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On the 2-Sylow subgroup of the Hilbert kernel of K,
of number fields

by

ALan Canpiotrt (Madison, N.J.) and KennetH Kramer (Flushing, N.Y)

1. Introduction. Let F be a number field. For each non-complex comple-
tion F, of F, let m, be the order of the group of roots of unity u, = u(F,).
Let A.: F* x F* -, denote the Hilbert norm residue symbol ([11], Remark
15.10), as well as the corresponding map from K, F to yu,. By convention, we
take 4, and g, to be trivial at complex places. For non-Archimedean v, let g,
be the exact power of the residue characteristic dividing m, and let k, be the
residue field. The tame symbol 1“™: K, F —k¥ is obtained from A% by
reducing modulo v.

Let S be a finite set of places of F including the Archimedean ones and
those above the rational prime p. If Og is the ring of S-integers of F, we may
define K, Og as the kernel of all tame symbols on K, F at places outside S.
Assume that F contains the gth roots of unity u,, where g is a power of p.
Let As be the ideal class group of F modulo the subgroup generated by
classes of ideals over S. By [12], Theorem 6.2, Ag is related to the tame
kernel by an exact sequence of the form
(1) 0 = As/(A5) =K, 05/(K, 097 =[]y, —o0.

l'lﬂeolsco:l[gtrl
Let R, F be the kernel of all Hilbert symbols. In Section 2 we give an
analogous idelic interpretation of R, F/(R; F)%.

Suppose instead that F is a totally real number field with ring of
integers 0. Let K,0 be the kernel of all tame symbols. According to a
conjecture of Birch and Tate, the order of K, O is wg|(p(—1)|, where (¢ is
the Dedekind zeta-function of F and

we=4 [ (1/2In(E)l]

[E:F]=2

with the product being taken over quadratic extensions E of F. When F is an
abelian extension of Q the Birch-Tate formula is correct at least up to

4 — Acta Anthmetica 521
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multiplication by powers of 2. This is a deep theorem, depending on work of
Coates [4], Greenberg [8] and Mazur and Wiles [10].

Various authors ([2], [7], [13]) have verified certain cases of the 2-
primary part of the Birch-Tate conjecture. Perhaps the most general is a
result of Kolster [9] showing that it holds whenever the 2-Sylow subgroup of
K, O is elementary abelian. In particular, this includes certain fields F which
are not abelian over Q. Kolster relates K, O to a certain “relative ideal class
group” for the extension E = F (i) and uses the zeta-function computation of
Brown [3].

In Section 3 we apply methods similar to Kolster’s to study R, F in
terms of a slightly different “relative idele group” denoted I(E/F). In The-
orem 3.1, we give general conditions under which R, F has the same number
of direct summands of order exactly 2" as I(E/F). These conditions hold if,
for example, n < ord, |u(E)| and there is one prime over 2 in E. It would be
interesting to know more about I(E/F). For example, using [5], it can be
shown that I (E/F) is finite if and only if Gross’s 2-adic regulator Ry does not
vanish. We are happy to acknowledge here the helpful coments of Leslie
Federer about this equivalence.

In Section-4 we show that for real quadratic fields F = Q(\/I_)), the
relative idele group I(E/F) is easily described in terms of the ideal class
group Ag(K) of K = Q(\/—D).

In Section 5, results of Urbanowicz [13] on the exact power of 2
dividing wg{z(—1), when this power is small, then permit us to verify the 2-
primary part of the Birch-Tate conjecture for infinite families of real quad-
ratic fields such that K, 0[2] is not necessarily elementary abelian. In par-
ticular, we complete the verification of the conjectures in [13].

Notation: We let |G| be the order of the finite abelian group G. We
denote the p-Sylow subgroup of G by G [p] and the kernel of multiplication
by p on G by ,G.

2. An idelic interpretation of the wild kernel. Let F be a number field
which contains a primitive p-power root of unity {,. Let m = [u(F)| and m,
= |u(F,)|. Let J denote idele group of F, consisting of valuation vectors (a,)
such that a,€F* and a, is in the local units U, of F* for all but finitely
many v. Denote the principal ideles by F. Throughout this section, we fix §,
to consist of the complex places of F and a place v, such that m, /m is not
divisible by p.

ProposiTioN 2.1. Let n =[] F¥ x [] n, where

veSg véSp
o= {x€F¥| 4, {{g, x} =1} = {xeF¥| x is a norm from F,({4m)}.

If v is prime to p, then n, = U, F¥4. For each o = (a,) €J there exist elements
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t(@ in Ky F such that i, \t(2)} =4,\(, a,) for all v¢S,. There is an
isomorphism ¥: J/(nF) = R, F/(R, F)* given by ¥ (x-nF) = t(®)*(R, F)%.

Proof. We construct the following commutative diagram, in which the
vertical arrows are surjective.
He @F* -, ®@J

! e
0 =¢(Ry F) = (K, F) = [T #g > Ry F/(R, F)* =0.
v¢Sp

By Moore’s theorem ([11], Theorem 16.1), there is an exact sequence
0—Kerh—K,F* [] . =0
vgSp

in which the map h is given by Hilbert symbols. Since m, /m is prime to p,
the reciprocity law forces Kerh and R, F to have the same p-Sylow sub-
group. It follows from [12], Proposition 4.3, that R, F = (K, F)’. By the
snake lemma for multiplication by g in Moore’s exact sequence, the bottom
row of our diagram is exact.

The first vertical arrow sends { ®f ey, ®F* to |{, f| and is surjective by
[12], Theorem 6.1. The second vertical arrow B sends {®(a,)€u,®J to
(4., a,)). Since A, gives a perfect self-pairing of FF/(F3)™, the map
Ao \lgs Vi F¥ — p, is surjective and its kernel is n, for v¢S,. Since J? = n we
clearly have an isomorphism J/n = (u,®J)/Ker f. Letting ¥ be induced by
dof, we see that ¥ is an isomorphism.

Finally, for v prime to p, F,({;) is an unramified extension of F, of
degree q. Therefore n, = U, F¥? by local class field theory.

CorROLLARY 2.2. Let L be the abelian extension of F corresponding to
J/(nF). Then L = F ("), where x = {f €F*| f e, F} for v # v, and f €F3{}.

Proof. Let (, ), be the g-power norm residue symbol A,**, which
provides a perfect self-pairing of F¥/F¥%. Choose a generator {, for p, such
that :,"""'=Cq. Then 4, (., Y} =(, Y), and it is easy to see from the
definition of 1, in Proposition 2.1 that the orthogonal complement of no/Fe?
under the pairing ( , ), is (g, F¥9)/F39.

From Kummer theory and class field theory, we have the perfect pairing

¢y Set JNJIF) x F*/F*8 >y,
given by ¢, > =[]( , ),. The orthogonal complement of (nF)/(J*F) in the

t
pairing ( , Y clearly is »/F*?. Kummer generators for the extension L are
therefore given by the elements of x.

Remark 23. Let n°=[]#n, and E=F((;'9. The argument above
shows that Kummer generators for the extension of F with Galois group
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J/(n°F) are given by
\f €F*| feu, F* for all v}.

Since m,,/m is prime to p, this extension is LE. Since v, splits completely in L
but not at all in E, we have LNE = F.

3. The wild kernel and a relative idele group. We now specialize to the
case in which F is a totally real field and p = 2. Let E = F(i). Let S; be the
set of places of F over 2 and co. Denote by S; (resp. Sy) the set of primes v
of F dividing 2 such that v is split (resp., not split) in E. Let S; (resp., S3) be
the primes of E over Sy (resp., Si). Let pg, = limu,n and let

| _{Et if weSg or w|oo,
v x€E%| x is a norm from E, (u,) if weS;.

Let .# = [] .#,x [] U,. We define the “relative idele group” to be
weSg w¢Sg
I(E/F) = Jg/ . #J¢ E, where the bar denotes closure in the idele topology. The
main result of this section is Theorem 3.1 below, relating the wild kernel and
the relative idele group.
I(E/F) is related to the S-ideal class groups of E and F as follows. Let
1. Ag(F) = Ag(E) be the map induced by lifting ideals. Then

As(E)1\As(F)} = Jg/Us, J5 E), where Js, = [] Exx [] U,.

weSg w¢Sg

Suppose that S¢ = {v,, ..., v,} and let w; and w) denote the primes over v;in E.
Then by local class field theory, E;J/. #,,,J_ = Gal(Ew}(yﬁ)/ij) = Z,. Further-

more, there is an exact sequence of the form
(2 [1 E%,/ -#,, = 1(E/F) > As(E)/1 {45 (F)} —0.
i=1

To see this, let (z,)€Jg represent an element of I(E/F) = Jg/.#Jz E which

becomes trivial in Je/(Js, Jr E). Correcting by an element of .#, we may

assume that z,, = 1 for w¢S; . Correcting by an element lifted from F op we

may further assume that Zy; = 1 for j=1,..., n as desired. In Section 4 we
will show that I(E/F) is finite when F is a real quadratic field.

Let 7 ={se,(K,F)| 4,(s)=1 for all v¢S;} and let A= [] A: K, F
veSF

= [ #,. Since [u,| is exactly divisible by 2 for all veS; , reciprocity implies
veSp
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that (%) is contained in the hyperplane H, = {(a,)e [] {£1}| [] a,

veSp veSg
= 1}. We say that all possible signatures occur over Sy if A(%) = H,. This is
trivially the case if for example there is one prime over 2 in E.

Tueorem 3.1. Lét F be a totally real field and let E = F(i). Let I(E/F)

= Jg/.#J: E. Suppose that E contains a primitive root of unity {,, of 2-power
order 2r. Suppose further that all possible signatures occur over Sg . Then there
is an isomorphism

P: r', (E/F)IZrIlE/F)Z _'r(RZ F)/Zr(RZ F}z-

In particular, I1(E/F) and R, F have the same number of direct summands of
each order dividing r.

In what follows, we will use some elementary facts from class field
theory which we collect here for reference. (See [6], § 2.)

Genus theory: Suppose that Gal(F,/F,) = {g) is a finite cyclic group.
Let J; be the idele group of F;, and let H; be a profinite abelian extension of
F;. Suppose that Gal(H/Fj) = J;/X; in the isomorphism of class field theory.
Let N: J, —J, be the norm. Then:

(i) H, is Galois over F, if and only if X9 = X,. If so, the commutator
subgroup of Gal(H,/F,) is Gal(H,/F,)! * where g acts by conjugation.

(ii) Suppose H, is Galois over F,. Let HY be the maximal subfield of
H, abelian over F,. Then the normic subgroup of J, corresponding to HY is
N(X,)F,.

(iii) H, o H, if and only if N(X,) = X,. If so, we have the exact
sequences below, in which the vertical arrows are isomorphisms and the map
N induced by norm corresponds to restriction on Galois groups.

N
0= N'X)/X, = JJX, = JJX, = JJIXiN{U)] -0

i l l l
0 — Gal(Hy/H,F,) — Gal(H,/F,);2 Gal(H,/F,) = Gal(H, nFyF,) = 0.

Before proceeding to the proof of Theorem 3.1, we need the following
lemmas. Fix a choice of prime v, not split in E and let L be the abelian
extension of .F corresponding to the normic subgroup nF of Jr as in
Corollary 2.2 with ¢ = 2. Let M be the profinite abelian extension of E such

that Gal(M/E) = Jg/ #J¢ E = I(E/[F).
Lemma 3.2. Let (#MJg), be the semi-local component of .#Jg over the
prime v of F and let N,: ]—[E:‘, —F¥ be the semi-local norm. Then N,(.#Jg),

wv

=1n,. The norm Ngyg: Jg = J¢ induces an isomorphism ﬁﬂf: Je/(MI g JEE)
= J¢/(nF).
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We have L= M and LNE =F. In fact, LE is the maximal abelian
extension of F contained in M and the maximal elementary 2-extension of E
contained in M.

The groups I(E/F) and R, F have the same 2-rank.

Proof. By definition, 5, = {x €F¥| x is a norm from F,({,,,)}. Suppose
first that veSf . Let X = {xeF¥| x is a norm from F,(u,)}. It follows from
local class field theory and the fact that F,(u,) is cyclic over F,, that p,
= X :F*2, which clearly equals N,(.#Jg),. Suppose next that v is archime-
dean or veS; . Then |y, is exactly divisible by 2. Let w lie over v in E. Since
F,(ym)* = F,()* = E}, = M, we have n, = N,(E¥) = N,(.#J;),. Finally,
for v¢Sg, the group of local norms of units is all of U,. Hence N,(.#J),
= U,F}? =, as desired. In the notation of Remark 2.3, Ny (.#Js) = n°
=[]n, and Gal(LE/F) = J;/n°F.

By genus theory (i), M is Galois over F. Let M*™ be the maximal
subfield of M abelian over F. Then

Gal(M*™/F) = Jg/\Ngjp (-#J5) F} = Jg/(n° F) = Gal(LE/F).

Hence M* = LE. Furthermore
Gal(M™/E) = J/(MIzJL ™7 E).

But Jp °Jp =JJ;. Therefore M™ also is the maximal elementary 2-
extension of E contained in M. By Remark 2.3, we have LN E = F. Hence
Ngr is an isomorphism by genus theory (iii). It follows from this isomor-
phism: and Proposition 2.1 that I(E/F) and R, F have the same 2-rank.
The next two lemmas are minor modifications of results of [9] in which
we pay more attention to wild symbols for places over 2. For each prime v of
F, let (Jg), =[] EX. If z = (z,) €J; we use boldface z, € (Jg), to denote the

Wi
projection of z on (Jg),. If there are 2 primes w and w' over v in E and e e E¥,
we denote the element (le, z,}, e, z,/}) €K, E, xK, E, by le, z,}.
Lemma’ 3.3. Suppose that {,, €E, where r > 2 is a power of 2. Let beE*
and suppose that the principal idele (b)€(z,) #Jr. Then

/L,Tf {Cln b} = A‘u{_lv Nr'zu}
for each prime v¢ Sy .
Proof. Let Tr,: [[K,E, =K, F, be the semi-local transfer map. In

wlv
our context [E:F] = 2, so that the semi-local transfer is the usual transfer if
v does not split in E, and is the product otherwise. By [1], Proposition 2, we
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have commutative diagram

K,E - []K,E, = []u.

wlr wir

(3] Tr l l Try l ¢

KZ F — KI F,. Ap s

in which 6,(,) = o™ and 0 = []0.,.

wie

Consider the principal idele
(b) = (z,) (x,)(a,)  with (x,)€.# and (a,)€JF.

In the embedding of b to be(Jg), we have b = zux a,. Using the fact that
Negip(la) =1, it is easy to see that Tr, {{s,, a,} = 1. It follows from the
definition of .# that 4, !{,,, x,,) = 1 for all w¢Sg . Hence 4, Tr, {{5,, x,} =1
for all v¢Sy. Hence, for v¢ Sy, we have

4, Tr ilglr: b} =/, Tr, {CZH b} =4, Tr, {{2rs 20 X, av}
=2,Tr,{-1,z}=41{-1,N,z}

as claimed.

Lemma 3.4. Suppose that r is a power of 2 and that [, €E. Then every
element of (R, F) has the form Trgyg{(,, b} for some beE* N(Jg MJp).

Proof. We use induction on the power of 2 in r. There is nothing to
prove if r = 1. Suppose r > 2. Let 4(r) = E* n(Jg .AYJF) Given s€,(R, F) we
can by induction hypothesis find b, €4 (r/2) such that s* = Tr {{,, b}. Then
s={-1,f} Tr{{,’,,b } for some feF* Since s is in R, F and Tr 1, by}
=Tr{{,, b;}?*€(K,F)* all quadratic norm-residue symbols vanish on
{—1,f). Hence f is a global norm. Write f = Ne for some e€E*. Then
{—1,f}=Tr{—1,e! =Tr{,, ¢?}. Hence s =Tr{l, b} with b=b, e’
Clearly b is still in 4(r/2), so that the principal idele (b) is an element of
(z,)*.#J; for some (z,)€JE. )

For primes weSz, b trivially is in .#, = E*. Suppose that v¢Sy . Then
1=4,(5)=A4,Tr{, b} =4,{—1, N,z,}, with the last equality by Lemma
3.3. It follows that N,z,€n,. By Lemma 3.2, there exists y, €(.#Jg), such
that N,y, = N,z,. Then by Hilbert’s Theorem 90, z,/y, €(Jg), ~° (g2 FL.
Therefore (z,,) EJ§ MJ ;. Hence bed(r), completing the induction.

Proof of Theorem 3.1. We also denote by N the map I (E/F)
— J/(nF) induced by norm. By Lemma 3.2 and Proposition 2.1, the compo-
sition @ = YoN: ,I(E/F) =R, F/(R,F)* is well-defined, and

Ker & = ,I(E/F)~.
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Next we show that Image @ = (R, F)/,,.(R, F)*. Suppose that (z,)€eJ
represents an element of ,I(E/F). Then there exists beE* such that
(b)€(z,)" MIp. Let Ngjp(z,) =(a). By Lemma 3.3, we have A, Tr{(,,, b}
=/,1—1,a,} for all v¢Sg. Using the assumption that all possible signa-
tures occur over Sy, we can adjust Tr{{,,, b} by an element |—1,f! in
K, F so that

AG=1,11Tr o b)) =4, {—1,a,} for all .
In the notation of Proposition 2.1, we may choose

t(au} = Ill_ltf} 'Tr {Czr. b}.
Then

?(z,) = YON(z,) = ¥(a,) = t(a,)* = Tr {{,, b} €,(R, F) (mod ,, (R, F)?).

By Lemma 34, the map & is onto ,(R,F)/,,(R,F)%. This completes the
proof.

4. Quadratic fields. Throughout this section F = Q(\/I_)) is a real

quadratic field with square-free D. Let K = Q(./—D) and E = F(i). Let o

generate Gal(E/F) and let t generate Gal(E/K). Let I(E/F)=Jg/ MJ, E
= Gal(M/E) be the relative idele group described in Section 3. By class field
theory, the S-ideal class group A45(K) is isomorphic to Gal(H/K), where H is
the maximal unramified abelian extension of K split over Sx. Our first step is
to identify the relative S-ideal class group AS(E]/r{As(F)} = Jg/Usg Jr E) of
exact sequence (2) in terms of Ag(K) = Jx/Usy K)

LemMa 4.1. The following sequence is exact
NEx

0-Jg/(Us Jr E) = Jx/(Js, K) = Gal(H n E/K) —0.

Proof. For clarity, we make explicit the inclusion maps such as i¥: J,
—Jg. Let Uy denote the subgroup of J, whose components are units at
non-archimedean places and arbitrary at archimedean places. Since Q has
class number 1, we have Jo = Uy Q. Hence
4 Ngix {EJEUF)} = ia{NnQ(Jr)} = "5(']0) = ‘5( Ug Q).

It follows that the map K’EM' Je/Us, J¢ E) = Jx/(Js, K) induced by the norm
is well-defined. Furthermore, coker Ny = Gal(H nE/K) by genus theory
(iii). Since C = Q(i) also has class number 1, we have

(5) JE* T = ig(Nge Jg) < i€(Je) = iE(Ue C)-

Clearly o acts by inversion on Jg/(Js, J; E). Hence J}* < Js Jr E.

To determine the kernel of NE;K. suppose that Ny (z,) = (a, k) eJs, K.
Because E over K is unramified outside 2 and a,eU, for ¢Sy, the global

The Hilbert kernel of K, 57

element k is a norm from the completions of E everywhere locally except
possibly over 2. If there is one prime over 2 in K, then by reciprocity k is a
norm from E. If there are 2 primes over 2 in K, then we may replace k by
+k as necessary to insure that k is a norm from E locally at one of the
completions of K over 2. Then k is a global norm from E again by reciprocity.
Clearly then (a,) € Ny (Js,). It follows from Hilbert’s Theorem 90 that
Nk (s, K) = Js EJL " c Jge Jp E. Hence Ny is injective, as desired.

We are now ready to relate I (E/F) to Ag(K) depending on the factoriza-
tion of 2 in F.

CoroLLARY 4.2. If D # +1(mod8), then I(E/F) = As(K).

Proof. Use exact sequence (2) and Lemma 4.1, noting that H NE = K
and S} is empty.

CoroLLARY 4.3. If D = 1(mod8), then there is an exact sequence

0 = I(E/F) = As(K) = Gal(E/K) —0

which splits if and only if all possible signatures occur over Sg .

Proof. Exactness follows from (2) and Lemma 4.1. The sequence splits if
and only if the induced map No: Jg/(Js, J¢J2 E) = Jx/(Js, Jk K) is injective.
Suppose zeJ; represents an element of the kernel of N,. Then
Ngxzea®Jg, K for some aeJy. Hence Ngjy(za™')eJs, K. It follows from
the injectivity of Ngyx in Lemma 4.1 that za™' eJs, J; E. Hence

Ker No = {ig (Jx) Isg Jr JE E} (s, Jp JE E).

From the isomorphism ﬁm of Lemma 3.2, noting that .# = Jg,, we see that
Ker N, is trivial if and only if Ny {if (Jy)} < nF: Furthermore, Ng {ik (Jx)}
= fB '1NKIQ(JK)}- .
From Kummer theory and class field theory we have the perfect pairing
{, e Jo/'\Nxjo(Jx) @} x {Subgroup of Q*/Q** generated by —D} —u,

given by the product of quadratic norm-residue symbols for all rational
primes including co. Since Jg = UgQ it is easy to see that

NxoUx) Q@ = XQ, where X ={(x,)eUg| d(x,), —D)>g=1}.

Fix a rational prime [ dividing D and consider the idele a = («,) € Ugp whose
entries are 1, except for a, = —1 and q,€U,— U}. Given an idele xeX, we
can multiply by suitable powers of a or the principal idele (—1) to obtain an
idele x' = (x}) = (—1)"a’ x for which x, >0 and x; is a norm from Q,(i)*.
Hence if(x') en. It follows that if{N,o(Jx)} = nF <> ip(x) €nF <= there exists
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an element feF* such that

1, rky2,
-1, |2

i A=1f} =%

Hence the sequence splits if and only if all possible signatures occur over Sy .

ProrosiTioN 4.4. Suppose that D = —1(mod8). Let n and n' be the
primes over 2 in K. Let U, = {ueZ,| u=1(mod4)}. Let Uy, = (keK*| k
is a unit outside n'}. Denote the closure of its image in K, = Q, by U,,... Then
there is a split exact sequence

0= U,/U%., = 1(E/F) = As(K) —0.

Proof. Let v and v' denote the primes of E over n and n’. The semi-

local component of . #J over 2 is |(xf, yf)| a€.#,, 7€ #, and BeQ,(i)*].
By transitivity of norm,

Nye(-#,) = x€Q%| x is a norm from Q,(u,)!.

This is well known to be the cyclic subgroup of Q% generated by 2. Using (4)
it follows that

N (#Jg) ©(TxC* x [] U)K where T={(2°b, b)| a,ceZ, beU,).
edSy

Conversely, suppose N (x,)€(TxC* x [] U, (k) for some principal idele
¢Sk
(k). Clearly (TxC* x [] U,) = Ngjx(.#Jg). Then k is a norm everywhere

Q¢S
locally, and hence globally from E*. Hence (x,) € .#Jy E-Ker Ng . It follows
from (5) that J;*° < .#J.E. Hence Ker Ngy =Ji * < .#J-E. We have
therefore shown that

(6) (x,)e#JE if and only if Ngy(x,)e(TxC*x [] UK.
¢Sk
By Lemma 4.1, we have Ag(E)/i1{As(F)} = Ag(K). From (2) we obtain
the exact sequence
0 —E,/X - I(E/F) = As(K) =0
with X = {x€E¥| (x,1,1,...)e #JE}. Let
Y={yeU,| (y,1,1,...)e(TxC*x [| U)K}.

eéSg

Since X contains a prime element of E,, we have E¥/X = U,/U,nX)
= U,/Y, the last isomorphism being induced by N,, in view of (6).

We determine Y more explicitly. If (v, 1,1,...)e(TxC* x [] U,) (k)
e¢Sg
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for some principal idele (k), then k must be a unit outside 2. Furthermore.
replacing k by k/2°*®, we may assume that k €U ,. Let k, be the image of k
in K, = Q,. Since Ny (k) =2' for some integer r, the image of k in K, is
2/ko. In the semi-local component of Jx over-2 we therefore have (y, 1)
=(29h, 2°b)(k,, 2'/k,) for some a, c€Z and some beU,. Since y and k, are
units, y = k2. Hence Y = U%., and E/X = U,/U%., as desired.

Finally, we prove the splitting of our exact sequence. If G is a finite
group, let [G] denote its 2-rank. Since U,/U%., is cyclic, it suffices to show
that [I(E/K)] > [As(K)]. Using Corollary 2.2 with v, being an archimedean
prime of F and g =2, it is easy to check that ﬁEL. By Lemma 3.2,
[I(E/F)] = [LE: E]. Let B be the maximal unramified elementary 2-extension
of K which is split over 2. Then [A45(K)] =[B:K]=[BE:E]. But LE
properly contains BE because \/5 introduces ramification. It follows that
[1(E/K)] > [As(K)].

5. Examples. We preserve the notation of Section 4. Our goal is to
determine the 2-Sylow subgroup of R, F for various real quadratic fields F. If
G is a finite abelian group, let [G] denote the rank of G/G? and let # [G] be
the number of direct summands of G of order exactly 2. By the results of
Section 4, Proposition 2.1 and Lemma 3.2,

[As(K)]+1 if D= —1(mod 8),

[45(K)]—1 if D =1(mod8) and all possible
éignatures occur over Sg,

[As(K)] otherwise.

Let % = U,/U%., be as defined in Proposition 44. We have the following
formulas for the number of direct summands of order exactly 2.

# [As(K)]+ # [#] if D= —1(mod8),

(1 [RF]=[(E/F)]=

Ag(K)]—1 i =1 dg ibl
®) #[R,F]= # [45(K)] lf D = 1(mod8) and all_posm e
signatures occur over Sg,
# [45(K)] if D# +1(mod8).

Our first examples treat D # +1(mod 8). We begin by showing that the
2-Sylow subgroup of the wild kernel can be elementary abelian of arbitrary
rank.

ProposITION 5.1. Let p, be a prime, p, = 3(mod8). There exist primes p;
= 1(mod 8) having the following Legendre symbols:

(p/po) = —1 fori=1,...,t and (pi/p) =1 for 1<i<j<t.

If D = pop, ... p, with the primes p; satisfying the above conditions, then the 2-
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Sylow subgroups of R, F and K, Op are elementary abelian of rank t and t+2 -

respectively. The Birch-Tate formula for the order of K, OF is valid.

Proof. By Dirichlet’s theorem, one can choose the primes p; successive-
ly, satisfying appropriate congruences modulo 8p,: ... p;_,. The prime 2 is
inert in K over Q, and [4(K)] = [45(K)] =t by genus theory. As represen-
tatives for a basis of ,4(K) we may choose the prime ideals P; over p; in K
for i =1, ..., t. Since each P, is inert in the unramified extension of K given

by K(./p;), the ideal class of P; is not a square. Hence the 2-Sylow subgroup
of A4(K) is elementary abelian of rank r. The same is true for R, F by (7)
and (8).

Clearly —2€Ngo(F*) because —2 is a norm everywhere locally. By
Lemma 5.2 below, K, Or[2] also is elementary abelian, of rank t+ 2. Thus
the Birch-Tate formula is valid for F by [9].

Lemma 5.2, Suppose D # +1(mod8). The following sequence is exact,
where the components of the map i are the real symbols. It splits if and only if
—1 or —2 is a norm from F to Q

0 =R, F[2] =K, 0¢[2] * y x pt 0.

Proof. Let v, be the prime over 2 in F. Exactness is clear, based on
Moore’s theorem, the fact that m, /2 is odd, and the fact that A" is an odd
power of A, for non-archimedean v outside 2. The symbol {—1, —1}
certainly generates a direct summand of K, O of order 2. Therefore, we can
split the sequence if and only if there exists an element s = {—1, f} in K, O,
such that Nf <0, where N is the norm from F to Q. If there is such an
element s, then Tryo(s) = {—1, Nf}. It follows from the computation of
K, Z in [11] that Nf is an element of —Q? or —2Q? as desired. Conversely,
if there is an element f such that Nf is —1 or —2, then it is easy to see that
‘here is an ideal a of F and a rational number r such that (f) = (r) a*> up to
multiplication by the ideals over 2. Then s = {—1, f/r} is the desired element
of K, Og.

Remark. The following exact sequences also are well known, but the
conditions for splitting are somewhat more complicated:

0—=R;F[2] 2K;08[2] =y xpu; xu; =0 if D =1(mod8),

In certain cases, Urbanowicz ([13], p. 80) has restated the conjectured
formula of Birch and Tate for the order of K, Or[2] in terms of the factors
of D, by ascertaining the power of 2 in wg{z(—1). The conjectures of
Urbanowicz are settled by Kolster [9] when K, Of[2] is elementary abelian.
We proceed to settle the rest of these conjectures.
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ExampLE 5.3. Let hy = |A(K)|. For the cases in Table 1 below, wi{p(—1)
= 2uhy (mod 16), where u is a 2-adic unit, by [13], Theorems 4 and 5. We
shall verify the Birch-Tate formula that |K, Oy [2]| =8 if 4 exactly divides
hg, and also obtain the weaker divisibility result that 16 divides |K, O if
and only if 8| hg.

Table 1
B [A(K)]
Case | |D=2p, p=T(8) K(J/=p) 1
Case 2 |D=pg.p=3,4=7(8) K. va -
Case 3 |D=2pg, p=+3(8) K{\/p* 4% 2
Notation: p* = +p=5(8),q* = tq=1(4)

In each case, the ideal P over 2 in K is not principal, and satisfies P2
=(2). It follows that |4(K)| = 2|As(K)|. In Table 1, we list the 2-rank of
A(K), as determined by genus theory, and the class field B corresponding to
A(K)/A(K)2. The ideal class of P generates a direct summand of Ag(K) if
and only if P does not split completely in B. Using this condition, the reader
can verify that 4 divides hy and that Ag(K)[2] is non-trivial cyclic in each
case. By (7), R, F[2] also is a non-trivial cyclic group. Moreover, 4 divides
IR, F| if and only if 4 divides |45(K)| by (8).

By Lemma 5.2, we have the following possibilities, with b > 1, and b = 1
if and only if 8 yhg.

Z/(2°) xZ/2 xZ/2 in case 3, provided either
p=5(8) and g =1(4), or

K,0p[2] =
20r[2] p=3(8) and g =1 or 3(8),
Z)2P )y < Z/2 otherwise.
We now turn our attention to D = —1(mod 8). Write D = p, - ... - p,.Let

7 and 7’ be the primes over 2 in K. Let h be the order of the ideal class of n’
in A(K), and choose a generator u for (f:’}f‘. Then the group U, of elements
of K which are units outside n’ is generated by —1 and u. In the embedding
to K, = Q,, let <u*) be the multiplicative subgroup generated topologically
by u?. Then % = U,/<u?). To apply (8) effectively, we need the following
lemma.

LemMmA 54. If some p, = +3(modB8), then ue +nK? for some integer n
dividing D. If each p; = +1(mod8), then u? =(—D)"(mod n*).

Proof. By genus theory, the 2-rank of A(K) is t—1 and a basis for
,A(K) is given by the classes of the prime ideals P; lying over p; for
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i=1,...,t=1. Suppose some p; = +3(mod8). Then the ideai class of =’ is

not a square in A(K) because n’ is inert in an unramified quadratic extension
. i

1
of K. Hence h is even and (n)"? = [] p;i*(z) for some principal ideal (z). It
i=1
follows that u e +nK? for some integer n dividing D by squaring both sides
and matching generators. .

Next suppose that each p, = +1(mod 8). It is easy to see that if B is an
ideal of K such that B2 = () is principal, then + 8 is a square in each of the
2-adic completions of K. Since —D is a norm from Q( \.51, we may in fact
write —D = a®—8b2, where a, beZ and a is odd. Let x = (a+ = D)/2 with
the sign of a chosen so that v, (x) is odd. Then Ny o(x) = 2b% It follows that
n'(x) is the square of an ideal. Hence (ux") is the square of an ideal

Therefore u € + x"K}?. By taking the 2-adic expansion for \/—D in terms of

a and b the reader can check that x . —De+K*2. It follows that u? =
(—D)"(mod n*), as claimed. )

ExampLE 5.5.-Suppose that D = —1(mod8). If D is a prime, then R, F
= Z/(2®) with b>1, and b =1 if and only if D = 7(mod 16). Furthermore
K,0¢[2] = Z/(2***) xZ/2. If D =pq with p= +3(mod8), then R,F[2]
=Z/2 and K,0:[2] = Z/8 x Z/2.

Proof. To determine R, F[2], we apply (7), (8) and Lemma 54. In
particular, for D = pg, the only possibility is that u € + pK?2, since u is not a
square in K. If D ‘s a prime, then h is odd.

As for the tame kernel, let v, (resp. v,, v;) be the primes in F over 2
(resp., o). By Moore’s theorem, there exists s €K, O such that 4,,(s) = 1,
Ay (s) = —1 and 4y, (s) = i. Replacing s by a suitable odd power, we may
assume that s has 2-power order. By genus theory, Ag(F)/As(F)? is trivial.
Hence K, Of[2] has rank 2 by exact sequence (1). Clearly then K, O [2] is

generated by {—1, —1!} and s. Since s has order 4 modulo R, F, the claimed
description of K, Op[2] follows.

Remark. If D = —1(mod8) has 2 prime factors neither of which is
+3(mod 8) or if D has 3 or more prime factors, then [As(K)] = 2 by genus
theory. Hence [R, F] = 2 by (7). But |[K, O] = IRz F|*|tyq % pte,} = 8+|R, F| by
Moore’s theorem, as used in Example 5.5. Hence |K, Og[2]] = 32. Together
with the above example, this verifies [13], Conjecture (i), p. 80. It follows
from the congruences on wp{z(—1) in [13] that the Birch-Tate formula is
valid if |K; O¢[2]| = 16 while the weaker divisibility result that |K, O, [2]] is
divisible by 32 if and only if wp{z(—1) is divisible by 32 also holds.

Similarly, Example 5.3, together with [9] when K, Of[2] is elementary

abelian, and a dimension count when D has more prime factors, can be used

to verify [13], Conjectures (ii), (iii).
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6. The case of prime D = p=1(mod8). To complete the range of
examples, we concentrate in this section on a case for which not all possible
signatures occur over Sp. By genus theory, F = Q(\'p) has odd class
number. Let 7 and =’ be the places over 2 in F. We may choose an element o
of F which has even ordinal outside n and odd ordinal at m. Since p
= 1(mod4) the fundamental unit ¢ of F satisfies Ngo(e) = —1. Hence we
may adjust « by +é so that « is totally positive. These conditions determine
« up to multiplication by a square in F.

It is easy to see, using for example exact sequence (1), that (K, Of) has
rank 3 and is generated by |—1, —1}, {—1,¢} and {—1, a}. Therefore,
R, F[2] is cyclic, and in fact is trivial if and only if 4, {—1,a} = —1.

Certainly p is a norm from Z [\/5]. Making judicious use of
Z[\;’E]. we may write p = u?—32v? with u > 0. Then one choice of « is
= (u+/p)/2. Clearly the 2-adic embeddings of \/p are +u(mod 16). Hence

+1, - u=1(mod4),
—1, u=3(mod4).

If u = 3(mod 4), we therefore have K, 0p[2] = Z/2 xZ/2 x Z/2. Then by
[9] the Birch-Tate formula is valid. As a further check, it is well known that
u = 3(mod 4) if and only if the order hy of A(K) is exactly divisible by 4.
Furthermore, the congruence wg {(— 1) = 2hg(mod 16) holds by [13]. This is
the case in which all possible 2-adic signatures occur over Sg .

From now on we assume that hg is divisible by 8. Equivalently, u
= 1 (mod4). Then all possible signatures do not occur over Sy and R, F[2]
is cyclic, with element of order 2 given by {—1, a}. We will determine below
when R, F[2] has order exactly 2. However, the explicit results of [13] or
[3] only yield the divisibility result that 16 divides wg*(r(—1) in these cases.

By the vanishing of all Hilbert norm-residue symbols on {—1, a}, we
may write a as a norm from E, say « = Nz. Let w be the prime of E over ='.
Since 2i is a square in Q,(i)) = E, and A =1, commutative diagram (3)
yields

- [ - l A
Ai—1,0a) =4y (=1, a} —{

AeTrli, 2V = 4,40, 2)2 =2,12, 2}2 = A, 12, Ngjpz!}
= 12,0l = A 12, u) = (= eI,
Using reciprocity to obtain A, Tr i, z}, and the fact that p = u*(mod 32), we
have
9) ATrli, z) =(=1)P"D8  f p)2.

Select a prime ¢ = 3(mod4) such that (p/q) = —1. Let B be a prime
over ¢ in K. By genus theory, 4(K)[2] is cyclic. Since B is inert in the
unramified extension K (i) over K, a suitable odd power of the ideal class of
B generates A4 (K)[2]. In fact, by Chebotarev density, we may choose g so
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that the class of B itself generates A4 (K)[2]. Since F has odd class number,
[Jr: Up F] is odd. It follows from the same arguments as in Lemma 4.1, that
the sequence below is exact:

0—A(E)[2] A(K)[2] —»Gal(E/K) —0.

Therefore A(E)[2] is generated by the class of B-0, and is cyclic of order
h/2, where h is the 2-primary part of hy.

Let P be the ideal over 7 in E. Then P cannot be principal since Ngx P
is not principal in K. Furthermore P? = n0,, so a suitable odd power, say
P4, represents an ideal class of order exactly 2 in A(E). Therefore B"* p
= (Z) is principal for some Z in E*. Since Ng,(Z) is totally positive and has
odd ordinal only at 7, it follows that Ny, (Z) differs multiplicatively from «
by a square. By (9), 4, Tr {i, Z} = (— 1)~ if p| 2. Since Ng/r B = () Of we
have

Ng
E'{.K

A,Trli, 2) = %{_”MB' v=q,
v 15y £ l. 1:,{’2q
by Lemma 3.3. Let s = {—1, ¢}"*Tr{i, Z}. Then s = {—1,a} and
() = (=NE IRV, 92,
1, v 2.

By Moore’s theorem, there is an element g €K, O, which we may take
to have 2-power order, such that 4,(g) =1 v 42, and 4,(g) = —1 if v|2.
Then K,O0x[2] is generated by g, {—1,¢] and {—1, —1}. If either p
= 1(mod 16) and 16 th or else p = 9(mod 16) and 16| h, we may take g = s.
Then K, 0¢[2] = Z/4 x Z/2 x Z/2. Otherwise s is an even power of g and 32
divides |K, O|. Therefore the Birch-Tate conjecture leads to the following

CoNJECTURE (implied by Birch-Tate). Let F = Q(\/;_;) for p =1(mod8).
Suppose that the class number hy of K = Q(\/—_p] is divisible by 8. It is
known that 16|wg{p(—1). Then 32 divides wp{z(—1) if and only if either p
= 1(mod 16) and 16| hy or else p=9(mod 16) and 16 y hy.

Mr. Ze Li Dou has verified this conjecture by numerical computation if
p < 1000.

Added in proof. Since the submission of this article, J. Browkin has proven the above
conjecture.
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