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1. Introduction. Newton observed that an unordered set 'h,, ..., hy! of
real numbers is determined by the first N power sums: b} + ... +h%, for K
=1to N ([7). If we are given that hy, ..., hy are integers, then the set

thy, ..., hy! is often determined by a shorter sequence of power sums. This
fact is important in I. M. Vinogradov’s treatment of Waring’s Problem. In
their recent work on exponential sums ([1]) Bombieri and Iwaniec require a
result of this type with N =4, when the power sums with K =1 and 2 are
given and the power sum with K = 3/2 is given approximately. They require
an upper bound for Ig4(H, 4), the number of integer solutions of the
equations,

4 4
(1.1) Y (hf—kj) =Y (h—kj) = 0,
1 I
4
(1.2) [ (1312 =k} < AH3P2,
1
(1.3) H<hy,k;- 2H, j=1,...,4,

where H is a positive integer and 0 <4 < I

In the technical paper, [2], they obtain the bound O(H**") for any
¢ >0, when 4 = 1/H. They also obtain the same bound if the exponents in
(1.2), which are all 3/2, are replaced by any real number other than 0, 1 or 2.
In this paper we show, by elementary means, that the number of integer
solutions of (1.1), (1.2) and

(14) 0<hyk;<H

is < H*+AH%log® H. We use Vinogradov's order of magnitude notation
“F <G” for F=0(G). Replacing H by 2H, we see that I3(H, 4) < H*
+A4H®log* H.

If we impose the extra condition

4
(1.5) ¥ (h}/2—k}'?)| < 4, H'?,
1
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where 4, can be chosen from [4, 4H log H], then the number of solutions of
(1.1), (1.2), (1.5) and (1.4) is A(H)+O(4H®log® H), where

(1.6) A(H)=24H*—-72H*+82H*—33H is the number of “trivial sol-
utions™ of (1.1) and (1.4) for which (k,, ..., k;) is a permutation of

(hy, ...y hg).
Let S= Y  exp(2mi(xh®*+Bh+7y(h/H)*?)). By Lemma 2.3 of [1],
H<h<2H
11 14 1/96H2 1/32H 1/64
Iy(Ho A)y> 4 | [ [ IS°dadpdy>4 | [ | ISI® dudBdy
1 -1 -1/4 —1/96H2 —1/32H — 164

and expanding the product and integrating term by term gives
I¢(H, 4) > AH®. A plausible conjecture would be that AH® <|lI4(H, 4)
—A(H)| < AH5, for H™3 < 4 < 1. This conjecture is related to the Problem
of Prouhet and Tarry, described in Section 21.9 of [4].

Applications to exponential sums will be given in [6]. I would like to
thank Dr. M. N. Huxley, my supervisor, for several useful suggestions. I am
also indebted to the Carnegie Trust for the Universities of Scotland, who

have supported me financially. This work is part of my doctoral thesis for
the University of Wales.

2. Linear families. If h,, ..., k, is a solution of (1.1), then so is
hy+t, ..., ky+t, for any real t. We call such a set of solutions a family. In
this section we show that the integer solutions of (1.1) and (1.4) fall into
O(H*) families.

Lemma 1. For integers A, B the number of integer solutions of
x2+xi+x3 = A,

Xy + X+ X3 = B

(1 if F=0,
i
6) (%) if F/3 is a positive integer,
d|F
w(F) =4 d
3"% (3 if F is a positive integer and (F, 3) =1,
L 0 in all other cases,

where (g) is Jacobi’s symbol and F = (3A—B?)2.

Furthermore, if F =0, then x; = x, = x3 = B/3 and B* = 3A.
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Proof. Writing u = x,—x,;, v = Xx3—Xx; we have
W —uv+0? =x2+x3+x3 =%, X, =X x3—x3x, =(34—B%})/2=F.

As u? —uv4v? is positive definite, solutions only exist if F is a non-negative
integer. If F =0, then u =v =0 and x, = x; = x,. If F is a positive integer,
then, by a similar argument to Sections 16.9 and 16.10 of [4], there are

dy . .
6y (i) integer solutions for (u, v). Then 3x; = B—(u+v), X, =u+x,, X3
dIF

=p+x, and

(u+0)? =3+ 0v?)=2(u*—uv+v?) = —2F (mod 3) = B%(mod 3).

If 3|F, then 3|(u+v), 3|B and x, is an integer. If (F, 3) =1, then (B, 3)
=(u+v,3)=1, u+v= +B(mod3) and from each pair of solutions (u, v),
(—u, —v) (which are distinct, as u =v =0 implies F =0) only one will
correspond to an integral value for x,. This completes the proof of the
lemma. B

Let f/ be a family containing an integer solution of (1.4), hy, ..., ks.
Suppose that h, is the least of h,, ..., ks.-(There are 8 similar cases.) Let x;
=h—hy, y;=k—hy, for i=1,...,4 We have, 0<x;<h; <H and
0<y <k <H fori=1,...,4 and x, =0. As x,, ..., y, is a member of f

it satisfies (1.1). Therefore, to count all such families as f at least once, it is
sufficient to count the number of integer solutions of (1.1) and (1.4) of the
form xy, x5, X3, 0, ¥y, ..., V4

To apply Lemma 1 we fix y,,...,y, and let A =yi+ ... +yi, B=y,
+ ... +Y4, so that

1) F=yi+ ... +yi=y1¥2=V2¥3—YsVa—YaY1—V1V3—V2¥s and F
= F(y) is an indefinite quadratic form in y,,...,ys taking
integer values at integer points.

If ¢ > 0, then w(F) < max {1, 6d(F)} < max |l, F*} < H® and we see that
there are < H* solutions for x;, x,, x3. Now we let the y; range over the
integers in [0, H) to count a total of < H*** families. We obtain a bound
< H?, by showing that w(F) is <1 on average.

" When F is a positive integer, we write F = F, F,, where F; is the largest

power of 3 that divides F. Suppose that w(F) # 0, so by Lemma 1

0+ 1(5)=2.(5)= {28t

i(g ’_{ﬂ%—l, p = 1(mod 3),
3)  l(1+(=1¥)y2, p=—1(mod3),

and

r=0
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where p is prime and the sign || indicates that f§ is the highest power of p
dividing F,. It follows that if p?|| F,, then either p = 1(mod 3) or B is even
and so p’ = 1(mod 3) in both cases. This shows that F, = 1(mod 3). Now,

36)- 5 6 2 6)

F,

s e
Let ¢ = F,/d, then d|F,, d >~ JF, < e|F,, e < JF, and (%)(%)= :

d | ;
so that (§)= (g) By Lemma 1 it follows that

d
(2.2) wF)<12 Y (—),
diFy \3
d< . Fy
where the )’ indicates that weight 1/2 is used when d = | Fy
We now deline two densities associated with the quadratic form
F(yy. ¥a. ¥3, ¥ys) given by (2.1).

1
(2.3) D(bmodg:y,, y)=—1 2 X 1},

q yymodyg ygmodg
Fly)=h(modg)

1 1
(24) Dbmodg)=—{ Y 1}=—={2Y 2 D(bmodg;y;,y,)}.

q modg q yymody yymody

y
Ayl =h(moda Fiy) =himodg)

These densities are multiplicative in ¢, by the Chinese Remainder Theorem,
and will be evaluated using Gauss sums:

Sin,m= Y e(m*m), for (n,m)=1.
tmodm

Here ¢(x) denotes exp(2nmix), where i = ./ —1. The standard properties of
Gauss sums are summarised as follows (see [5], Theorems 5.1 and 5.6 of
Chapter 7).

Lemma 2. If (n, m) = ¢, then
. S(n, m) = ¢S(nfc, mfe).
If (n, mm') =(m, m') =1, then

S(n, mm') = S(nm’, m) S (nm, m’).
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If, further, m is odd and positive, then

S(n, m) = (%) \/@ Jm, where /—1<i.

If, instead, m is a positive power of 2 and n is odd, then

0, if m=2,

S(n, m) = (%)(H(__;I.);)\/_ otherwise,

and consequently, S(n, 4m) 28(n,m) if 4|m. A

Lemma 3. Let c,(a) deno:e Ramanujan’s sum: Y* e(an/q), where the 3*
nmodq
indicates that the sum is taken over those n coprime to g.

If (g, 3) =1, then

1 ryl

(2.9 Db mod q;v, w) = ELZ, (3);c,(3vw+b)},
1 r\1

(2.6) D(bmodq) = 71{?% (3);5 G (b)}.

If q is a positive power of 3, then

27 D(bmodg; v, w)=1{1+ y (3(3uw+b)/r)},
q 1<rlq 3 !
1) 3b/r\3
(28) _ D(bmodq]_q{l.plg:h( " )r}

where (S) =0 unless a is an integer coprime to d.

Proof. From (2.1) we obtain

4F (v, w, X, ) = (x+y—20—2w)>+3(x — y)* — 1 2vw.

Let

(2.9) h=x+y-2v—-2w and k=x-y,
then

(2.10) 4F (v, w, x, y) = h*+3k*—120w.

3 - Acta Arithmetica 52.2
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From (2.3)
1 1

(2.11) D(bmodg; v, w)=-5{ y ¥ -3 e[a(F-b)/q)}
q xmodq ymodq q amodgq

=é{z'_2 v ¥ ¥ e(A(F—bllr}}

rlg I" Amodr xmodr ymodr

A
(here = =§). We now evaluate the sum over A in (2.11).

If g is odd, then so is r and we can rearrange the sum over A and use
(29) and (2.10) to get

@y ¥ X X e(ﬁ(f_—b))

Amodr xmodr ymodr r
e e(—4A(3rvw+b)_)

Amodr

)P

xmodr ymodr

é (A (R*+ 3k2))

r

By (2.9) h and k are independent variables modulo r in the last double sum,
which therefore equals '

(2.13) S(A,r)8(3A4,r), for (A,r)=1.
If (g, 3) = 1, then, by Lemma 2, this is

(2.14) G)\/F (‘Tl)\/}? » (%)r

As this is independent of 4 we may again rearrange the sum over A, (2.12),
as

(2.15) (%),. T* e(AGow+b)r) = (g)rc,(30w+b).
Amodr

If ¢ is instead a positive power of 2, then we can rewrite the sum over A4
in (2.11) and use (2.9) and (2.10) to get

216 Y* (1/4) Y (/4 ¥ e(4A(F—b)r)

Amodr xmod4r ymod4r

= Y% e(—AQGuw+byr)(1/16) Y X e(A (h*+3k?)/4r).

Amodr xmod 4r ymod 4r

By (29) we have h=k(mod2) and also (x, y) —(h, k) is a two-to-one
correspondence modulo 4r. The sum over x and y in (2.16) can therefore be
split up in the following form

A problem on semicubical powers 125

2% ¥

hmodd4r kmodd4r
h =k(mod2)

=2{y L-~% X ~F% L+22 Lk
hmod4r kmod4r Amod4r kmodd4r  hmoddr kmoddr hmod4r kmod4r
2|k 2|k 2|k 2]k

The result is
(217)  2(S(A,4r)S(3A,4r)—25(A,rS(34, 4)
—2S(A, 4r)S(3A4, r)+8S (A4, r)S(34, ).
If 4|r, then, by Lemma 2, this is
(218) 2(4—4-4+8)S(A,r)S(34,r)=85(4,1S(34,1)

NG5
et

If r =2, then, by Lemma 2, (2.17) is
25(4, 8)S(34, 8) = 2 (%)(H ('71).-)\/5 (%)(14.(;—;):')\.@
e e

which is just (2.18). Hence, using (2.18) in (2.16) and replacing A by — A, we
again see that the sum over A, (2.12), is given by (2.15).
If q is odd and coprime to 3, or if g is a positive power of 2, then from

(2.15) and (2.11) we obtain (2.5). As the densities are multiplicative in g, we
obtain (2.5) for any g coprime to 3. Then, by (24) and (2.5), we obtain

ryl

pomoda={T (5]} T* T 5 eem+ban)]

rlg modr vmodq wmodg
g (r)L g
“{EG)r Zeoan 5, % comai}

if (g,3)=1.

In the above sum r will be coprime to 34, so that the sum over w
equals zero, unless r|v, when it equals r. (2.6) follows, for any g coprime to 3.
Let g be a positive power of 3.

(2.19) When r = 1, the sum over A in (2.11) is just 1.
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If > 1, then the sum over A4 in (2.11) is given by (2.12) and, instead of (2.14),
we get, by (2.13) and Lemma 2,

S(A,r)ss(A,rfs)=3(§) \/@/E (r%) \/(/_3) JB (An=1
- SENGE) =B G)

The sum over A4, (2.12), is then
iJar 3 ( ) e(—4A4(3ow+b)/r)
Amodr

and rearranging this gives

Amodr

(2.20) -i3r ¥ (%)e(A(3vw+b)/r).

Summing over B = A+3 shows that, if r does not divide 3(3vw+b), then
(2.20) is zero. If r|3vw+b, then summing over B = — A shows that (2.20) is
zero. The remaining case is when r/3 is the highest power of 3 dividing 3vw
+b. (2.20) then becomes

3rs T (g)e((A(3vw+b}{(r/3})/3)

3 dmad
b)/(r/3 « (B
- —i(rz/ﬁ)(w) z (?)3(3/3).

\ Bmod 3
The sum over B is 2isin2n/3 =i./3, so that (2.20) is

((3vw +b)/(r/3})r1 _ (3(3vw+ b)/r )ﬁ

(221) - .

a 3 5 .
With the convention that (E) =0, unless a is an integer coprime to d, we see

that (2.21) is also true in the cases where r/3 was not the highest power of 3
to divide 3vw+b. From (2.19), (2.21) and (2.11) we obtain (2.7).

By (2.4) we may obtain D(b modq] by summing D (bmodq; v, w) over v
and w modulo g, then dividing by q We may carry this out on (2.20), to
obtain, for r > 1

z("'\/i"] Z ( )8(Ab/r)(fl/(f/3)) Yy Y e(Avw/(r/3)).

vmod(r/3) wmod(r/3)

Here (A4, 3) = 1, so that the sum over w equals zero, unless v = 0(mod r/3),
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when it equals r/3. We obtain

2.22) W ( )e(Ab/r)

Amodr

The sum over A4 here is of the same form as that occurring in (2.20), so that
we may treat (2.22) in the same way to get

3 3b/r) 3b/r
2.23 A Dol rer 22S Y] (il 4
( ) i .r 3( 3 )r.
By (2.19) the contribution from r =1 is
(2.24) ‘ 1% T e,

q vmodw wmodg

Summing the results from (2.23) and (2.24) over r|g, with weight g/(r?), we
obtain (2.8) and the proof of the lemma is complete. W

By short-circuiting the proof in [3], we obtaln the following less refined
result.

LemMMA 4. Let .# be a measurable subset of x[Ai, A;+1;], with the

H = » - % - 1
property, that every line in~B" which is parallel toone of the coordinate axes

intersects .# on a set consisting of at most c disjoint connecred compayents in
the line. Then

¥ 12— | xa(x)dx| < c [T+ 1D-T]L},
zn R 1 1

where y ,(x) is the characteristic function of #. B

Lemma 5. Let g be a positive integer, F(X,, ..., X,) a non-constant
polynomial with the degree in each variable being < d. Let

R=|xeR"; Fx)=2b;0<x<1,i=1,

and let V(:#) denote the volume of #. If w(x) is any weight [unctwn on R with
O0L<w(x)<1 and w(x) =1 if F(x) > b, then, for any a€R",

H y w(x)}-%v’(m < [d+2/8) {'f (")u/qr},
r=0 \I

xedR
x =a(modq)
where [u] denotes the integer part of u.

Proof. Let 2 = |{xe®; F(x) > b). & is a finite intersection of measur-
able sets and is therefore a measurablé set. Now

xed
x =a{modg) "z.



128 N. Watt

l n
where o = E(fb—a]. -/ is a measurable subset of x [—a;/q, —a;/q+1/q]. To
1
show that o satisfies the conditions of Lemma 4, let 1 <j<n, let
yi=b, fori=1,...,ni#j

be the equation of a line parallel to the j-axis and let z be a point on
that line. z is a point in ./ if and only if —ay/q<z;< —a)/q+1I/q and
F(gz+a) > b.

F(qz+a)—b =g(z;), a polynomial in z; of degree at most d.

Y = |z;; z€.o/} is the intersection of an open subset of R with [—ajq,
—a;/q+1/q). The boundary points of ./’ in R are either roots of g, or —ay/q,
or —ay/q+1/q. Every disjoint connected component of .’ has two boundary
points in R. Each boundary point bounds at most two disjoint connected
components of /. Two disjoint connected components of ¥’ share the same
boundary point only when that point is a multiple root of g. As g has at
most d roots (counting multiplicity), it follows that . has at most [(d +2)/2]
disjoint connected components.

o satisfies the conditions of Lemma 4 and we obtain

X 1w ()= [ x| < [(d+2/2](((1/) + 1) —U/g)").
r R" '

Putting this in terms of x, we obtain

{ 3 1}—;1'.-”9) s.t(d-rz)/z]{')-:‘ (")(I/qr}.

xed r=1 \F
x Ee{modg)

By a similar argument, with minor adjustments, we obtain the above
result, with & replaced by #. Now #-% has measure zero, so V(A) = V(7)
and

(Y 1i<{ ¥ wwis{ X 1}

xed xedt xed
x =a(modq) x =a(modq) x =a(modgq)

so that we may combine the results for # and ¢ to complete the proof of
the lemma. B '

LemMa 6. The integer solutions of (1.1) and (1.4) fall into O(H*) families.

Proof. After the discussion following Lemma 1, we may use Lemma 1
and (2.2) to see that the number of such families is

<z i3+ z G}

Fin=0 Fi»>0
Fy =1(mod3) d<JFy
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where Y denotes the sum over the integers y, ..., ys in [0, H). In this
¥y

region F(v) < H?. The above expression is at most

] 1 d l

|ZI|+Z Z _\3 Z* ’

g mAKd<HIGI™ T e X eda)

(2.25) J where Fy =3" ¢ =3""'d, b is the least positive integer satisfying
the congruences b = 3"(mod3™*') and b = 0(modd) and

#="'xeR* F(x)>3"d*; 0<sx;<H-1,i=1,....4].

The first sum over v is H*. The last sum over y is

¥ g W

amodg yeot
Fla) =b(modg) ¥y =a(modq)
# satislies the conditions of Lemma 5, with n =4, d = 2, so that the inner
sum here is

1
7 V(#)+O0((H/g?+1).

If ¢ <3H, then we sum over a to see, that

Y  1=(V(#)+0(gH%)D(bmodg).

yer

F(y) =b(modg)
If ¢ > 3H, then, as d < H/(| 3)" < H, there is a unique integer t with
(2.26) 1<t<m and H <gq,<3H, where g, =3'd.
Arguing as above and using (2.25) and (2.26), we obtain
y 1< Y 1 =(V(#)+0(q, H*))D(0mod g,)

ye & ye &
F(y) =b(modgq) Fly) =0(modgq))

< H* D(0mod q,).

It now remains to estimate three sums.
First Sum:

d
$;=Y Y (ﬂl’(.ﬂ’}D{bmodq}.
m | <d <H/3™
By the multiplicativity of the densities and Lemma 3,

1 1 d 1 /r\1
s=zyw(ieg), L, () a5 ()ren

1<d <H/3M
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Let d =re and use ¢(r) <r, to see that
1 1 e\ V(A4
S, < = = (—) L

' §3 ;"z 1£e<zms"'r 3/ e

For fixed m and r, V(#) is non-increasing, as e increases, so that the

innermost sum is bounded below, by zero, and above, by its first term

(e = 1), which is at most H*. The sums over m and r converge and S, € H*,
Second Sum:

S;=) ) gH’D(bmodg).
m | <d<H3M
@3)=1

We proceed as above, with d = re, and also use

(g)l <1 to show that

S, < H’ZZ— Y 1<H

1 <e <H/3Mr

since the sum over e is € H/3™r.
Third Sum:

Sy =), Y H*D(0mod q,).

m gi3m<g <Hj(, 3)M
.3)=1

As the densities are non-negative, we may use (2.26) to replace one H with
3'd. Then, as above, we let d = re to obtain the bound

<HEY. L 1<H,
mor Uy 3ym
since the sum over e is < H/(\-'E}”'r.

This completes the proof of the lemma. W

3. Using the inequality. Given a solution of (1.1), h,, ..., k,, in a family,
J, we define the polynomials

P(x)=(x=h)...(x=hs), Q(x) =(x—ky) ... (x—kq)

and the products P;(f) = P(k), Qi(f) = Q(h), for i =1, ..., 4. These prod-
ucts are determined by f.

(3.1) We say that the family is “trivial” if and only if
Pf(f)=Ql(f)=0! fori:l""!4-

LeMMA 7. A solution of (1.1) is trivial (in the sense of (1.6))'if and only if it
is a member of a trivial family (in the sense of (3.1)). The number of trivial
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solutions of (1.1) and (1.4) in integers is
(3.2) A(H) = 24H*—T72H>+82H*-33H.

Proof. If a solution of (1.1) is a trivial member of a family, /, then P(x)
= Q(x). Therefore P;(f) = P(k)=Q(k) =0, for i=1,...,4 and similarly
for the Q;(f). By (3.1), f is trivial.

If a solution of (1.1) is a member of a trivial family, f, then

0=P,(f) = P(k) =k €'hy,....,h), fori=1,...4.

By symmetry, \hy, ..., hy! = \ky, ..., k], as unordered sets. There are now
four cases to consider.

Case 1: hy, ..., hy take 4 distinct values. k,, ..., k, are a permutation
of these values, so the solution is trivial. There are 4! H!/(H —4)! such integer
solutions of (1.1) and (1.4).

Case 2: hy, ..., hs take 3 distinct values, A, B, C. The linear equation in
(1.1) is of one of the forms 24 +B+C = A+2B+Cor 24+B+C =24+B+C.
From the former equation we find 4 = B, a contradiction. From the latter

1 H!
equation it is seen that the solution is trivial and there are (:)ﬁ:i—w
such integral solutions of (1.1) and (1.4).

Case 3: hy, ..., hy take 2 distinct values, 4, B. The linear equation in
(1.1) takes the form nA+@4—nB=mA+(@—-m)B, neil,2]. Whence
(m—n)A =(m—n)B = m=n and the solution is trivial. For n =1, 2 there

are, respectively,
4\ 4 H 1 4 4 H!
3J3H=-2" 2\2/22Y(H-2)!

such integral solutions of (1.1) and (1.4).

Case 4: If hy, ..., h, all take the same value, 4, thcn so do ky, ..., ks.
The solution is triv:al and there are H such integral solutions of (1.1) and
(1.4). This completes the proof of the lemma. W

Lemma 8. If 8, K >0 and |xj|, Iyl <K for j=1,....,N and

N

Y (xf—yh) <6K?, for f=1,..., N,

1
then
N
[1(5—y) <8K™, fori=1,...,N, 1<reZ.
1

The implied constant depends on r, N and the implied constant in the
hvpothesis.
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Proof. For 0 < < N we deline the polynomials

N
Sp =S’(X) =Sﬂ(X|, ceay XN] =ZX§
1
and lhe pO]yanla|S Eﬂ = Eﬂ{X} — EB(X]’ sany XN,

N N
n(l-—X,l =ZEN'-1’U-
1
We then have %

N N N v
(3.3 x:— )| = e oo i
) I,-U.“’ v [JI;[IU’: X;) J[Il(y.-—yj]l=[j§0(EN_j(x)_E~_ o

N-1
< j—zo [En-j(x)—Ex_; ()| K.

Nolv;:. (x)—E, (v) = §,(x)=S, (v) < 6K, which proves the lemma in the
case r=N =1. For N > 1, we may take, as an induction hypothesis,
(34) |E,(x)—E,(v)] <3N""'6K" for I<r<m<N.

From [7], p. 166, we have the equation, true for 1 < m< N

Sm+El Sm_1+ siaia +E,,,ﬁIS,+E,,‘m =0

We find
1 m—1
|Em (x) = E,, (W] < = EO |E () Su—r (x) = E, (3) S, (3)]
1 m=1
< ; ,§o (|E,(x)— Er(y}l |sm—r(x)‘ +|Er(-"j| ISm—r(x} —sll—r(y)l)

and, by the h i i
is y ypotheses of the lemma and the induction hypothesis, (3.4), this
m=1

< Z (3Nr-l 6KrNKm—r+(N)Kr6Km—r)
r

1
m

r=0

m-1

<ok, (e ()

m—1

<8K™ Y 4N'/m < SK™N™ ' (4(1—N~™)/(m(1-N~1)

r=0
< OK"N™ 1(4(1-N"3)(2(1-N"Y)),
since 1 <m < N. Therefore, for N > 2, we get
|Em(x)—=E,(¥)] < K™ N™ 1 (2(14+ N~ ) < 3Nm-1sK™
and the induction hypothesis, (3.4), is true with m = N.
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By (3.3) and (3.4), with m = N,
N-1 N-1
|n (xj—yi)l < Z INN-I-1GKNTIKI < 36KNNNV-1(1=N"1) < 6NN~15KN,
=1 =0

for N = 2. This proves the lemma in the case r = 1. From the above result
we deduce

N N
“_[ (-‘J}_}’F}l =“_[ (-"j—)’t](fj_' +fj_2y.-+ +}‘f_l)\
=1 Jj=1
N
< (rK™ YWY T (= )| < 6r® NN-15K"™,
j=1

which completes the proof of the lemma. i
Our next lemma carries the burden of the proof. First we introduce

some notation:
Given a family, f, and a member of f, (hy, ..., ke), We can parametrise
the family as f = (b +t, ..., ke +10); teR!. Then we can define the real

function of t,
4
(3.5) Mg (f, ) =X ((h+tf = (ki +1)),

where
B>0 and t > —min {hy, ..., K}

The graph of My(f, 1) is determined by B and f, up to a translation parallel
to the r-axis.

LEMMA 9. The number of non-trivial families, f, which contain a solution of
(14) in integers, (hy, ..., k), and for which there is a value of t satisfying

(3.6) 0< hy+t, k+t<H, fori=1,...,4
and )
(3.7 M3 (f, 1) < SH%, My, (f, 0l < SH'?

is <dH*log?H.

Proof. We first dispose of those f for which some P;(f) or @;( f) is zero.
In this case some h; equals some k;. There are 16 possible similar cases. We
assume that hy = k4. hy and k, eliminate each other from the equations (1.1)

~ and (3.7). An appeal to Lemma 8, with N =3, x; = Jhi+t, y = JVk+t K

= ﬁ (by (3.6)), 6 the same as in (3.7) and r = 2, shows that

(38) (hy —ks) (hy —ks3) (hy —k3) < SH>.

If this product were zero, then some h, equals ks, for i < 3. There are 3
possible similar cases. We assume that hs = k3. Equations (1:1) reduce to
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hi+h3 = ki+k3 and h,+h, =k, +k,. Whence (k,, k,) is a permutation of
(hy, hy) and (hy, ..., ks) is a trivial solution of (1.1). As f is non-trivial,
Lemma 7 shows that it contains no trivial solutions of (1.1). Therefore, the
above product, (3.8), cannot be zero. f contains a member (u,, ..., v,), where
u=h—ky, v, =ki—ks, —H<u, v, <H (by (14)), fori=1,...,4, v;=0,
vy = Uy (as kg = hy), 0 # u, uuy < 3H? (by (3.8)) and v,, v, are the roots of a
quadratic polynomial with coeflicients which are functions of u,, u,, u; only.
There are

< H choices for vy = uy,
< 0H?log? H choices for u,, u,, u,
and then
<1 choices for vy, v,.
Taking account of all 16 similar cases, we see that

(39) there are < 6H*log? H families, f, which satisfy the conditions of the
lemma and have some P;(f) or Q;(f) equal to zero.

We now count those f with no P;(f) or Q;(f) equal to zero. We apply
Lemma 8, with N =4, x; = /h;+1, y; = Jk;+1, K = JH (by (3.6)), 6 the

same as in (3.7) and r = 2, to see that
(3.10) 0# Pi(f),Q;(f) <éH*, fori=1,...,4.

We let a=(h+ ... +hy)/4 =(k;+ ... +ky)/4, by (1.1). We suppose,
that

(3.11) |ks —al = max |max |h;—al, max |k;—a|!.
i i

This is one of 8 similar cases. We may suppose, that
(3.12) ky <a.

Otherwise, we count —f, replacing (hy, ..., ky) by (H=1—=h,, ..., H—1—k,),
so that (1.1), (1.4), (3,10), (3.11) and (3.12) are still all satisfied.

By (3.11) and (3.12) ky < Iy, k;, for i =1, ..., 4 and, by (3.10), h; # k;,
for i, j=1,...,4, so that

(3.13) ke <h, fori=1,...,4.

We now dispose of those f for which F(h,—k,, ..., hy—ky) =0. By
Lemma 1

{314) kl =k2=k3.

We suppose that hy <y, for i = 1, ..., 4. There are 4 such similar cases. Let
Vi=h—=(hy=1), x;, =kj—(hy—1), for i =1,...,4. By (3.13), | <y, < h—k,,
for i=1,...,4. Hence, by (3.10), 1 <y,;y,¥3Vs < Ps(f) €<6H* and, as
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ye=1, we get 1 <y, y,y; <3H*. By (3.14) x; = x, = x3. (1.1) becomes
3x24x2 =yi+yi+yi+ 12
3x,+x4 =y|+y2+y3+l

There are < 8H*log? H choices for the positive integers y;, y,, y3. Then
there are at most 2 choices for x,, as a root of a known quadratic equation.
x4 is then determined. f contains the member (y;, ¥2, V3, I, X1, ..., X4) and
so (taking account of the 4 similar cases)

(3.15) there are < dH*log? H families, f, for which the conditions of the
lemma, (3.10), (3.11), (3.12) and F(h,—ks, ..., hy—k,) =0 all hold.

We now treat those f for which F(h, —Kg, ..., hy—ks) # 0. By (3.13), we

“may suppose that | < hy—kq < hy—ky < hy—kg < hy —k4. There are 4! such

similar cases. Suppose it were true that h,—k, < (h, —k,)/3. Then
a—ky = ((hy—kg)+ ... +(hs—ky))/4
< (hy —kg) (1 +3+3+3)/4 = (hy — )2+ (a—ka)/2,
so a—k, < h, —a, which contradicts (3.11) with (3.12). Therefore,
hy—kq = (hy —ky)/3.
By (14) and (3.13), 1 <h—kq <H, for i=1,...,4. Writing x = hy—kg,
y=h,—ky, v=hy—ks, w=hs—ks, we have F=F(x,y,0,w)#0,

I<w<v<y<x<H and y>x/3. From (3.10), Py (f) <dH* so xyvw
< dH* and x(x/3)vw < dH*. Putting

(3.16) T = T(vw) = min | H, /3cdH*/vw !,

where ¢ is the implicit constant in the order of magnitude bound, we have
x < T. Therefore, by (2.2) and the discussion following Lemma 1, the number
of these [ is-
(3.17) < Y S (;)

1<u,wsT Oérx;joé'f dilia},'-_

Fy =1(mod3) 1

Let #=!x,»)eR: 0<x,y<T F(x,y,v,w)2 3md?!. As in Lemma 6,
we rewrite the sum over x, y, d as

d ;
.2 6z v
m 1<d<T/(,3) F =b(modq)
The sum over (x, y) is

DI Y wlx),

(8, p)modg (x,y)e o
F(B,p,v.w) =bimodg) (x.y) =(0.p)(modg)
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where

1, F>3"d?
1/2; F =3md2.

We may apply Lemma 5, with n = 2, d = 2 to see that the inner sum here is

wix, y) = {

| T
e V(m+o(;+ ! )
If ¢ <3T, then we sum over (0, ¢) to see that

Y 1=(V(#)+0(gT)D(bmodg; v, w).
ng"(':fo:ql

If ¢ > 3T, then, as d <1, there is a unique integer ¢, with

(3.18) I<t<m and T<gq,<3T, where q, =3d.
h_% , I< Y 1=(V(#H+0(q; N)D(Omodg,:v,w) (as above)
F = bhimodg) Féﬁ'ma,“]

< T*D(Omodg,; v, w).

A§ in Lemma 6, we now have three sums to estimate.
First Sum:

d
5= Y (E)V(.#}D(bmodq;v.w).

m 1<da<T/3m '

By the multiplicativity of the (non-negative) densities and Lemma 3,

s,«);% ¥ (g)w.#%%(%)-}c,ﬁvw].

1<d<T/3™

Note that, ¢,(3vw) = ! Y u(r/s)s and v, w> 0, (r, 3) = 1 (when (;)# 0)

sl(r,| 3vw|) ‘

" 80 (r, [3ow|) = (r, vw). We substitute r = st and d = re = ste, to rewrite the
sum over d as

! )3 () e
slow S )=1 !2 z (5
t!.£]= 1 ¥ 1<esT/3My

)V(JP)

€

As in Lemma 6, we see that the sum over e is < T2 As |u(1)| < 1, we may
complete the sums over m and ¢, to see that

5, <T*Y (1)) = T2 a(vw)/ow.

slow
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Second Sum:

S, =Y Y qTD(bmodg;v,w).

m | <d<T/3™
d.3)=1

We repeat the substitutions made in §;, to obtain the bound

S;@TZZZ% y L

mslew 10 | <e<T/3Mst
The sum over e is < T/3™st. As above, we may complete the sums over m
and ¢ to see that S, < T?o(vw)/ow.
Third Sum:
S3=Y Y T:D(Omodgq,; v, w).
m T 3m<d<T/( /3™
@,3H=1

As the densities are non-negative, we may use (3.18) to replace one Tby 3'd.
We then make the substitutions made in S;, to obtain the bound

S,éTZZZ(l/r) Yy 1.
m slow ¢ T/3Ms <e ST/, 3)Mst
The sum over e is < T/(\-E)"‘ st. We complete the sums over m and t, to see
that S; < T?a(vw)/ow.
From the bounds for the three sums and (3.16), we see that the right-
hand side of (3.17) is

(3.19) < Z ng(v_w} < EU(L’).G(W}
1 So,wsT ow 1<vweH W ow
2 .
ééﬂ‘% Y i;,]} < 8H*\og?H.
1<0<H |

The bounds (3.9), (3.15) and (3.19) complete the proof of the lemma. W

Tueorem 1. The number of integer solutions of (1.1), (1.2) and (1.4) is
< H*+ AH® log® H, where H is a positive integer and 4 > 0.

Proof. By Lemma 7,

(3.20) the number of trivial solutions of (1.1) and (14) is A(H) < H* and
every non-trivial solution of (1.1) is a member of a non-trivial family.

Let f be a non-trivial family containing an integer solution of (1.1) and
(14), (hy, ..., k). The members of f are of the form m(r) = (hy+t, ..., kg+1),
where t eR.

(3.21) The set of values of 1, for which m(r) is a solution of (1.4), is an
interval [L, U), of length < H.
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Given a R, we let

Cla: Xy, ..o, Xg) = [] 1 X1+ ... +e5 Xg—a).

g= 11

This is a polynomial in X, ..., Xg which is even in each X;, has degree 2*
and has the two factors (X,+ ... +X,—Xs— ... —Xg+a). Hence,
C(AH>?; (hy+1)*2, ..., (ks +1)*?) is a polynomial of degree at most 384 in 1,
with zeros when M;,(f, 1) = £+ AHY2,

(3.22)  Therefore, the set of values of t > L for which m(r) is a solution of
(1.2) is a closed set ./, with at most 385 boundary points.

m(t) is a solution of (1.2) and (1.4) in integers if and only if
1eZN[L, U)yn Y. By (3.22), [L, U)yn /" is a union of at most 385 disjoint
intervals. Therefore, if T(f) is the maximum number of integers contained in
any one of these intervals, then

(3.23)  The rnumber of members of f which are integer solutions of (1.2) and
(1.4) is < 385T ().

If 0< T(f) <1, then we use (3.23) and Lemma 6 to see that
(3.24)  the total number of solution from such “separated” families is < H*.

_ If T(f)> 2, then there is an interval I = [L, U)n% containing T(f)
integers. We may suppose that (h,, ..., k;) was chosen so that + =0 is the
least integer in I. Therefore [0, T(f)—1] = [L, U)n . By (3.21) and (3.23),

(3.25) m(1) is solution of (1.2) and (1.4), for 1 €[0, T(f)—1].

Now, 2< T(f) < H, so we may divide up the range for T(f) into the
ranges

(3.26) L<T(f)<2L, where Lis a power of 2 and 2< L< H.

(3.27) There are < log H of these ranges.

Now,
d . .
;E(MMIU- D) =3M,.(f, 1),

so that, by the First Mean-Value Theorem, there exists 7 €[0, T(f)—1] with

(M2 (f, TN = 1)= My (f, OUT(N)=1) =3 My5(f, 7).
Therefore, by (3.25) and (3.26),
8H

My (f, 0l S$AHP2/T(f)—1) < (EA)H”Z.
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8H
M2 (f, Dl S AH?2 < (?EA)H”:

and
0< h+t,k+t<H, fori=1,..,4.

These non-trivial f slalisfy the conditions of Lemma 9 with é =(8H/3L)4
Therefore,

(3.28) there are <(H/L)4H*log?H such f.
By (3.23),

(3.29) each such f has at most 770L members which are integer solutions
of (1.2) and (1.4).

By (3.20), (3.27), (3.28) and (3.29), we see that the total number of non-trivial,
integer solutions of (1.1), (1.2) and (1.4) from non-“separated” families is
< AH®log® H. Combining this with (3.20) and (3.24) completes the proof of
the theorem. W

THeoREM 2. The number of integer solutions of (1.1), (1.2), (1.4) and (1.5) is
A(H)+O(4H®log® H), where H is a positive integer, 420 and 0< 4,
< AHlogH.

Proof. By Lemma 7, the number of trivial solutions is A4 (H). The proof

continues, as in Theorem 1, except that, when 0 < T(f) < 1, we can apply
Lemma 9 with 6 =4,. B

Added in proof. In that part of the proof of Theorem 1 which leads up to statement (3.22)
I have failed to consider the possibility that the polynomial in ¢,

C(AHY; (hy 412, .., (ke +0)),

has all its coefficients equal to zero. In fact this cannot occur when 4 >0 (the only case we need
consider). This can be seen by using the binomial theorem to investigate the asymptotic
behaviour of the factors

e (h + 0¥+ ... +eg (kg + 12— 4HY2,

for large positive values of t.

References

[1] E.Bombieri and H. Iwaniec, On the order of {(}+it), Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (4) 13 (1986), 449472,

[2]1 - — Some mean-value theorems for exponential sums, ibid. 13 (1986), 473-486.

[3] H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179-183.

4 — Acta Arithmetica 522



140 N. Watt

[4] G. H. Hardy and E. M. Wright, An Introduction to Number Theory, Oxford 1979.
[S1 L. K. Hua, Introduction to Number Theory, 1982,

[6] M. N. Huxley and N. Watt, Exponential sums and the Riemann Zeta-function, Proc.

London Math. Soc. 57 (1988), 1-24.
[7] Sir Isaac Newton, Arithmetica Universalis, 1722.

Received on 26.5.1987

5
and in revised form on 28.9.1987 (52

ACTA ARITHMETICA
LII (1989)

The distribution of powerful integers of type 4

by
ExkkeHARD KRrATZEL (Jena)

Let k > 2 be a fixed integer. A natural number n, is said to be powerful
of type k if m, =1 or if each prime factor of n, divides it at least to the kth
power. This paper is concerned only with the distribution of powerful
integers n, of type 4. Such a number can be uniquely represented by

4 5 6 7
hy = dgaj a; as,
where a,, a,, a; are square-free numbers and (g;,a) =1 for I <i<j<2
We put
I for n=n,,

Jaln) = %0 for n+# ng.

Let N,(x) denote the number of powerful integers of type 4 not exceeding x.
Then

Nix)= Y 1=7Y fa(m.

ngsx nsx
For the Dirichlet series
- ol | = fi(n)
F S) = —_—= —
4( Mz=rl "i n=1 "‘

we obtain

— 4y 45) ¢ (55) ¢ (65)E(Ts) &
M Fe=T1(1+ _,)=‘” 5’“(:"‘(’)2} "’“’Elc':’f"’,

P =P
where the Dirichlet series )¢y (n)n™* is absolutely convergent for
Re(s) > 1/11. This shows that an asymptotic representation for N4 (x) may be
written in the form

5
(2 Ne(x) = ¥ peax'"+ (),
=4

¥
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