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On the average number of direct factors of a finite
Abelian group

by

Exxroarpd KritziL (Jena)

1. Introduction. Let G be a finite Abelian group. Let ©(G) denote the
number of direct factors of G and

T(x) = 2. 7(G),

where the summation is extended over all Abelian groups of order not
exceeding x. B. Cohen [1] proved the representation

T(x) =y, x(logx+2C =1} +y; s X+ 4(x),

where 4(x) is estimated by

A(x) € \/J—clogzx.

In this paper we improve this result by

A(x) = 72,1/ X(H0gx+2C = 1) 472,24/ %+ O (x*/ *log* ).
In these formulas € denotes Euler’s constant, and 7y 5. ..
(22)-(25).
A similar situation takes place when we consider the unitary factors of G,
that is, the total number of direct decompositions of G into 2 relatively prime
factors. Let t(G) denote the number of unitary factors of G and

T*(x} =} t(G),

where again the summation is extended over all the Abelian groups of order
not exceeding x. Here E, Cohen [1] proved that

., ¥2,» are given by

TH(x) = o1y x(logx+2C = 1)+ ¢y x+4%(x),  4*(x) < /xlogx.
In this paper we prove
A*(x) = ¢54/ %+ 0(x'*log? x),

where ¢, 1, ¢;,2, ¢, are defined by (13), (14).
It is not hard to prove this estimate for 4*(x), Therefore, the main point of
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this paper is the proof of the new result for 4(x). Both problems are connected
with some divisor problems.

In Section 2 we present some preliminary lemmas. In Section 3 we prove
the representation for 4*(x), which is based on a result for a three-dimensional
divisor problem. In Section 4 we prove the main result for A(x). For this
purpose a new general result for a four-dimensional divisor problem is needed.

2. Preliminary lemmas.
Lemma 1. Let d(1, 1, 2; n) denote the divisor function
d(1, 1, 2; n) = # {(n,, ﬁz, )i My, My, €N, nyn,n3 = nj,
and let ty(n) be defined by

(s >%)

5 B0 _ ﬁ C(@v—1)8){Qvs)

a=1
(L(s) denctes Riemann's zeta-function). Then

(1) T™*(x) = ¥ d(1, 1,2; mty(n).

S x

Proof. It is known by Lemma 4.2 of [1] that
T*(X} = Z tl(k)a
k€x
where t,(k) is defined by
¥ 1( ) _ = 1 2(@v~1Ds)@vs) (s> 1).

k=1 v=1

Hence

L= Y dil, L 2 mi

mn=k

and (1) follows at once.
Lemma 2. Let d(1, 1, 2, 2; n) denote the divisor function
d(l, 13 23 2’ n) = # {(n_l: n2= n3! n4): nl’

v N €N, n nyning = n},
and let 7,(n) be defined by '

P2 T oes 69
n=1 v=

Then

2 _ Tx) = 3 d(1,1,2,2; mr,(n).
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Proof. Lemmas 2.2 and 2.17 of [1].show that
T(x} = 2 Tl(k)a
E€x

where 1,(k) is defined by

o0

= [] ()

H ye=1

(s > 1).

s

Hence

(k=Y d{1,1,2,2; mz,(n)
mn=k
and (2) follows at once.
The next lemma is a special case of Theorems 5 and 6 of the paper of
M. Vogts [4], see the formulas (2), (3), (4} of his paper.

Lemma 3. Let D(n; B; &; x) be defined by
Din: By x)= 3 mi ... omp,

by b
M1 omn €X

b)) and a, ...,

where o =(a,,...,a,), p= (b, ..., a,, by, ..., b, are positive

real numbers with b, < b, <... < b,. Then
(3) D(n; B; w3 x) = H(n; f; a; )+ A(n; B o« x)
with : .
: o1 a;+1}h; i

4 H@m B o5 x) = .): Jc("‘*“fb“:l‘Jr1 I_] C(( b.) "‘——af>+_11€(—ai),

i=1 i ﬂ;% i i

n—1 —a

(5) An; Br i x) = — Y, {x ”"””"gl(n m" *’"”“’“’")x

pem(n) i=1

Libp n P X

X n (apyt...tap+i=2)(bp; +...+bpy)

(S W M.
ml"‘ e ”’!"1.}:'{71 =1

pemn(n) means that the n-tuple (py, ..., p,) is a permutation of the numbers
1,....,n Then the sum is extended over all permutations. The summation

condnmn of Y, is given by

SCE,

) bm bpna by .1 +bp,
my(<}ymj4, means that

n—2 n-1 “<~x: rnl(s\\---(s)m"w]_.

m; € My Jor py<pie: and
m; < M.y Otherwise.

The function (y) is defined by ¢(y) = y—[y}—1/2.
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Remark. We must suppose that {a;,+ 1)b; # (a;+ 1)b; in representation -
{4). However, in cases of some equalities we can take the limit values.

LeMMa 4. Let O < a < b < ua, where u > 1 is a fixed number. Let f(t) be
a real algebraic function with continuous derivatives up to the third order in
{a, b]. Suppose that

|/ @l=Afa®,  1f" 0= Aa®

throughout the interval. Let o{t) be defined by f'(p) = t. Let « = min f'(z) and
B =maxf'(t) in [a, b). If 1% a, then

. 1 - a
(6) E 2wl g Z WT——EZ"‘U("("”_W("D+O(——«-——)
agn<h sven /| (0] NZ
' +0(log(2+1)),

where
_ femt o for f1(1) > 0,
Tl for f7) <O

Proof. Lemma 4 is a special case of Hilfssatz 3 of [2]. If we put there
g) =1, A, = Aa?, i,= A/a® and if we use there the trivial estimate
T{z) < a/ﬂ, Lemma 4 follows immediately.

3. The estimate for T*(x). In order to prove an estimate for T*(x) it is
seen from Lemma 1 that we must have an estimate for

D(1,1,2;x)= Y d(1,1,n= YT L

n<x nunani € e

Therefore we need the following Lemma 5, which will be a special case of
Theorem 6.3 of [3].

LeMMa 5. The representation
N D{1,1,2; x)=H(1,1,2; x)+4(, 1, 2; x)
holds with

(8) H(1, 1, 2 x) = x{{(Dlog x+Q2C—1){ (2)—2' ()} + 2B/ x,
@ A1, 1,2;x)=~28(1,1, 2; x)—25(1, 2, 1; x)—28(2, 1, 1; x)+ O(x'4),
where 8(a, b, c; x) is defined by

X 1je
(10) Sa, b, e;x) =3, w(( P )

wm

SC(ZZ): mttt < x, ng m.
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Moreover, we have
i A1, 1, 2, x) € x*1?%og?x.

Proof. We apply Lemma 3 withn =3, =(0,0,0), 8 = (1, 1, 2). Then
it is easily seen that

D(3; B s x) = D(1, 1, 2; x),
H(3; By a;x) = H(L, 1, 2; x)+0(1),
A(3; B a; x) = A(1, 1, 2; x)+O(x'4).

Hence, if we use the notation (7), the representations (8), (9) follow from (4), (5).
If we consider the part n =m in (10) it is seen that

\ x
2 ¥l lam) ) exth

Hence, we can always use the inequality n < m in (10).
We now consider the sum

(12) S{a, b, ¢; M, N; x) = Za‘f"((nainf)m),

SC(L): m*'mb™ < x, n<m, N<n <IN, M <m<2M,
where M, N = 1. Then we apply Lemma 4 to the sum
21ip f{mn
233 i )

with respect to m, where u is a positive integer and f(t, n) is defined by

1/c
fen = "(n::b) :

The function ¢(t) in Lemma 4 is given by

Bt x 1/(b+c)
¢m=ciﬂ :

ot

Further we have

2

d A d?
5wﬂa4xﬂ§

—uf (e, )

x 1fe
*z”GWﬁﬁ

A
e

with

6 — Acta Arithmetica LL4
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such that A » M. If
b’,l, x 1/e _ ' bﬂ- X ke
o == M(ﬂ) min— (f’l fb+c> » ﬁ = ﬁ(n) - deT narb-l-c ?

we obtain from (6)

Zaeznmﬂm,n) - ZZ elninf(mm)
nom-
142+
[.L X qe c”e»21u's(;1"xn’“vb)”“"""'
= ”52 2 T

n asvsp
i 1/(2e)
+0((fNa+Zch+Zc) )+O(N10g(,ux)),
pox

where r and s are some positive constants. Because of N*M bre g x, N €M we
have

(lN‘H- Zeppbt 2c> Hel (N2 M)l,’l (Na MP +c)z—-r1;"r* <% x3
X
Hence

¢ L2 4e) ]
Z e2m,uf(m ) R re Z z ( ;,?:2,,) e*st(qun‘"vb)U”' rC)

v on

+ 0(%:&’.3) +0{x**log(ux)).
I

We now can apply van der Corput’s method of exponent pairs to the sum
over n. Let (k, ) be an exponent pair. Then it is easily seen thal

c 1/(2(b+c) Kj(b+e)
Y e 4 3 _Hx . N
3 ~ Navb+20 Na-i bte

1
+—=x38 4 x4 og(ux)
N

o \@k+ D/
k+1/2
<K (N“M”

NIk +%x3/’8 +x1[4'10g(ﬂ.-‘5).
)

Now. it is well known that

2 W(—S(m ) <}, + Z mm( )|L Zvrwo»n)|

Therefore, we obtain for the sum (12)
8(a, b, c; M, N; x)

X

MN 2k 126
<?+zk+112 W) NPk 438 4 x4 log? (zx).
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1
Zz =
x2k+ 1
then

S({I b et M.N- X) <€ (x2k+1M(2k+1}(c—b)N(21+1)0—(2k+1}a)1,’(2k+3)r+YBIB

If we put

1{(2k+3)e
(Zk+1)b+2 2k+L)at+2(1—1+k
M e N2kt Lt 2 )c) ;

provided that z > 1. But otherwise the estimate is trivial. It will be seen that
(¥, 18) is a useful exponent pair. Thus, because of a+bh+c = 4,

S(a, b, ¢ M, N; x) & (xMcwa2c-a)11f29c+x3/8
N\ 2e(b+c)—ap\ 11/116c
— (x‘t(NaMbﬁ-c)Sc‘-n-b(M) ) ‘+x3/8 < x111’29_

We can divide the sum ) into O(log®x) subsums of type pIe Then (10)
and (12) show that

Sla, b, ¢; x) € x*1??log?x.

Now estimate (11} follows from (9).
TaeoreM 1. Let ¢y 4, ¢y, ¢, be defined by

(13) crs = L) z B0 = f b ")
(14 cra= =3, tiﬁ")(aznogn—zc(z))-
Then

(15 - T*(x)= cl.lx(logx+2C-1)+cl,2x+c2ﬁ+0(x1”3910g2x).
Proof. We apply Lemmas 1 and 5 and obtain from (1), (8), (11)

THx) = Y t4(n)D

nEx

=¥ t—@;gf—)x{C(Z)log%+(2C~]-)C(Q)'FQC'Q)}

1/2 11/29 x
( ) Y ti(n)( ) +O(}: ta(n)( ) logz;l-).

Since the Dirichlet series for t,(n) is absolutely convergent for s > 1/3, result
(15) follows immediately.

(1,1, 2; x/n)



® ; ; ;
= On direct factors of a finite Abelian group 377
376 E. Kritzel Im“ ;

4. The estimate for T(x}. In order to obtain an estimate for T(x) it is seen Proof. We apply Lemma 3 with n=4, ¢=(0,0,0,0, p=

from Lemma 2 that we must have an estimate for (ay, a5, a5, a,). Then
D(1,1,2,2;x)= 3 d(1,1,2,2;n). . D(4; B; o; x) = Dla; x),
| = | H{; f; 5 %) = H(a; x)+0(1),

This will be an immediate consequence from the following new genera
theorem. ! A@; By oa; x) = Ala; x)-+ O(x2/19),

THEOREM 2. Let a,, a,, 4, a, be real numbers with 1 < a; < d; < a3 < 4. Because of 24, > A4, we have on the one hand the single error term O(x*/44),
Put ‘ and on the other hand it is one and the same whether n, = n, or not. Namely,

if we consider the part n, = n, in (19) it is seen that
a=I(ay,a,, as,a,y), A, =a;+...+a, forv=1234 .

: Lua "
L () )€ T Gt

Agq
Ry €x

Dia; x) = 4 {(nys 1y, Ngu B): By, e Ny €N, HYRERP NG < x}.
’ { s P2 SC(ZS): nliln22+u3+u4 < x, 1< n, (‘~<-)nz-
Then the representation

oA . . Thus (16) holds with (17), (18}, {19).
= Ala;
(16) Dia; x) = H(a; x)+4(@; x) Let N =(N,, N,, N;). We now consider the sum

holds with "
Uy
4 4 S(u; N; x) (( ) ),
17 H )= T ot a=]] ta/a) = 2oV s
v=1 p=1
¢:fA SCR):  mimgnp<x, 1 <n (Khny <,
18 d(a; x) = —) Su; x)+0 4
(18) (%) = 2 (1 2)+ 007, N, €n,<2N, (v=1,2,3).
provided that 24, > A,. Here u = (u, u,, us, u,) runs over all permutations of We now apply the inequality. (27), Hilfssatz 6 [2] or, what is the same,
the numbers ay, a,, as, a4. S(u; x) is defined by inequality (6.17), Lemma 6.4 [3] to the sum over n,, ny. Then
- 1fnq
. 21 S u; N., x) < x2n—2u1 N4u4—2u2N3u4—2u3 1/6n410 x
(19) Sw; x) =Y, w((ﬂﬂlnunm) ) (21) { ) Mzm( PN Jua TRy g
where the summation condition is described by & (2 N§va~ 2w gua—2uz Nua—2uz)l/6us] o0
. ua-tu . ) 3y 1/6u4
SC(Z:;) nl n n33+ 4 \<- X, I ‘-<~. "1(%)”2 "'<~ n3' < (xz(N'{iN‘fN';”““)y‘(%iy (%)y ) lng,
ny (<) n, means that ny < n, for uy = a, u, =a,and i <j and ny, < n, 2 3 _
otherwise. Vi, Vg, ¥y QI8 given by
Moreover, the estimatio
T stimation Ay, = 15u,—24,,
(20) : A(a; x) < x341]og*x

Agyy = 3ug(24,4—5uy),

Since u, +u, +us+uy = A, Wehave yy, y;, y3 2 0for all combinations of u, ,
Remark. In the representation (17) of the main term we must suppose Ug, Uy, y if

that a;, < a, < ay < a,. However, in cases of some equalities we can take the
limit values. ’ 15, 2 24,, 24, > Sas. 3ay+ay) > A,

holds under the conditions

154, > 24,, 34, > A4,, 54,3234,
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Because of the conditions of the theorem these inequalities are satisfied,
Therefore, we can use the inequalities

N1{1N1£2N153+u4 < x, N:L < N2 < N3
n (21). Then
S{u; N; x) <€ x3?44og x,
S(u; x) < x3*4]og*x.

Now (20) follows from (18).
We are now in a position to prove the estimate for T'(x).

THEOREM 3. Let vy ¢, V1,2, V2.1, V2,2 be defined by

) vt = 02Q) i 2
23) na =3 2eonen-arere),
© ()

(24) Y21 = & (‘L

RN~

“(”} (0 @logn—LBILE).

o]

(25) V2,2 = —
n=1

Then
(26)  T(x) =y, x{logx+2C~1)+y, ,x

+y2,1ﬁ(%1ogx+zc—1)+y2,2\/§+ O(x5'2log* x).

Proof. We use Theorem 2 with @, =a, = 1, a4, = a, = 2. We have
A1_= I, A, =2, Ay =4, A, =6, and the conditions of the theorem are
satisfied. We obtain by simple calculations for the main term

H(1, 1,2, 2; x) = Q) x(log x+2C—1)+4L ()¢ (2)x
+ @)/ xHlogx+2C - D)+ { BB/ .

It is seen from (20) that

41,1, 2, 2; x) < x**log* x.

icm
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We now apply equation {2) and obtain
T{x) Z '53(71).0(1, 1! 2> 2; x/n)

nEx

Z %@x{czaﬂog%w;.QC— 1)@'2(2)4—4((2)?(2)}

n€x

X X
+ 3 'rs(n)ﬁ{%rzze)log-ﬂx—1>c2(%)+c(%)z'(%)}
Since the Dirichlet series for 14(n) is absolutely convergent for s > 1/3, result
(26) follows immediately.

References

[11 BE. Cohen, On the average number of direct factors of a finite abelian group, Acta Arith.
6 (1960), 159-173.

[2] E. Kridtzel, Zweifache Exponeniialsummen und dreidimensionale Gitterpunktprobleme; in:
Elementary and Analytic Theory of Numbers, Banach Center Publications 17, PWN —Polish
Scientific Publishers, Warsaw 1983, 337-369.

[31 — Lattice Points, Berlin, to appear.

[4] M. Vogts, Many-dimensional generalized divisor problems, Math, Nachr, 124 (19853), 103-121.

Received on 1.12.1986
and in revised form on 17.3.1987 (1694)



