Additive bases with many representations

by

PAUL ERDŐS (Budapest) and MELVYN B. NATHANSON (Bronx, N.Y.)

In additive number theory, the set A of nonnegative integers is an asymptotic basis of order 2 if every sufficiently large integer can be written as the sum of two elements of A. Let $r_A(n)$ denote the number of representations of n in the form $n = a + a'$, where $a, a' \in A$ and $a \leq a'$. An asymptotic basis A of order 2 is minimal if no proper subset of A is an asymptotic basis of order 2. Erdős and Nathanson [2] proved that if A is an asymptotic basis of order 2 such that $r_A(n) \geq c \cdot \log n$ for some constant $c > 1/\log(4/3)$ and every sufficiently large integer n, then some subset of A is a minimal asymptotic basis of order 2.

It is an open problem to determine whether the set A must contain a minimal asymptotic basis of order 2 if $r_A(n)$ merely tends to infinity as n tends to infinity. This paper contains several results connected with this question. Let $|S|$ denote the cardinality of the set S. For any set A of nonnegative integers, let

$$S_A(n) = \{a \in A | n - a \in A\};$$

be the solution set of n in A. Erdős and Nathanson [3] proved that there exists a probability measure on the space of all sets of positive integers such that, with probability 1, a random set A has the properties that $r(n) \to \infty$ and $|S_A(m) \cap S_A(n)|$ is bounded for all $m \neq n$. We shall show that the following weaker condition suffices to prove the existence of a minimal asymptotic basis: If $r_A(n) \to \infty$ and if $|S_A(m) \cap S_A(n)| < (1/2 - \delta) |S_A(n)|$ for some $\delta > 0$ and all sufficiently large integers m and n with $m \neq n$, then A contains a minimal asymptotic basis. On the other hand, we shall prove that for any integer i there exists an asymptotic basis A of order 2 such that every sufficiently large integer has at least i distinct representations as a sum of two elements of A, but A contains no minimal asymptotic basis of order 2. The proof will use a refinement of a method applied previously by the authors to construct an asymptotic basis A of order 2 with the property that $A \setminus S$ is an asymptotic basis of order 2 if and only if the set $A \cap S$ is finite [1].
Erdős and Nathanson [4] have recently written a survey of results and open problems concerning minimal asymptotic bases.

Notation. Let \(A \) and \(B \) be sets of integers. Denote by \(A + B \) the set of all integers \(n \) of the form \(n = a + b \), with \(a \in A \) and \(b \in B \). Let \(2A = A + A \). Let \(S_A(n) = \{a \in A \mid n - a \in A\} \), and let \(S_A(n) = \{a \in S_A(n) \mid a > n/2\} \). When \(r_A(n) = |S_A(n)| = \left|\lfloor S_A(n)/2\rfloor + 1\right|/2 \). Let \(S \) be any subset of \(A \). We write that “\(S \) destroys \(n \)” if, whenever \(n = a + a' \) with \(a, a' \in A \), then \(a \in S \) or \(a' \in S \). For any real numbers \(a \) and \(b \), let \([a, b]\) denote the set of integers \(n \) such that \(a \leq n \leq b \).

Lemma 1. Let \(A \) be a set of nonnegative integers. If
\[
|S_A(n) \cap S_A(u)| < (1/2)|S_A(n)|,
\]
then \(n \notin 2(A \setminus S_A(u)) \).

Proof. If \(n \notin 2(A \setminus S_A(u)) \), then \(S_A(u) \) destroys \(n \), and so \(S_A(u) \) contains at least one element of each pair \([a, a']\) of elements of \(A \) such that \(a + a' = n \). It follows that
\[
|S_A(n) \cap S_A(u)| < (1/2)|S_A(n)|/2,
\]
which contradicts the hypothesis of the lemma.

Theorem 1. Let \(A \) be an asymptotic basis of order 2 such that
(i) \(r_A(n) \to \infty \) as \(n \to \infty \), and
(ii) there exists \(\delta > 0 \) and \(N_0 \) such that for all \(m, n \geq N_0, m \neq n \),
\[
|S_A(n) \cap S_A(m)| < (1/2-\delta)|S_A(n)|.
\]
Then \(A \) contains a minimal asymptotic basis of order 2.

Proof. Choose \(N_0 \) such that \(n \in 2A \) for all \(n \geq N_0 \). Choose \(a_i \in A \) with \(a_i > N_0 \). Choose \(a' \in A \) with \(a' > a_i \), and let \(u_i = a_i + a' \). Then \(u_i > 2N_1 \) and \(a' \in S_A(u_i) \). We define the set \(A_i \) by
\[
A_i = (A \setminus S_A(u_i)) \cup \{a_i\}.
\]
Then \(A_i \subseteq A \setminus A_0 = A \), and \(u_i = a_i + a' \) is the unique representation of \(u_i \), as the sum of two elements of \(A_i \). Since \(a \geq u_i/2 > N_1 \) for all \(a \in A \setminus A_i \), it follows that for \(n \leq N_1 \) we have \(n \in 2A_i \) if and only if \(n \in 2A \). Let \(n > N_1 \), \(n \neq u_i \). Since
\[
|S_A(n) \cap S_A(u_i)| < (1/2-\delta)|S_A(n)| < |S_A(n)|/2,
\]
it follows from Lemma 1 that \(n \notin 2(A \setminus S_A(u_i)) \subseteq 2A_i \).

Let \(k \geq 1 \). Suppose that we have constructed a decreasing finite sequence of subsets \(A = A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots \supseteq A_k \) such that \(2A = 2A_k \). Suppose also that for \(i = 1, \ldots, k \) we have constructed integers \(a_i, a'_i \in A_i \) such that, if we define \(u_i = a_i + a'_i \), then \(u_i < \ldots < u_k \) and \(u_i = a_i + a'_i \) is the unique representation of \(u_i \) as the sum of two elements of \(A_k \). Finally, we assume that \(A_{i-1} \setminus A_i \subseteq S_{A_i}(u_i) \)

for \(i = 1, \ldots, k \).

Choose \(\tau \) such that \(0 < \tau < 2\delta \). Since \(r_A(n) \to \infty \), there exists \(M > u_k \)

such that \(r_A(n) > (1/\tau) \sum_{i=1}^k r_A(u_i) \) for all \(n \geq M \). Choose \(a_{k+1} \in A_k \) such that \(a_{k+1} < 2M \), and define \(u_{k+1} = a_{k+1} + a'_i \).

Then \(u_{k+1} > 2M > 2u_k \) and \(a_{k+1} \in S_{A_k}(u_{k+1}) \cap A_k \). Define the set \(A_{k+1} \subseteq A_k \) by
\[
A_{k+1} = (A \setminus S_{A_k}(u_{k+1}) \cup \{a_{k+1}\}.
\]
Then \(u_{k+1} = a_{k+1} + a'_i \) is the unique representation of \(u_{k+1} \) as the sum of two elements of \(A_{k+1} \).

We shall show that \(2A_{k+1} = 2A_k \). Since \(2A = 2A_k \), it suffices to show that \(2A_{k+1} = 2A_k \). Note that \(u_{k+1}/2 > M \), hence
\[
A \setminus A_{k+1} \subseteq S_{A_k}(u_{k+1}) \subseteq [M+1, u_{k+1}],
\]
and so, if \(n \leq M \), then \(n \notin 2A_{k+1} \). If and only if \(n \in 2A_k \). Let \(n > M, n \notin A_{k+1} \).

Then \(n \notin 2A_k \). Let \(R(n) \) denote the number of representations of \(n \) as a sum of two elements of \(A_k \) (resp. \(A_{k+1} \)). We must show that \(R(n) > 0 \). Since
\[
A \setminus A_k \subseteq \bigcup_{i=1}^k S_{A_i}(u_i),
\]
it follows that
\[
r_A(n) \leq R(n) + \sum_{i=1}^k |S_{A_i}(u_i)| = R(n) + \sum_{i=1}^k r_A(u_i) < R(n) + tr_A(n),
\]
and so \(R(n) > (1-\tau)r_A(n) \) for \(n > M \). By (1), the number of representations of \(n \) as a sum of two elements of \(A_k \) that are not representations of \(n \) as a sum of two elements of \(A_{k+1} \) is at most
\[
|S_A(n) \cap (A_k \setminus A_{k+1})| \leq |S_A(n) \cap S_{A_k}(u_{k+1})| \leq |S_A(n) \cap S_{A_k}(u_{k+1})| < (1/2-\delta)|S_A(n)|
\]
\[
\leq (1/2-\delta)|S_A(n)|< (1-2\delta)r_A(n).
\]
This implies that
\[
R(n) \geq R(n) - (1-2\delta)r_A(n)
\]
\[
> (1-\tau)r_A(n) - (1-2\delta)r_A(n) = (2\delta-\tau)r_A(n) > 0
\]
and so \(n \notin 2A_{k+1} \) for all \(n > M \). This completes the induction.
Let $A^* = \bigcap_{k=0}^{x} A_k$. Then $2A^* = 2A$ and so A^* is an asymptotic basis of order 2. Moreover, $u_k = a_k + a_k'$ is the unique representation of u_k as the sum of two elements of the set A^*.

In order for A^* to be a minimal asymptotic basis of order 2, we impose the following additional condition on the choice of the integers a_k: If $a \in A^*$, then $a = a_k$ for infinitely many k. This means that for any $a \in A^*$ there will be infinitely many integers u_k such that $u_k \notin (A^* \setminus \{a\})$. Thus, A^* is minimal. This completes the proof.

Lemma 2. Let $I = [a, b]$ and $J = [c, d]$, where $b \leq c$. Let $k \geq 1$. If $m \in [a + c + k - 1, b + d - k + 1]$, then m has at least k representations in the form $m = x + y$, where $x \in I$, $y \in J$, and $x < y$. If $n \in [2a + 2k - 2, b + 2k + 2]$, then n has at least k representations in the form $n = x + y$, where $x \in I$, $y \in J$, and $x < y$.

Proof. Since $[a + c + k - 1, b + d - k + 1] = [a + k - 1, b] + [c, c + d - k + 1]$, it follows that $m = x + y$, where $x \in [a + k - 1, b]$ and $y \in [c, c + d - k + 1]$, hence $x < y$. Then $m = (x - i) + (y + i)$, where $x - i \in I = [a, b]$, $y + i \in J = [c, d]$, and $x - i \leq y + i$ for $i = 0, 1, \ldots, k - 1$.

Since $[2a + 2k - 2, b + 2k + 2] = [a + k - 1, b + k - 1] + [a + k - 1, b + k - 1]$, it follows that $n = x + y$, where $x, y \in [a + k - 1, b + k - 1]$ and $x < y$, hence $n = (x - i) + (y + i)$, where $x - i, y + i \in I$ and $x - i \leq y + i$ for $i = 0, 1, \ldots, k - 1$.

This completes the proof.

Lemma 3. Let $n_0 \leq n_1 \leq n_2 \leq \ldots$ be a sequence of positive integers such that $n_{k+1} \geq 3k^2 + 6k + 1$ and $n_k \geq 8n_{k-1}$ for $k \geq 1$. Let $N_k = 2n_k + 1$. For each $k \geq 1$, define the following sets of integers:

$P_k = [N_{k-1} + 1, n_k - N_{k-1}]$,

$Q_k = \{n_k - n_{k-1} - 3k + u \mid u = 1, 2, \ldots, k + 1\}$,

$R_k = [n_k + 1, n_k + N_{k-1}] \setminus \{n_k + n_{k-1} + 3k\} u = 1, 2, \ldots, k + 1$.

Let $B_k = P_k \cup Q_k \cup R_k$ and $B = \bigcup_{k=1}^{\infty} B_k$. Then

(i) $N_k \notin 2B$ for $k \geq 0$, and

(ii) If $k \geq 3$ and $n \in [N_{k-1} + 1, N_{k-1}]$, then n has at least k representations in the form $n = u + v$, where $u, v \in B_k \cup B_{k+1} \cup B_{k+2}$.

Proof. (i) Since the smallest element of B is $N_0 = 1$, it is clear that $N_0 \notin 2B$. Let $k \geq 1$. Note that

$B \cap [N_{k-1} + 1, n_k] = P_k \cup Q_k$,

and

$B \cap [n_k + 1, N_k] = B \cap [n_k + 1, n_k + N_{k-1}] = R_k$.

If $N_k = 2n_k + 1 = c + d$, where $0 \leq c < d$, then $c \leq n_k$ and $d \geq n_k + 1$. If $c \in B$ and $c \notin Q_k$, then $c \leq n_k - N_{k-1}$ and so $N_k = d = n_k - c \geq n_k + N_{k-1} + 1$.

Since $B \cap [n_k + N_{k-1} + 1, N_k] = \emptyset$, it follows that $d \notin B$. If $c \in Q_k$, then $c = n_k - n_{k-1} - 3k + u$ for some $u \in [1, k + 1]$, hence $d = n_k - c = n_k + n_{k-1} + 3k + u \in [n_k + 1, N_k]$. Since $d \notin R_k$, it follows that $d \notin B$ and so $N_k \notin 2B$.

(ii) Let $k \geq 3$. We apply Lemma 2 to the set P_k.

Let $n \in [2N_{k-1} + 2k, N_k - 2N_{k-1} - 2k + 1]$, then n has at least k distinct representations as the sum of two elements of P_k. Define the sets S_k and T_k by

$S_k = \{n + n_{k-1} + k + 1\}$,

$T_k = \{n + n_{k-1} + 3k + 1, n_k + n_{k-1}\}$.

Then $S_k \cup T_k \subseteq R_k$. Since

$N_k - n_k + n_{k-1} + 3k + 1 \leq N_k - 2N_{k-1} - 2k + 1$,

it follows from Lemma 2, applied to the sets P_k and T_k, that if

$n \in [2N_{k-1} + 2k, N_k - 2N_{k-1} - 2k + 1]$,

then n has at least k distinct representations in the form $n = x + y$, where $x \in P_k$ and $y \in T_k \subseteq R_k$. Similarly, Lemma 2, applied to the set S_k, implies that if

$n \in [N_k - 2N_{k-1} - 2k, N_k - 2k + 1]$,

then n has at least k distinct representations as the sum of two elements of S_k. Finally, Lemma 2, applied to the sets P_k and P_{k-2}, shows that if

$n \in [N_{k-1} + 1, N_{k-2} + 2, 2N_{k-1} + 2k + 1]$,

then n has at least k distinct representations in the form $n = x + y$, where $x \in P_k \cup P_{k+2}$. From (2)-(5), we conclude that if $n \in [N_{k-1} + 2k - 1, N_{k-1} - k]$, then n has at least k distinct representations as a sum of two elements of $B_k \cup B_{k+1} \cup B_{k+2}$.

Let $n \in [N_{k-1} - k + 1, N_k - 1]$. Then $n = N_{k-1} - w$ for some $w \in [1, k - 1]$ and

$n = (n_k - n_{k-1} - 3k + u + 1) + (n_k - n_{k-1} + 3k + u) \in Q_k \cup R_k \subseteq 2B_k$,

for $u = 1, 2, \ldots, k$. Let $n \in [N_{k-1} + 1, N_k - 1 + 2k - 2]$. Then $n = N_{k-1} + w$ for some $w \in [1, 2k - 2]$ and

$n = (n_k - n_{k-1} - 3(k - 1) + u + 1) + (n_k - n_{k-1} + 3(k - 1) - u + 1) \in Q_k \cup R_k \subseteq 2B_k$,

for $u = 1, 2, \ldots, k$. Thus, if $n \in [N_{k-1} + 1, N_k - 1]$, then n has at least k
representations as a sum of two elements of \(B_k \cup B_{k-1} \cup B_{k-2} \). This completes the proof of Lemma 3.

Lemma 4. Let \(B \) be the set of integers defined in Lemma 3. Let \(r_B(n) \) denote the number of representations of \(n \) in the form \(n = b + b' \), where \(b, b' \in B \) and \(b \leq b' \). Then \(r_B(n_k) = 0 \) for all \(k \) and \(r_B(n) \to \infty \) as \(n \to \infty \), \(n \neq N_k \).

Proof. This follows immediately from Lemma 3, since \(r_B(n) \geq t \) for \(n > N_{k-1} \), \(n \neq N_k \).

Theorem 2. For any integer \(t \), there exists a set \(A \) of nonnegative integers such that \(r_A(n) \geq t \) for all sufficiently large \(n \), and for any subset \(S \) of \(A \), the set \(A \setminus S \) is an asymptotic basis of order 2 if and only if \(S \) is finite. In particular, \(A \) does not contain a minimal asymptotic basis of order 2.

Proof. Let \(\{n_k\} \) be a sequence of integers that satisfies the conditions of Lemma 3. Let \(B \) be the corresponding set of integers constructed in Lemma 3 from this sequence \(\{n_k\} \). Then \(n_k \geq 8n_{k-1} \) implies that

\[
B \cap [N_k - N_{k-1} - 1, N_k] \subseteq B \cap [n_k + N_{k-1} + 1, N_k] = \emptyset
\]

for all \(k \geq 1 \). Choose \(j \) so large that \(|B \cap [1, N_{j-1}]| \geq t \). Let \(F_j \) be a subset of \(B \cap [1, N_{j-1}] \) such that \(|F_j| = t \). Let \(G_j = \{N_j - j \mid j \in F_j\} \), and define \(A_j = B \cup G_j \). Then \(G_j = A_j \cap [N_j - N_{j-1}, N_j] \). It follows that \(N_j \in 2A_j \) and \(r_{A_j}(N_j) = t \).

Suppose that for \(i = j, j+1, \ldots, k \) we have determined finite sets \(F_i \) and \(G_i \) and infinite sets \(B = A_{j-1} \supseteq A_j \supseteq \cdots \supseteq A_k \) such that

\[
F_i \subseteq A_{i-1} \cap [1, N_{i-1}], \quad G_i = \{N_i - j \mid j \in F_i\}, \quad A_i = A_{i-1} \cup G_i
\]

and \(|F_j| = |G_j| = t \). Then \(r_{A_j}(N_j) = t \). Choose \(F_{k+1} \subseteq A_k \cap [1, N_k] \) such that \(|F_{k+1}| = t \). An additional condition on the choice of the subset \(F_{k+1} \) will be imposed shortly. Let \(G_{k+1} = \{N_{k+1} - j \mid j \in F_{k+1}\} \). Let \(A_{k+1} = A_k \cup G_{k+1} \). Then \(|G_{k+1}| = t \) and \(A_{k+1} = A_k \cup G_{k+1} \).

Then \(A_k \setminus B = G_j \cup G_{j+1} \cup \cdots \cup G_k \subseteq [1, N_k] \)

and

\[
B \cap [N_k + N_{k+1} - N_k, N_k + N_{k+1}] = A_k \cap [N_k + N_{k+1} - N_k, N_k + N_{k+1}] = \emptyset,
\]

it follows that \(r_{A_{k+1}}(N_{k+1}) = t \). By induction, we obtain sets \(F_k, G_k \), and \(A_k \) for all \(k \geq j \). Define the set \(A \) by

\[
A = \bigcup_{k=j}^{\infty} A_k = B \cup \bigcup_{k=j}^{\infty} G_k.
\]

Then \(A \) is an asymptotic basis of order 2 such that \(r_A(N_k) = t \) for all \(k \geq j \), and \(r_A(n) \to \infty \) as \(n \to \infty \), \(n \neq N_k \).

We now impose the following additional condition on the choice of the sets \(F_j \): We must choose every \(t \)-element subset \(F \) of \(A \) exactly once. Thus, if \(F \subseteq A \) and \(|F| = t \), then \(F = F_k \) for some unique integer \(k \geq j \).

Let \(S \) be a subset of \(A \). Suppose that \(S \) is finite. Since \(r_B(n) \to \infty \) as \(n \to \infty \), \(n \neq N_k \), it follows that \(n \in A \setminus S \) for all \(n \) sufficiently large, \(n \neq N_k \). Since \(S \) contains only finitely many subsets \(F \) with \(|F| = t \), and since each such \(F \) destroys exactly one \(N_k \) with \(k \geq j \), it follows that \(A \setminus S \) is an asymptotic basis of order 2. If \(S \) is infinite, however, then \(S \) contains infinitely many subsets \(F \) with \(|F| = t \), and so \(S \) destroys infinitely many integers \(N_k \), hence \(A \setminus S \) is not an asymptotic basis of order 2.

Since the infinite set \(A \) contains no maximal finite subset \(S \), it follows that \(A \) does not contain a minimal asymptotic basis of order 2. This completes the proof of Theorem 2.

Definition. Let \(t \geq 1 \). An asymptotic basis \(A \) of order 2 is \(t \)-minimal if \(A \setminus S \) is an asymptotic basis of order 2 if and only if \(|A \setminus S| < t \).

Theorem 3. For any integer \(t \), there exists a set \(A \) of nonnegative integers such that \(r_A(n) \geq t \) for all sufficiently large \(n \), and \(A \) is \(t \)-minimal.

Proof. The construction of \(A \) is exactly the same as in Theorem 1, but with a different condition on the choice of the finite sets \(F_j \). We must now choose every \(t \)-element subset \(S \) of \(A \) infinitely often. This means that if \(S \subseteq A \) and \(|S| = t \), then \(S = F_k \) for infinitely many \(k \), and so \(S \) destroys infinitely many integers \(N_k \). Since \(r_A(n) \geq t \) for all sufficiently large \(n \), it follows that if \(|S| < t \), then \(S \) destroys at most finitely many \(n \) and so \(A \setminus S \) is an asymptotic basis or order 2. This completes the proof.

The following simple observation is interesting as a contrast to Theorem 2.

Theorem 4. Let \(A \) be an asymptotic basis of order 2 such that \(r_A(n) \to \infty \). Then there exists an infinite subset \(I \) of \(A \) such that \(A \setminus I \) is an asymptotic basis of order 2, and \(r_{A \setminus I}(n) \to \infty \).

Proof. If \(F \) is any finite subset of \(A \), then \(r_{A \setminus F}(n) \geq r_A(n) - |F| \), and so \(r_{A \setminus F}(n) \to \infty \).

We shall construct an infinite subset \(I = \{a_1, a_2, \ldots\} \) of \(A \) and an increasing sequence of positive integers \(N_1, N_2, \ldots \) such that \(N_1 < a_1 < N_2 < a_2 < N_3 < \ldots \), and such that, if we define \(A_k = A \setminus \{a_1, a_2, \ldots, a_k\} \), then \(r_{A_k}(n) \geq k \) for all \(n \geq N_k \).

Choose \(N_1 \) such that \(r_A(n) \geq 2 \) for all \(n \geq N_1 \). Let \(a_1 \in A \) with \(a_1 > N_1 \). Define \(A_1 = A \setminus \{a_1\} \). Then \(r_{A_1}(n) \geq r_A(n) - 1 \geq 1 \) for all \(n \geq N_1 \). Suppose that for some \(k \geq 1 \) we have determined integers \(a_1, \ldots, a_k \in A \) and integers \(N_1, \ldots, N_k \) such that \(0 < N_1 < a_1 < \ldots < N_k < a_k \) and, for \(j = 1, \ldots, k \), if \(A_j = A \setminus \{a_1, a_2, \ldots, a_j\} \), then \(r_{A_j}(n) \geq j \) for all \(n \geq N_j \). Since \(r_{A_k}(n) \geq r_A(n) - k \),
it follows that $r_{A_k}(n) \to \infty$, and so there exists $N_{k+1} > a_k$ such that $r_{A_k}(n)
less k + 1$ for all $n \nless N_{k+1}$. Choose $a_{k+1} > N_{k+1}$ and let $A_{k+1} = A_k \setminus \{a_{k+1}\}$. Then $r_{A_{k+1}}(n) \to k + 1$ for all $n \nless N_{k+1}$. This completes the induction.

Let $I = \{a_1, a_2, a_3, \ldots\}$ and define $A^* = A \setminus I$. Since $A^* \cap [0, N_{k+1}] = A_k \cap [0, N_{k+1}]$, it follows that if $N_k \leq n < N_{k+1}$, then $r_{A_k}(n) = r_{A_k}(n) \nless k$, and so $r_{A_k}(n) \to \infty$. This completes the proof.

Erdős and Nathanson [5] proved that if A is an asymptotic basis of order 2 such that $r_{A_k}(n) \geq c \cdot \log n$ for some $c > 1/\log(4/3)$ and $n \nless n_0$, then A can be partitioned into two disjoint sets, each of which is an asymptotic basis of order 2. The following result is a simple corollary of Theorem 2.

Theorem 5. For any integer i, there exists an asymptotic basis A of order 2 such that $r(n) \nless i$ for all $n \nless n_0$, but A is not the union of two disjoint sets, each of which is an asymptotic basis of order 2.

Proof. Let A be a minimal asymptotic basis of order 2 such that $r(n) \nless i$ for all $n \nless n_0$. Since no subset of A is an asymptotic basis, it is clear that A cannot be partitioned into a disjoint union of two asymptotic bases of order 2.

References

