpendicular to y has a basis m,, m, satisfying
h(m) < ih(y) < 2c34(S)

(cf. the proof of (168)). Since meAd we have n=v,m, +v,m,, v,eZ.
We take

c(V)=2c,,(8), M =[m ], v=[v,,0,],
: 2
Assume now that k > 3, the theorem holds for all algebraic varieties of dimension <1 in
A, _,(K) and consider such a variety Vin A, (K) and { e K* different from roots of unity such that
(174) ", &, ..., el

The projection of V¥ on the hyperplane x, =0 is contained in an algebraic variety
V' < A,_,(K), where dim V' < 1. We have (&™, ..., &™-')e V", hence by the inductive assumption
there exist an integral matrix

(175) M =[m] . of rank 2
jsk=1

and a vector v'e€Z2 such that

(176) h(M') < c(V),

(177 a=[n,...,n_J=oM.

Since the vectors [m, 0], [m}, 0], [0, 1] are linearly independent the variety ¥ obtained
from V¥ by the substitution
(178) Xp= XM (1<i<k), x =z
satisfies *

dimV” < 1.

By (174) and (177), (178) we have (£, &, &™)e V* and by the already proved case k = 3 of
the theorem there exist an integral matrix M of size 2 x 3, rank 2 and a vector v” e Z* such that
(179) h(M") < c(V"),

(180) [v). vy, n,] = 0"M".

Let us take
o ]
M=M" , op=up".
0 1

It follows from (176) and (179) that

h(M) < 2e¢(V')e (V")
and from (177) and (180) that m = oM. Moreover, since M’ and M" are of rank 2, M is of rank 2. T“J
complete the inductive proof it suffices to take ¢(V) = inf 2¢(¥V’) max ¢(V"), where infimum 18

taken over all varieties ¥’ containing the projection of ¥on x; = 0 and the maximum is taken over
all varieties V" obtained from V by means of a substitution (178) satisfying (175) and (176)-
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